RECENT ADVANCES in APPLIED MATHEMATICS and COMPUTATIONAL METHODS in ENGINEERING

Rhodes Island, Greece
July 16-19, 2013
Organizing Committee

General Chairs (EDITORS)
- Professor Charles A. Long
 Professor Emeritus
 University of Wisconsin
 Stevens Point, Wisconsin, USA
- Professor Nikos E. Mastorakis
 Military Institutes of University Education (ASEI)
 Hellenic Naval Academy
 Sector of Electrical Engineering and Computer Science
 Piraeus, Greece
 -also with-
 Technical University of Sofia
 1000 Sofia, Bulgaria
- Professor Valeri Mladenov
 Technical University of Sofia
 1000 Sofia, Bulgaria

Senior Program Chair
- Professor Philippe Dondon
 ENSEIRB
 Rue A Schweitzer 33400 Talence
 France

Program Chairs
- Professor Filippo Neri
 Dipartimento di Informatica e Sistemistica
 University of Naples "Federico II"
 Naples, Italy
- Professor Hamid Reza Karimi
 Department of Engineering
 Faculty of Engineering and Science
 University of Agder, N-4898 Grimstad
 Norway
- Professor Sandra Sendra
 Instituto de Inv. para la Gestión Integrada de Zonas Costeras (IGIC)
 Universidad Politécnica de Valencia
 Spain

Tutorials Chair
- Professor Pradip Majumdar
 Department of Mechanical Engineering
 Northern Illinois University
 Dekalb, Illinois, USA

Special Session Chair
- Professor Pavel Varacha
 Tomas Bata University in Zlin
 Faculty of Applied Informatics
 Department of Informatics and Artificial Intelligence
 Zlin, Czech Republic
Workshops Chair
- Professor Ryszard S. Choras
 Institute of Telecommunications
 University of Technology & Life Sciences
 Bydgoszcz, Poland

Local Organizing Chair
- Assistant Professor Klimis Ntalianis,
 Tech. Educ. Inst. of Athens (TEI), Athens, Greece

Publication Chair
- Professor Gen Qi Xu
 Department of Mathematics
 Tianjin University
 Tianjin, China

Publicity Committee
- Professor Reinhard Neck
 Department of Economics
 Klagenfurt University
 Klagenfurt, Austria
- Professor Myriam Lazard
 Institut Superieur d' Ingenierie de la Conception
 Saint Die, France

International Liaisons
- Professor Ka-Lok Ng
 Department of Bioinformatics
 Asia University
 Taichung, Taiwan
- Professor Olga Martin
 Applied Sciences Faculty
 Politehnica University of Bucharest
 Romania
- Professor Vincenzo Niola
 Departemt of Mechanical Engineering for Energetics
 University of Naples "Federico II"
 Naples, Italy
- Professor Eduardo Mario Dias
 Electrical Energy and Automation
 Engineering Department
 Escola Politecnica da Universidade de Sao Paulo
 Brazil

Steering Committee
- Professor Aida Bulucea, University of Craiova, Romania
- Professor Dana Simian, Univ. of Sibiu, Sibiu, Romania
- Professor Zoran Bojkovic, Univ. of Belgrade, Serbia
- Professor Metin Demiralp, Istanbul Technical University, Turkey
- Professor F. V. Topalis, Nat. Tech. Univ. of Athens, Greece
- Professor Imre Rudas, Obuda University, Budapest, Hungary
Program Committee

Prof. Lotfi Zadeh (IEEE Fellow, University of Berkeley, USA)
Prof. Leon Chua (IEEE Fellow, University of Berkeley, USA)
Prof. Michio Sugeno (RIKEN Brain Science Institute (RIKEN BSI), Japan)
Prof. Dimitri Bertsekas (IEEE Fellow, MIT, USA)
Prof. Demetri Terzopoulos (IEEE Fellow, ACM Fellow, UCLA, USA)
Prof. Georgios B. Giannakis (IEEE Fellow, University of Minnesota, USA)
Prof. George Vachtsevanos (Georgia Institute of Technology, USA)
Prof. Abraham Bers (IEEE Fellow, MIT, USA)
Prof. David Staelin (IEEE Fellow, MIT, USA)
Prof. Brian Barsky (IEEE Fellow, University of Berkeley, USA)
Prof. Angelos Katsaggelos (IEEE Fellow, Northwestern University, USA)
Prof. Jozef Sifakis (Turing Award 2007, CNRS/Verimag, France)
Prof. Hisashi Kobayashi (Princeton University, USA)
Prof. Kinshuk (Fellow IEEE, Massey Univ. New Zealand)
Prof. Leonid Kazovsky (Stanford University, USA)
Prof. Narasimha Deo (IEEE Fellow, ACM Fellow, University of Central Florida, USA)
Prof. Kamisetty Rao (Fellow IEEE, Univ. of Texas at Arlington, USA)
Prof. Anastassios Venetsanopoulos (Fellow IEEE, University of Toronto, Canada)
Prof. Steven Collicott (Purdue University, West Lafayette, IN, USA)
Prof. Nikolaos Paragios (Ecole Centrale Paris, France)
Prof. Nikolaos G. Bourbakis (IEEE Fellow, Wright State University, USA)
Prof. Stamatios Kartalopoulos (IEEE Fellow, University of Oklahoma, USA)
Prof. Irwin Sandberg (IEEE Fellow, University of Texas at Austin, USA)
Prof. Michael Sebek (IEEE Fellow, Czech Technical University in Prague, Czech Republic)
Prof. Hashem Akbari (University of California, Berkeley, USA)
Prof. Yuriy S. Shmaly, (IEEE Fellow, The University of Guanajuato, Mexico)
Prof. Lei Xu (IEEE Fellow, Chinese University of Hong Kong, Hong Kong)
Prof. Paul E. Dimotakis (California Institute of Technology Pasadena, USA)
Prof. M. Pelikan (UMSL, USA)
Prof. Patrick Wang (MIT, USA)
Prof. Wasfy B. Mikhael (IEEE Fellow, University of Central Florida Orlando, USA)
Prof. Sunil Das (IEEE Fellow, University of Ottawa, Canada)
Prof. Panos Pardalos (University of Florida, USA)
Prof. Nikolaos D. Katopodes (University of Michigan, USA)
Prof. Bimal K. Bose (Life Fellow of IEEE, University of Tennessee, Knoxville, USA)
Prof. Janusz Kacprzyk (IEEE Fellow, Polish Academy of Sciences, Poland)
Prof. Sidney Burrus (IEEE Fellow, Rice University, USA)
Prof. Biswa N. Datta (IEEE Fellow, Northern Illinois University, USA)
Prof. Mihai Putinar (University of California at Santa Barbara, USA)
Prof. Wlodzislaw Duch (Nicolaus Copernicus University, Poland)
Prof. Tadeusz Kaczorek (IEEE Fellow, Warsaw University of Technology, Poland)
Prof. Michael N. Katehakis (Rutgers, The State University of New Jersey, USA)
Prof. Pan Agathoklis (Univ. of Victoria, Canada)
Prof. P. Demokritou (Harvard University, USA)
Prof. P. Razelos (Columbia University, USA)
Dr. Subhas C. Misra (Harvard University, USA)
Prof. Martin van den Toorn (Delft University of Technology, The Netherlands)
Prof. Malcolm J. Crocker (Distinguished University Prof., Auburn University, USA)
Prof. S. Dafermos (Brown University, USA)
Prof. Urszula Ledzewicz, Southern Illinois University, USA.
Prof. Dimitri Kazakos, Dean, (Texas Southern University, USA)
Prof. Ronald Yager (Iona College, USA)
Prof. Athanassios Manikas (Imperial College, London, UK)
Prof. Keith L. Clark (Imperial College, London, UK)
Prof. Argyris Varonides (Univ. of Scranton, USA)
Prof. S. Furfari (Direction Generale Energie et Transports, Brussels, EU)
Prof. Constantin Udriste, University Politehnica of Bucharest , ROMANIA
Dr. Michelle Luke (Univ. Berkeley, USA)
Prof. Patrice Brault (Univ. Paris-sud, France)
Dr. Christos E. Vasios (MIT, USA)
Prof. Jim Cunningham (Imperial College London, UK)
Prof. Philippe Ben-Abdallah (Ecole Polytechnique de l'Universite de Nantes, France)
Prof. Photos Anninos (Medical School of Thrace, Greece)
Prof. Ichiro Hagiwara, (Tokyo Institute of Technology, Japan)
Prof. Metin Demiralp (Istanbul Technical University / Turkish Academy of Sciences, Istanbul, Turkey)
Prof. Andris Buiķis (Latvian Academy of Science. Latvia)
Prof. Akhshai Aggarwal (University of Windsor, Canada)
Prof. George Vachtsevanos (Georgia Institute of Technology, USA)
Prof. Ulrich Albrecht (Auburn University, USA)
Prof. Imre J. Rudas (Obuda University, Hungary)
Prof. Alexey L Sadowski (IEEE Fellow, Texas A&M University, USA)
Prof. Amedeo Andreotti (University of Naples, Italy)
Prof. Ryszard S. Choras (University of Technology and Life Sciences Bydgoszcz, Poland)
Prof. Remi Leandre (Universite de Bourgogne, Dijon, France)
Prof. Moustapha Diaby (University of Connecticut, USA)
Prof. Brian McCartin (New York University, USA)
Prof. Elias C. Aifantis (Aristotle Univ. of Thessaloniki, Greece)
Prof. Anastasios Lyrintzis (Purdue University, USA)
Prof. Charles Long (Prof. Emeritus University of Wisconsin, USA)
Prof. Marvin Goldstein (NASA Glenn Research Center, USA)
Prof. Costin Cepisca (University POLITEHNICA of Bucharest, Romania)
Prof. Kleanthis Psarris (University of Texas at San Antonio, USA)
Prof. Ron Goldman (Rice University, USA)
Prof. Ioannis A. Kakadiaris (University of Houston, USA)
Prof. Richard Tapia (Rice University, USA)
Prof. F.-K. Benra (University of Duisburg-Essen, Germany)
Prof. Milivoje M. Kostic (Northern Illinois University, USA)
Prof. Helmut Jaberg (University of Technology Graz, Austria)
Prof. Ardeshrir Anjomani (The University of Texas at Arlington, USA)
Prof. Heinz Ulbrich (Technical University Munich, Germany)
Prof. Reinhard Leithner (Technical University Braunschweig, Germany)
Prof. Elbrous M. Jafarov (Istanbul Technical University, Turkey)
Prof. M. Ehsani (Texas A&M University, USA)
Prof. Sesh Commuri (University of Oklahoma, USA)
Prof. Nicolas Galanis (Universite de Sherbrooke, Canada)
Prof. S. H. Sohrab (Northwestern University, USA)
Prof. Rui J. P. de Figueiredo (University of California, USA)
Prof. Valeri Mladenov (Technical University of Sofia, Bulgaria)
Prof. Hiroshi Sakaki (Meisei University, Tokyo, Japan)
Prof. Zoran S. Bojkovic (Technical University of Belgrade, Serbia)
Prof. K. D. Klaes, (Head of the EPS Support Science Team in the MET Division at EUMETSAT, France)
Prof. Emira Maljevic (Technical University of Belgrade, Serbia)
Prof. Kazuhiko Tsuda (University of Tsukuba, Tokyo, Japan)
Prof. Milan Stork (University of West Bohemia , Czech Republic)
Prof. C. G. Helmis (University of Athens, Greece)
Prof. Lajos Barna (Budapest University of Technology and Economics, Hungary)
Prof. Nobuoki Mano (Meisei University, Tokyo, Japan)
Prof. Nobuo Nakajima (The University of Electro-Communications, Tokyo, Japan)
Prof. Victor-Emil Neagoe (Polytechnic University of Bucharest, Romania)
Prof. E. Protonotarios (National Technical University of Athens, Greece)
Prof. P. Vanderstraeten (Brussels Institute for Environmental Management, Belgium)
Prof. Annaliese Bischoff (University of Massachusetts, Amherst, USA)
Prof. Virgil Tironut (Politehnica University of Timisoara, Romania)
Prof. Andrei Kolyshkin (Riga Technical University, Latvia)
Prof. Fumiaki Imado (Shinshu University, Japan)
Prof. Sotirios G. Ziavras (New Jersey Institute of Technology, USA)
Prof. Constantin Volosencu (Politehnica University of Timisoara, Romania)
Prof. Marc A. Rosen (University of Ontario Institute of Technology, Canada)
Prof. Alexander Zemliak (Puebla Autonomous University, Mexico)
Prof. Thomas M. Gatton (National University, San Diego, USA)
Prof. Leonardo Pagnotta (University of Calabria, Italy)
Prof. Yan Wu (Georgia Southern University, USA)
Prof. Daniel N. Riahi (University of Texas-Pan American, USA)
Prof. Alexander Grebennikov (Autonomous University of Puebla, Mexico)
Prof. Bennie F. L. Ward (Baylor University, TX, USA)
Prof. Guennadi A. Kouzayev (Norwegian University of Science and Technology, Norway)
Prof. Eugene Kindler (University of Ostrava, Czech Republic)
Prof. Geoff Skinner (The University of Newcastle, Australia)
Prof. Hamido Fujita (Iwate Prefectural University(IPU), Japan)
Prof. Francesco Muzi (University of L'Aquila, Italy)
Prof. Les M. Sztandera (Philadelphia University, USA)
Prof. Claudio Rossi (University of Siena, Italy)
Prof. Christopher J. Koroneos (Aristotle University of Thessaloniki, Greece)
Prof. Sergey B. Leonov (Joint Institute for High Temperature Russian Academy of Science, Russia)
Prof. Arpad A. Fay (University of Miskolc, Hungary)
Prof. Lili He (San Jose State University, USA)
Prof. M. Nasseh Tabrizi (East Carolina University, USA)
Prof. Alaa Eldin Fahmy (University Of Calgary, Canada)
Prof. Ion Carstea (University of Craiova, Romania)
Prof. Paul Dan Cristea (University "Politehnica" of Bucharest, Romania)
Prof. Gh. Pascovici (University of Koeln, Germany)
Prof. Pier Paolo Delsanto (Politecnico di Torino, Italy)
Prof. Radu Munteanu (Rector of the Technical University of Cluj-Napoca, Romania)
Prof. Ioan Dumitrache (Politehnica University of Bucharest, Romania)
Prof. Corneliu Lazar (Technical University Gh.Asachi lasi, Romania)
Prof. Nicola Pitrone (Universita degli Studi Catania, Italia)
Prof. Miquel Salgot (University of Barcelona, Spain)
Prof. Amaury A. Caballero (Florida International University, USA)
Prof. Maria I. Garcia-Planas (Universitat Politecnica de Catalunya, Spain)
Prof. Petar Popivanov (Bulgarian Academy of Sciences, Bulgaria)
Prof. Alexander Gegov (University of Portsmouth, UK)
Prof. Lin Feng (Nanyang Technological University, Singapore)
Prof. Colin Fyfe (University of the West of Scotland, UK)
Prof. Zhaohui Luo (Univ of London, UK)
Prof. Mikhail Itskov (RWTH Aachen University, Germany)
Prof. George G. Tsypkin (Russian Academy of Sciences, Russia)
Prof. Wolfgang Wenzel (Institute for Nanotechnology, Germany)
Prof. Weilian Su (Naval Postgraduate School, USA)
Prof. Phillip G. Bradford (The University of Alabama, USA)
Prof. Ray Hefferlin (Southern Adventist University, TN, USA)
Prof. Gabriella Bognar (University of Miskolc, Hungary)
Additional Reviewers

Vaclav Skala Dario Ferreira
Ahmad Azarnik Anabela Gomes
Keffala Mohamed Rochdi Andrey N. Dmitriev
Valentine Baranov Gabriel Badescu
Hugo Rodrigues Catalin Popescu
Dumitru Cazacu Vassiliki T. Kontargyri
Cornelia Aida Bulucea H. Kijima
Jiri Hrebicek
Sanjib Kumar Datta
Maria Dobritoiu
Umer Asgher
Anna Adamik
Jorge Magalhaes Mendes
Gilberto Perez Lechuga
Jelena Vasiljevic
Deolinda Dias Rasteiro
Ozlem Turker Bayrak
Ahmed El Kashlan
Najat Oualline
Armando Silva Afonso
Klimis Ntalianis
Igor Astrov
Filippo Neri
Valeriu Prepelita
Mihaela Iliescu
Calin Ciufudean
Milan Stork
Anel Tanovic
Ioannis Gonos
Lamberto Tronchin
Dan Lacrama
Sudhir Dawra
Kala Ouarda
Shahram Javadi
Babak Bashari Rad
Yilun Shang
Alina Badulescu
Corina Carranca
Christos Volos
Elena Zaitseva
Daniela Litan
Farhad Mehran
Ahmet Ertek
Fernando Reinaldo Ribeiro
Ayman Batisha
Madalina Xenia Calbureanu Popescu
Cornelia Gyorodi
Dzenana Donko
Table of Contents

Keynote Lecture 1: Shifting the Expansion Point in Direct Power Series of Multivariated Functions
Metin Demiralp
17

Plenary Lecture 1: Intelligent Prediction of Vehicle Dynamics Using Structured Neural Networks
Stratis Kanarachos
19

Plenary Lecture 2: Multitime Solitons and Their Maple Animation
Constantin Udriste
20

Plenary Lecture 3: Invariant Subspaces and Structural Properties of 2-D Control Systems
Valeriu Prepelita
22

Tutorial 1: Projective Geometry and Duality for Graphics, Games and Visualization
Vaclav Skala
24

Tutorial 2: Nonlinear Distortion in Wireless Transmitters
D. Budimir
25

Predictor-Corrector Method for Finding the Numerical Solution of the Initial Value Problem of the Ordinary Differential Equation with Singular Point
Kanoknapa Erawun
27

General Hybrid Method in the Numerical Solution for ODE of First and Second Order
G. Mehdiyeva, M. Imanova, V. Ibrahimov
34

Numerical Simulation of Flow through Wellbore for Horizontal Wells
Mohammed Abdulwahhab Abdulwhahid, Sadoun Fahad Dakhil, Niranjan Kumar Injeti
40

Computational Methods and Management Algorithms for EAF Elaboration Optimization
Adrian Ioana, Augustin Semenescu, Alexandru Ghiban
49

Certificate-less Based Private Querying in VANETs
Wan An Xiong
53

On the Application of the Cowell’s Methods to Solving Volterra Integro-Differential Equations
G. Mehdiyeva, M. Imanova
63

PID-AVR Optimization Using Enhanced Artificial Bee Colony Optimization Algorithm
Abdul Ghani Abro, Junita Mohamad-Saleh
68

A Modified Artificial Bee Colony (JA-ABC) Optimization Algorithm
Noorazliza Sulaiman, Junita Mohamad-Saleh, Abdul Ghani Abro
74
Trading Strategy Mining with Gene Expression Programming
Chang-Hao Huang, Chang-Biau Yang, Hung-Hsin Chen

Multiple Criteria Decision Making under Uncertainty based on Stochastic Dominance
Aleksandar Janjic, Aleksandar Andjelkovic, Miroslav Docic

A Comparison of the Decision-Making Strategies in IDRISI and ArcGIS Products
Vilém Pechanec, Ivo Machar

A Control of an Electromagnetic Actuator Using Model Predictive Control
Paolo Mercorelli

First Integrals for Some Complexified Ordinary Differential Equations by Complexified Partial Noether Approach
Rehana Naz

An Intra-Chromosome Pivoted Crossover (ICPX) as an Operator for TSP Optimization Problems
Antonio Carlos Pinto Dias Alves

Vibration of a Cracked Plate on an Elastic Foundation
Esta Kago, Jaan Lellep

Mixture Distributions in Modelling of Insurance Losses
Viera Pacáková, David Zapletal

On Error Estimation In General Linear Methods: Runge Kutta (Rk) And Almost Runge-Kutta (Ark) Methods
Abraham Ochoche

Oblique Newtonian Fluid Flow with Heat Transfer Towards a Stretching Sheet
F. Labropulu, A. Ghaffar

Buckling of Plates on Rotationally and Warping Restrained Supports
V. Piscopo, A. Scamardella

Numerical Research of Burning Kazakhstan Solid Fuel in the Real Boiler
A. S. Askarova, S. A. Bolegenova, V. Yu. Maximov, A. Bekmukhamet, M. T. Beketayeva

Analytical Results for a Small Multiple-layer Parking System
Sjoert Fleurke, Aernout C.D. van Enter

Numerical Simulation of the Influence of the Atomization Velocity on the Liquid Hydrocarbon Fuel’s Combustion
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Dimensional Pulsatile Non-Newtonian Flow in a Stenotic Vessel</td>
<td>159</td>
</tr>
<tr>
<td>I. Husain, C. Langdon, J. Schwark</td>
<td></td>
</tr>
<tr>
<td>Analysis of the Electric Field Distribution in a Wire-Cylinder Electrode Configuration</td>
<td>164</td>
</tr>
<tr>
<td>Konstantinos N. Kiousis, Antonios X. Moronis, Wolf G. Früh</td>
<td></td>
</tr>
<tr>
<td>Enforcing the Core Rectangular Matrices to be in Most Reductive Structures in Probabilistic Evolution Approach, via Mathematical Fluctuations</td>
<td>171</td>
</tr>
<tr>
<td>Metin Demiralp</td>
<td></td>
</tr>
<tr>
<td>Fields of Cones on Jet Bundles</td>
<td>179</td>
</tr>
<tr>
<td>Constantin Pătrâsoiu</td>
<td></td>
</tr>
<tr>
<td>Mathematical Models Used in Processing Measurements Made By Terrestrial Laser Scanning Technology</td>
<td>184</td>
</tr>
<tr>
<td>Constantin Coșarcă, Caius Didulescu, Adrian Savu, Aurel Sărăcin, Gheorghe Badea, Ana Cornelia Badea, Aurel Negrilă</td>
<td></td>
</tr>
<tr>
<td>Learning and Adaptive Linear Neural Network for Enhancing Harmonics Compensation</td>
<td>189</td>
</tr>
<tr>
<td>Zhenfeng Xiao, Yilong Chen, Qin Li, Xiaofeng Dou</td>
<td></td>
</tr>
<tr>
<td>New Mathematical Paradigm Applied to Fluid Flow in Porous Media: The Case of Permeable Asphalt Pavement</td>
<td>195</td>
</tr>
<tr>
<td>Andrea Umiliaco, Andrea Benedetto</td>
<td></td>
</tr>
<tr>
<td>On Attempt of Stability Investigation of a Cylindrical Couette Flow with Suction/Injection in Radial and Azymuthal Magnetic Fields</td>
<td>203</td>
</tr>
<tr>
<td>Vladislavs Kremeneckis</td>
<td></td>
</tr>
<tr>
<td>The Rosenzweig-MacArthur Predation Model with Double Allee Effects on Prey</td>
<td>206</td>
</tr>
<tr>
<td>Jaime Huincahue-Arcos, Eduardo González-Olivares</td>
<td></td>
</tr>
<tr>
<td>Investigation of Fluid Flow Around a Cylinder with EHD Actuation on Inclined Plates Behind the Cylinder</td>
<td>212</td>
</tr>
<tr>
<td>S. Reza-Zadeh</td>
<td></td>
</tr>
<tr>
<td>Investigation of Stationary Droplet Coalescence in a Two Phase System under Shear Flow using Free Energy Lattice Boltzmann</td>
<td>218</td>
</tr>
<tr>
<td>Ehsan Amiri Rad</td>
<td></td>
</tr>
<tr>
<td>A New Torus Bounding for Line-Torus Intersection</td>
<td>225</td>
</tr>
<tr>
<td>Vaclav Skala</td>
<td></td>
</tr>
<tr>
<td>Data Mining on a Semantically Annotated Corpus</td>
<td>231</td>
</tr>
<tr>
<td>Manuella Kadar, Maria Muntean</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Robust Barycentric Coordinates Computation of the Closest Point to a Hyperplane in En</td>
<td>239</td>
</tr>
<tr>
<td>Vaclav Skala</td>
<td></td>
</tr>
<tr>
<td>Second Order Differential Equation of Motion in Railways: The Variance of the Dynamic Component of Actions due to the Unsprung Masses</td>
<td>245</td>
</tr>
<tr>
<td>Konstantinos Giannakos</td>
<td></td>
</tr>
<tr>
<td>Modeling the Formaldehyde Emission from Plywood by Correlation of Testing Methods</td>
<td>253</td>
</tr>
<tr>
<td>Loredana Anne-Marie Badescu, Octavia Zeleniuc, Simona Urdea</td>
<td></td>
</tr>
<tr>
<td>Efficient Frontier and Lower Partial Moment of the First Order</td>
<td>259</td>
</tr>
<tr>
<td>Shaghayegh Mehrjoo, Milad Jasemi</td>
<td></td>
</tr>
<tr>
<td>An EM Estimation Algorithm of Iterated Random Function System Parameters from Noisy Observations</td>
<td>264</td>
</tr>
<tr>
<td>Reda A. El-Khoribi</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Numerical Simulation of Supercritical Flow in Expansion Channel</td>
<td>272</td>
</tr>
<tr>
<td>Evangelia D. Farsirotou, Athanasios J. Klonidis, Johannes V. Soulis</td>
<td></td>
</tr>
<tr>
<td>Numerical Solutions of Volterra Integral Equations Using Galerkin method with Hermite Polynomials</td>
<td>276</td>
</tr>
<tr>
<td>M. M. Rahman</td>
<td></td>
</tr>
<tr>
<td>Evaluation of a Single Needle to Grid EHD Pump Prototype for Forced Convection Cooling Applications</td>
<td>282</td>
</tr>
<tr>
<td>Emmanouil D. Fylladitakis, Antonios X. Moronis, Konstantinos N. Kiousis</td>
<td></td>
</tr>
<tr>
<td>Simulation of the Course of Evacuation in Tunnel Fire Conditions by FDS+Evac</td>
<td>288</td>
</tr>
<tr>
<td>Lukas Valasek, Jan Glasa</td>
<td></td>
</tr>
<tr>
<td>Set of Fiscal Algorithms for Land-Use Management and Decision-Making in the Territory of a Municipality</td>
<td>296</td>
</tr>
<tr>
<td>Armands Auzins, Sanda Geipele, Ineta Geipele</td>
<td></td>
</tr>
<tr>
<td>Modeling of the Thermal Transfer of a Wall of Various Geometrical Forms</td>
<td>303</td>
</tr>
<tr>
<td>A. Z. Dellii</td>
<td></td>
</tr>
<tr>
<td>Authors Index</td>
<td>311</td>
</tr>
</tbody>
</table>
Keynote Lecture 1

Shifting the Expansion Point in Direct Power Series of Multivaried Functions

Professor Metin Demiralp
Istanbul Technical University
TURKEY
E-mail: metin.demiralp@be.itu.edu.tr

Abstract: Taylor series play an important role in the representation of the analytic functions. They are in fact certain infinite linear combinations of some power functions which are linearly independent despite their functional dependence. This series are valid not only for univariate functions, their multivariate versions are also capable of representing the target function. However, the expressions of multivariate functions become complicated because of the high number of terms when the number of the independent variables increases. We generally need to use high number of indices and multiple sums for the representation. This may necessitate the multivariate algebra and its tools. On the other hand the use of the direct powers based on direct product, or Kronecker product at the remembrance of the relevant scientist, then everything can be handled just by using the ordinary linear algebra and its tools in a one index notation.

The direct power series of a function of n independent variables, \(x_1, \ldots, x_n\) can be given as follows

\[
f(x_1, \ldots, x_n) = \sum_{j=0}^{\infty} F_j x \odot^j
\]

where the vector \(x\) has the elements from \(x_1\) to \(x_n\) inclusive while \(F_j\) stands for a constant rectangular matrix of \(n \times n^j\) type. The elements of \(F_j\) are related to the partial derivatives of the left hand side function \(f\). The symbol \(\odot\) is for the direct power which can be recursively defined as follows

\[
x \odot^j = \begin{bmatrix} x_1 x \odot^{j-1} \\ \vdots \\ x_n x \odot^{j-1} \end{bmatrix}, \quad j = 0, 1, 2, \ldots
\]

To initialize this recursion we take the zeroth direct power of a vector just as the scalar 1 by following the well-known convention of algebra. This produces the vector \(x\) at the first direct power and therefore contains \(n\) elements. The number of the elements in the direct product increases as the degree of the direct product increases. Hence, \(x^{\odot^2}\), in other words, the direct square of the vector \(x\), is composed of all possible binary products of the elements of \(x\) by considering different ordering of the same product factors separately even though they are same because of the commutativity. The number of the elements in this case is \(n^2\). These
considerations can be extended to the case of general direct product with, say, jth degree. Then all possible j-factor products of the elements of x form the resulting vector whose number of elements is n^j.

The coefficient matrices F_s are not unique because of the existence of same j-factor products as the elements residing at different locations in the jth direct power of x. There are certain rectangular matrices under the action of which the jth direct power of x vanishes. This brings the possibility of introducing certain flexibility parameters to the coefficient matrices. These flexibilities can be used to give certain specific natures to the coefficient matrices.

The replacement of x by (y + a) in (1) and the rearrangement of the resulting expression in direct power series of the variable vector y produces another representation for the same original function. However, now, all coefficient matrices become the function of the constant vector a. All derivatives now should be somehow related to the partial derivatives of the original function evaluated at not origin but the point characterized by a. This is apparently a shift of the expansion point and the construction is not so straightforward as maybe considered as the very first glance because of the multivariate structure of the direct product operation. The noncommutativity in the representation may produce certain complications. However they can be handled by using some permutation matrices. Presentation will focus on these issues in certain details as much as possible.

Brief Biography of the Speaker: Metin Demiralp was born in Turkiye (Turkey) on 4 May 1948. His education from elementary school to university was entirely in Turkey. He got his BS, MS degrees and PhD from the same institution, Istanbul Technical University. He was originally a chemical engineer, however, through theoretical chemistry, applied mathematics, and computational science years he was mostly working on methodology for computational sciences and he is continuing to do so. He has a group (Group for Science and Methods of Computing) in Informatics Institute of Istanbul Technical University (he is the founder of this institute). He collaborated with the Prof. Herschel A. Rabitz's group at Princeton University (NJ, USA) at summer and winter semester breaks during the period 1985-2003 after his 14 month long postdoctoral visit to the same group in 1979-1980. He was also (and still is) in collaboration with a neuroscience group at the Psychology Department in the University of Michigan at Ann Arbor in last three years (with certain publications in journals and proceedings).

Metin Demiralp has more than 100 papers in well known and prestigious scientific journals, and, more than 230 contributions together with various keynote, plenary, and, tutorial talks to the proceedings of various international conferences. He gave many invited talks in various prestigious scientific meetings and academic institutions. He has a good scientific reputation in his country and he was one of the principal members of Turkish Academy of Sciences since 1994. He has resigned on June 2012 because of the governmental decree changing the structure of the academy and putting political influence possibility by bringing a member assignment system. Metin Demiralp is also a member of European Mathematical Society. He has also two important awards of Turkish scientific establishments. The important recent foci in research areas of Metin Demiralp can be roughly listed as follows: Probabilistic Evolution Method in Explicit ODE Solutions and in Quantum and Liouville Mechanics, Fluctuation Expansions in Matrix Representations, High Dimensional Model Representations, Space Extension Methods, Data Processing via Multivariate Analytical Tools, Multivariate Numerical Integration via New Efficient Approaches, Matrix Decompositions, Multiway Array Decompositions, Enhanced Multivariate Product Representations, Quantum Optimal Control.
Plenary Lecture 1

Intelligent Prediction of Vehicle Dynamics Using Structured Neural Networks

Professor Stratis Kanarachos
Frederick University
Department of Mechanical Engineering
Lemesos, Cyprus
E-mail: stratoskan@yahoo.gr

Abstract: The majority of traffic accidents today are caused by human errors in judgment and driving reaction. With the advance of microelectronics driver assistance systems (DAS) have been developed and became one of the principal priorities for most vehicle manufacturers. Obstacle avoidance or collision avoidance systems fall into this category and have naturally addressed the interest of many researchers during the last decade. These systems warn the driver or intervene using the braking/steering system based on the output of a decision algorithm. This algorithm calculates at each time instant a threat factor which represents the probability to get involved in a crash in the near future. This paper is focused on the intelligent prediction of the vehicle dynamics in the near future using a structured neural network approach. A nonlinear vehicle model with four degrees has been utilized. As will be shown, by means of simulation in Matlab, it is possible to predict the response of the vehicle with minimal computational burden. Therefore, the threat assessment can be enhanced and the performance of the decision algorithm improved. False alarms which determine the driver acceptance as well as liability issues are largely dependent on its performance.

Brief Biography of the Speaker: Dr S. Kanarachos holds a Diploma (5 years) and a PhD in Mechanical Engineering (2004) from the National Technical University of Athens (Hellas). He has worked as a consultant on product development (2001-2005) and researcher at the Mechanical Engineering Department of NTUA. From 2005-2007, he served the Department of Mechanical Engineering at Frederick Institute of Technology (Cyprus) as a Lecturer and from 2007-2012 the Department of Mechanical Engineering at Frederick University (Cyprus) as Assistant Professor specializing in the fields of Computational Dynamics & Numerical Optimization. From 2012 and onwards he works at the Integrated Vehicle Safety expertise group of TNO (The Netherlands) and from 2013 he is the head of the Vehicle Dynamics group. His research interests include: flexible multibody dynamics, finite element & multibody dynamics code coupling, metamodeling using structured neural networks and model reduction. He is the author of 15 publications in highly rated ISI journals and 50 in conference proceedings (of IEEE, WSEAS, etc.). He has participated as the principal researcher, coordinator or scientific supervisor in more than twenty research projects funded by National or European Framework Programmes (GSRT, RPF, FP6, FP7). He serves as a reviewer in several Scientific journals and conferences and he is member of the editorial board of the International Journal of Vehicle Systems Modelling and Testing. He has served as an evaluator of research projects for National & European Framework Programmes.
Plenary Lecture 2

Multitime Solitons and Their Maple Animation

Professor Constantin Udriste
University Politehnica of Bucharest
Department of Mathematics Informatics
Romania
E-mail: udriste@mathem.pub.ro

Abstract: The development of multitime PDE concepts is now in vogue in physics (multitime Maxwell PDEs), in electronics (widely-separated time scales, difference-frequency time scales, etc) and in mathematics (multitime solitons, introduced and analyzed in our research group). Indeed, to handle frequency-modulation effectively, it is necessary to use a novel concept, known as warped time, within a multitime partial differential equation framework. Generally, the purpose of a multi-dimensional model is to represent efficiently phenomena including widely separated time scales (for example, control of composite systems via the multi time-scale approach). An m-soliton is a special wave whose temporal evolution is m-dimensional. Of course, a multitime simulation requires special integrators and animations. For a two-time soliton, we prefer to adopt Maple Animation in 3d, creating spectacular evolutions.

Brief Biography of the Speaker:
Important Career Positions: Emeritus Professor, Consultant Professor, Dean, Director, Chair, Full Professor 1990-, University Politehnica of Bucharest, Department of Mathematics-Informatics.
Number of PhD Students: 25 in due time and 21 Doctors in Mathematics.
Membership of Associations: AMS, 1987; Tensor Society, 1985; Balkan Society of Geometers, President, 1994;
Publications: over 50 books; 300 papers; 300 communications.
Honors: D. Hurmuzescu Prize, Romanian Academy, 1985; Award MEI, 1988; Correspondent Member, Academia Peloritana, Messina, 1997; Prize COPIRO - 2000 for Exact Sciences; Premio Anassiloos International 2002, Arte Cultura Scienze, Italy; Titular Member, Academy of Romanian Scientists, 2007; Honorary Member, World Scientific and Engineering Academy and Society, 2008-; Stefan Hepites Prize, Academy of Romania, 2010.
Organizer: Chair-Committee: American Conference on Applied Mathematics (Math '08) and Management, Marketing and Finances (MMF '08), Cambridge, Massachusetts, USA, March 24-26, 2008. International Program Committee: The Applied Computing Conference (ACC-08), Istanbul, Turkey, May 27-30, 2008; The International Conference of Differential Geometry and Dynamical Systems (DGDS-2009), October 8 - 11, 2009, University Politehnica of Bucharest, Bucharest, Romania; European Computing Conference (ECC-09), 115-119, Tbilisi, Georgia, June
Abstract: Since its birth about sixty years ago, Systems Theory has developed into a scientific and engineering discipline connected with all aspects of modern society. At the beginning it was studied as Control Theory by mathematicians and engineers, but soon Systems Theory extended to the study and the applications of various domains such as economics, business, political science, sociology, medicine, biology, psychology, ecology etc. The past three decades have seen a continually growing interest of many researchers in the theory of two-dimensional (2D), which became a distinct and important branch of the Systems Theory. Two-dimensional models were developed in a series of papers by Roesser [15], Fornasini and Marchesini [4], Attasi [1], Eising [3] and others [6], [7], [12], [13]. The reasons for the interest in this domain are on one side the richness in potential application fields and on the other side the richness and significance of the theoretical approaches. The application fields include circuits, control and signal processing, image processing (which is the core of this approach), computer tomography, seismology, control of multipass processes [16], [17], iterative learning control [8] etc.

The invariant subspaces with respect to linear transformations represent the fundamentals of the Geometric Approach, which is one of the main trends in Systems and Control Theory. Geometric Approach provides a very clear concept of minimality and explicit geometric conditions for controllability, observability, constructibility, pole assignability, tracking or regulation etc. These concepts are used to obtain efficient and elegant solutions of important problems of controller synthesis such as decoupling and pole-assignment problems or the compensator and regulator synthesis for linear time-invariant multivariable systems. The history of the Geometric Approach starts in 1969 when Basile and Marro [2] introduced and studied the basic geometric tools named by them controlled and conditioned invariant subspaces. They applied these techniques to disturbance rejection or unknown-input observability. In 1970 Wonham and Morse [18] applied a maximal controlled invariant method to decoupling and noninteracting control problems and later on Wonham's book [19] imposed the name of "(A,B)-invariant" instead of "(A,B)-controlled invariant". Basile and Marro opened new prospects to many applications (disturbance rejection, noninteraction etc.) by the robust controlled invariant and the emphasis of the duality [2]. The Maro’s monograph [11] presents the various aspects of the Geometric Approach, from the fundamental concepts, the structure of the linear systems, invariant subspaces, up to applications to the regulator problem,
noninteraction, feedback and robustness etc. The LQ problem was studied in a geometric framework by Silverman, Hautus and Willems. An important series of researchers among which Anderson, Akashi, Bhattacharyya, Kucera, Malabre, Molinari, Pearson, Francis and Schumacher developed the theory and applications of the Geometric Approach. The range of the applications of the Geometric Approach was extended to various areas, including, for instance, Markovian representations (Lindquist, Picci and Ruckebusch [10]) or modeling and estimation of linear stochastic systems [9]). All these books and papers refers to the 'classical' 1D systems. In the present lecture some aspects of the Geometric Approach are extended to a class of 2D systems described by a partial differential state equation. The state space representation of these systems is characterized by five matrices: two drift matrices and , an input-state matrix , a state-output matrix and a input-output matrix . These systems represent the continuous counterpart of Attasi's 2D discrete-time model. The behavior of these 2D systems is described and their general response formula is obtained. The concepts of complete controllability and complete observability are introduced and they are characterized by means of two suitable 2D controllability and observability Gramians. In the case of time-invariant 2D some controllability and observability criteria are derived. The controllability and observability matrices are constructed (by extending the usual 1D ones). The first is used to characterize the space of the controllable states as the minimal - invariant subspace which contains the columns of the matrix B and to obtain necessary and sufficient conditions of controllability for 2D systems. An algorithm is presented which compute the minimal -invariant subspace included in , (i.e. the subspace of the controllable states of the system) and which extends the 1D algorithm from [9]. The observability Gramian and the observability matrix are employed to obtain the description of the space of non-observable states as the maximal -invariant subspace contained in and to derive some observability criteria. An algorithm is proposed which compute this invariant subspace. These invariant subspaces can be used to obtain the Kalman canonical decomposition of the state space and to reduce the system to a minimal realization.

Brief Biography of the Speaker: Prof. Valeriu Prepelita graduated from the Faculty of Mathematics-Mechanics of the University of Bucharest in 1964. He obtained Ph.D. in Mathematics at the University of Bucharest in 1974. He is currently Professor at the Faculty of Applied Sciences, the University Politehnica of Bucharest, Director of the Department Mathematics- Informatics. His research and teaching activities have covered a large area of domains such as Systems Theory and Control, Multidimensional Systems, Functions of a Complex Variables, Linear and Multilinear Algebra, Special Functions, Ordinary Differential Equations, Partial Differential Equations, Operational Calculus, Probability Theory and Stochastic Processes, Operational Research, Mathematical Programming, Mathematics of Finance. Professor Valeriu Prepelita is author of more than 110 published papers in refereed journals or conference proceedings and author or co-author of 15 books. He has participated in many national and international Grants. He is member of the Editorial Board of some journals, member in the Organizing Committee and the Scientific Committee of several international conferences, keynote lecturer or chairman of some sections of these conferences. He is a reviewer for five international journals. He received the Award for Distinguished Didactic and Scientific Activity of the Ministry of Education and Instruction of Romania.
Tutorial 1

Projective Geometry and Duality for Graphics, Games and Visualization

Professor Vaclav Skala
University of West Bohemia, Plzen
and VSB-Technical University, Ostrava
Czech Republic
URL: http://www.VaclavSkala.eu

Summary: The tutorial gives a practical overview of projective geometry and its applications in geometry, GPU computations and games. It will show how typical geometrical and computational problems can be solved easily if reformulated using the projective geometry. Presented algorithms are easy to understand, implement and they are robust as well.

Brief Biography of the Tutor: Prof. Vaclav Skala is a professor at the University of West Bohemia in Plzen where he established computer graphics labs and he is currently the director of the Center of Computer Graphics and Visualization (http://Graphics.zcu.cz). He is also a professor at the VSB Technical University in Ostrava. He is concentrated mostly on fundamental algorithms for computer graphics and visualization. In 2009, prof. Skala he became a Fellow of Eurographics Association.
Summary: The aim of this tutorial is to provide a thorough understanding of principles, techniques and the state-of-art of the compensation of nonlinear distortion in RF and microwave circuits and transmitters for mobile and wireless applications such as such as IEEE 802.11ac, 3G, 3.5G, 3.9G (LTE) and 4G (LTE-A). During the tutorial attendees will be aware of the strengths and limitations of commercial available circuit and subsystem design tools and have a fully understanding of the problems and issues involved in their applications. At the end of the tutorial attendees will also be able to assess rigorously both the theoretical and commercial variability of using various simulators, circuit and system design tools.

Brief Biography of the Tutor: D. Budimir (M’93, SM’02) received a Ph.D. degree in Electronic and Electrical Engineering, University of Leeds, Leeds, UK. In March 1994, he joined the Department of Electronic and Electrical Engineering at Kings College London, University of London. Since January 1997, he has been with the School of Electronics and Computer Science, University of Westminster, London, UK, where is now a Reader of wireless communications and leads the Wireless Communications Research Group. His research interests include analysis and design of hybrid and monolithic microwave integrated circuits, the design of amplifiers, filters and multiplexing networks for RF, microwave and millimetre-wave applications and RF and microwave wireless system design. Dr Budimir authored or coauthored over 250 journal and conference papers in the field of RF, microwave, and millimeter-wave wireless systems and technologies. He is author of the book Generalized Filter Design by Computer Optimization (Artech House, 1998) and Software and Users Manual EPFIL-Waveguide E-plane Filter Design (Artech House, 2000), and a chapter in Encyclopaedia of RF and Microwave Engineering (Wiley, 2005). He is a Member of the EPSRCPeerReviewCollege, a senior Member of IEEE. He is also a regular referee for IET Electronic Letters, IET Microwaves, Antennas, and Propagation, IEEE Microwave and Wireless Components Letters, IEEE Transactions on Microwave Theory and Techniques, IEEE Antennas and Wireless Propagation Letters, IEEE Transactions on Antennas and Propagation, IEEE Transactions on Circuits and Systems II and Proceedings of the IEEE, and...
Proceedings of the IEEE, and International Journal of RF and Microwave Computer Aided Engineering. He is a member of several International conference Technical Program Committees. He has given more than 18 invited presentations at workshops, conferences and seminars. He has supervised 13 PhD research students as main supervisor/director of studies to a successful completion and is currently supervising 7 PhD students as the main supervisor. He has won awards for his journal papers.