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Abstract—The aim of this paper is to study stochastic volatility
models and their calibration to real market data. This task is
formulated as the optimization problem and several optimization
techniques are compared and used in order to minimize the
difference between the observed market prices and the model
prices. At first we demonstrate the complexity of the calibration
process on the popular Heston model and we show how well
the model can fit a particular set of market prices. This is
ensured by using a deterministic grid which eliminates the initial
guess sensitivity specific to this problem. The same level of errors
can be reached by employing optimization techniques introduced
in the paper, while also preserving time efficiency. We further
apply the same calibration procedures to the recent fractional
stochastic volatility model, which is a jump-diffusion model of
market dynamics with approximative fractional volatility. The
novelty of this paper is especially in showing how the proposed
calibration procedures work for even more complex SV model,
such as the introduced long-memory fractional model.

Keywords—stochastic volatility models; Heston model; frac-
tional SV model; option pricing; calibration; optimization

I. INTRODUCTION

IN finance, stochastic volatility (SV) models are used to
evaluate derivative securities, such as options. These mod-

els were developed out of a need to modify the Nobel price
winning Black Scholes model [3] for option pricing, which
failed to effectively take the volatility in the price of the
underlying security into account. The Black Scholes model
assumed that the volatility of the underlying security was con-
stant, while SV models consider it to be a stochastic process.
Among the first publications about stochastic volatility models
were Hull and White [9], Scott [19], Stein and Stein [21] and
Heston [8].

Calibration is the process of identifying the set of model
parameters that are most likely given by the observed data.
Heston model was the first model that allowed reasonable
calibration to the market option data together with semi-closed
form solution for European call/put option prices. Heston
model also allows correlation between the asset price and the
volatility process as opposed to Stein and Stein [21]. Although
the Heston model was already introduced in 1993 and several
other SV models appeared, Heston model is nowadays still
one of the most popular models for option pricing.

The industry standard approach in calibration is to minimize
the difference between the observed prices and the model
prices. Option pricing models are calibrated to prices observed
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on the market in order to compute prices of more complex
(exotic) options or hedge ratios. The complexity of the model
calibration process increases with more realistic models and
the fact that the estimation method of model parameters
becomes as crucial as the model itself is mentioned by Jacquier
and Jarrow [11].

In our case, the input parameters can not be directly
observed from the market data, thus empirical estimates are
of no use. It was well documented in Bakshi et al. [2] that the
model implied parameters differ significantly from their time-
series estimated counterparts. Cited paper for example shows,
that the magnitudes of time-series correlation coefficient of the
asset return and its volatility estimated from the daily prices
were much lower than their model implied counterparts.

Moreover, the information observed from market data is
insufficient to exactly identify the parameters, because several
sets of parameters may be performing well and provide us
with model prices that are close to the prices observed on the
market. This is what causes the ill-posedness of the calibration
problem.

The paper is organized as follows. In section II we briefly
introduce the Heston model together with the semi-closed form
solution for vanilla options. In section III we demonstrate
the complexity of the calibration process and employ variety
of optimizers. Among the considered methods there are be
two global optimizers Genetic algorithm (GA) and Simulated
annealing (SA) as well the local search method (denoted by
LSQ). We use the different optimizers with a specific approach
to calibrate the Heston model to data obtained from the real
market, namely we use daily data for DAX Options obtained
using the Bloomberg Terminal and in the next section the
FTSE 100 options.

In section IV we introduce a jump-diffusion model of
market dynamics with approximative fractional volatility (FSV
model). We show that the option pricing problem under this
model attains a semi-closed form solution and demonstrate
how the optimization procedures can be used for the calibra-
tion task. We will conclude our results in section V.

II. HESTON MODEL

Following Heston [8] and Rouah [18] we consider the risk-
neutral stock price model

dSt = rStdt+
√
vtStdW̃

S
t , (1)

dvt = κ(θ − vt)dt+ σ
√
vtdW̃

v
t , (2)

dW̃S
t dW̃

v
t = ρ dt, (3)
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with initial conditions S0 ≥ 0 and v0 ≥ 0, where St is the
price of the underlying asset at time t, vt is the instantaneous
variance at time t, r is the risk-free rate, θ is the long run
average price variance, κ is the rate at which vt reverts to θ
and σ is the volatility of the volatility. (W̃S , W̃ v) is a two-
dimensional Wiener process under the risk-neutral measure P̃
with instantaneous correlation ρ.

Stochastic process vt is referred to as the variance process
(also known as volatility process) and it is the square-root
mean reverting process, CIR process Cox et al. [5]. It is strictly
positive and cannot reach zero if the Feller [6] condition 2κθ >
σ2 is satisfied.

Heston SV model allows for a semi-closed form solution
for vanilla option, which involves numerical computation of
an integral. Several pricing formulas were added to the original
one by Heston [8], e.g. Albrecher et al. [1], Kahl and Jäckel
[12], Lewis [14] or Zhylevskyy [25]. We will use here the
formulas by Lewis [14]. Let K be the strike price and τ =
T − t be the time to maturity. Then the price of a European
call option at time t on a non-dividend paying stock with a
spot price St is

C(S, v, t) = S −Ke−rτ 1

π

∫ ∞+i/2

0+i/2

e−ikX
Ĥ(k, v, τ)

k2 − ik
dk,

(4)

where X = ln(S/K) + rτ and

Ĥ(k, v, τ) = exp

(
2κθ

σ2

[
tg − ln

(
1− he−ξt

1− h

)
+

+ vg

(
1− e−ξt

1− he−ξt

)])
,

where

g =
b− ξ

2
, h =

b− ξ
b+ ξ

, t =
σ2τ

2
,

ξ =

√
b2 +

4(k2 − ik)

σ2
,

b =
2

σ2

(
ikρσ + κ

)
.

III. CALIBRATION OF SV MODEL

The model calibration is formulated as an optimization
problem. The aim is to minimize the pricing errors between
the model prices and the market prices for a set of traded
options. A common approach to measure these errors is to
use the squared differences between market prices and prices
returned by the model, this approach leads to the nonlinear
least square method

inf
Θ
G(Θ), G(Θ) =

N∑
i=1

wi|CΘ
i (t, St, Ti,Ki)−C∗i (Ti,Ki)|2,

(5)
where N denotes the number of observed option prices, wi

is a weight, C∗i (Ti,Ki) is the market price of the call option

observed at time t. CΘ denotes the model price computed
using vector of model parameters, for Heston SV model we
have Θ = (κ, θ, σ, v0, ρ).

The function G is an objective function of the optimization
problem (5) and it is neither convex nor of any particular
structure. It may have more than one global minimum and
it is not possible to tell whether a unique minimum can be
reached by gradient based algorithm. When searching for the
global minimum, a set of linear constraints must be also added
to the problem, because of the parameters values. For example
in Heston SV model, ρ represents correlation coefficient and
thus ρ needs to only attain values within the interval [−1, 1].

Local deterministic algorithms can be used to solve the
calibration problem, but there is significantly high risk for
them to end up in a local minimum, also initial guess needs to
be provided for them, which appears to affect the performance
of local optimizers severely.

Different take on the calibration is represented by the
regularisation method. Penalization function, e.g., f(Θ) such
that

inf
Θ
G(Θ) + αf(Θ)

is convex, is added to the objective function (5), which
enables the usage of gradient based optimizing procedures.
This method yields another parameter to be estimated α,
which is called regularisation parameter. More details on this
approach can be seen in Cont and Hamida [4].

A. Considered algorithms

Facing the calibration problem (5), we took into account
several optimizing methods and tested these on a set of
generated prices by the actual Heston model. That means that
we were aware of the parameters that would fully explain
the synthetic generated market prices and we were able to
judge the algorithms on how close they were able get to
this set of parameters. The ones that performed best we used
afterwards on a real set of data observed on market. Among
the considered methods were two (heuristic) global optimizers
Genetic algorithm (GA) and Simulated annealing (SA) as
well as the local search method (denoted by LSQ). GA and
SA are available in MATLAB’s Global Optimization Toolbox
as functions ga() and simulannealbnd() respectively,
whereas LSQ is available in MATLAB’s Optimization Tool-
box as function lsqnonlin() that implements the Gauss-
Newton trust-region-reflective method with the possibility of
choosing the Levenberg-Marquardt algorithm. We also tested
performance of MS Excel’s solver and Adaptive simulated
annealing (ASA) (available at ingber.com) as well as modSQP
suggested in Kienitz and Wetterau [13]. Based on the results
we abandoned MATLAB’s Simulated annealing (SA) and
modSQP. They both seemed to work fine on a small example
but they did not seem to be applicable for a larger number of
generated strikes and maturities.

B. Measured errors

As a criterion for the performance evaluation of the opti-
mizing methods we were recording the following errors:
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MARE(Θ) = max
i

|CΘ
i − C∗i |
C∗i

(6)

and

AARE(Θ) =
1

N

N∑
i=1

|CΘ
i − C∗i |
C∗i

(7)

for i = 1, . . . , N . MARE denotes maximum absolute
relative error and AARE is the average of the absolute relative
error across all strikes and maturities.

C. Considered weights

Weights in (5) are denoted by wi. It makes sense to put
the most weight where the most liquid quotes are on the
market, which is usually around ATM. We employed the bid
ask spreads δi > 0 with our market data and aimed to have
the model prices close to the mid prices, that are considered
as the market prices C∗i . We decided not to limit ourselves
with just one choice for the weight function, but to test more
of these and explore any influence on the results caused by
the particular choice of the weight function. The weights are
denoted by capital letters A,B,C as follows:

weight A: wi =
1

|δi|
, (8)

weight B: wi =
1

δ2
i

, (9)

weight C: wi =
1√
δi
. (10)

The above means that the bigger the spread the less weight
is put on the particular difference between the model price and
the market price (mid price) during the calibration process.

D. Empirical results for Heston model on real market data

In order to overcome the initial guess sensitivity, we chose
to adopt the approach of combining the global and local
optimizers. We would start with a global optimizer (GA, ASA)
and provide the result as an initial guess to a local optimizer
(LSQ, Excel’s solver). We tested this approach on market
prices obtained on March 19, 2013 from Bloomberg’s Option
Monitor for ODAX call options. We used a set of 107 options
for 6 maturities. S0 was the current DAX value at the time
and as r we took the corresponding EURIBOR rate. For a
benchmarking purpose we used an error, that was achieved by
dividing the state space of all possible parameters into a grid
in order to obtain a large set of initial values. Starting from all
these initial values was rather time consuming, nevertheless it
served us as an indicator of how well the model can actually
explain this particular set of market prices. We were able to
achieve AARE of 0.58%, see TABLE I.

Following the results in TABLE I, we can see that Excel
failed to significantly refine the initial values provided by the
global optimizers. On the other hand using LSQ we were able
to refine the initial guess for the parameters provided by GA
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Fig. 1. Results of calibration for pair GA and LSQ in terms of absolute
relative errors.

and obtain an average absolute relative error 0.65%, see Fig.
1, which is comparable to the average absolute relative error
obtained by the method using deterministic grid as the initial
value for LSQ mentioned above. Moreover the maximum
absolute relative error was only 2.22% using the approach of
combining the optimization methods.

When comparing the global optimizers GA provided better
results than ASA. Also the initial guess from GA was the one
which was later refined by LSQ producing lowest maximum
absolute relative error of 2.22%, which can be observed in
Fig. 1.

As it shows in TABLE I, the choice of weights can play
a significant role during the calibration process. Different
weights yielded best results for both GA and ASA, however
LSQ seems to be favoring weights B. For all the results
mentioned above see TABLE I and for more results see [16].
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Fig. 2. Results of calibration for pair GA and LSQ in terms of average
absolute relative errors.
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TABLE I
CALIBRATION RESULTS FOR MARCH 19, 2013.* INITIAL GUESSES OBTAINED BY DETERMINISTIC GRID.

Algorithm Weight AARE MARE v0 κ θ σ ρ

GA A 1.25% 12.46% 0.02897 0.68921 0.10313 0.79492 -0.53769
GA B 2.10% 13.80% 0.03073 0.06405 0.94533 0.91248 -0.53915
GA C 1.70% 18.35% 0.03300 0.83930 0.10826 1.14674 -0.49923
ASA A 2.26% 19.51% 0.03876 0.80811 0.13781 1.63697 -0.46680
ASA B 2.62% 28.65% 0.03721 1.45765 0.09663 1.86941 -0.37053
ASA C 1.73% 19.82% 0.03550 1.22482 0.09508 1.44249 -0.49063
LSQ* B 0.58% 3.10% 0.02382 1.75680 0.04953 0.42134 -0.84493
GA+Excel A 1.25% 12.46% 0.02897 0.68922 0.10314 0.79490 -0.53769
GA+Excel B 1.25% 12.46% 0.02896 0.68921 0.10314 0.79492 -0.53769
GA+Excel C 1.25% 12.66% 0.02903 0.68932 0.10294 0.79464 -0.53763
ASA+Excel A 1.73% 19.82% 0.03550 1.22482 0.09509 1.44248 -0.49062
ASA+Excel B 1.78% 18.18% 0.03439 1.22399 0.09740 1.43711 -0.49115
ASA+Excel C 1.73% 19.82% 0.03550 1.22482 0.09509 1.44248 -0.49062
GA+LSQ A 0.67% 3.07% 0.02491 0.82270 0.07597 0.48665 -0.67099
GA+LSQ B 0.65% 2.22% 0.02497 1.22136 0.06442 0.55993 -0.66255
GA+LSQ C 0.68% 3.66% 0.02486 0.75195 0.07886 0.46936 -0.67266
ASA+LSQ A 1.73% 19.82% 0.03550 1.22482 0.09508 1.44249 -0.49063
ASA+LSQ B 1.71% 19.48% 0.03511 1.22672 0.09636 1.44194 -0.49089
ASA+LSQ C 1.73% 19.82% 0.03550 1.22482 0.09508 1.44249 -0.49063

IV. MODEL WITH APPROXIMATIVE FRACTIONAL
STOCHASTIC VOLATILITY

In this section we introduce a jump-diffusion model of
market dynamics with approximative fractional volatility. We
show that the option pricing problem under this model attains
a semi-closed form solution and previously mentioned opti-
mization procedures can be used for the calibration task.

A. Model introduction

We consider a model, firstly proposed by Intarasit and
Sattayatham [10], that takes the following form under a risk-
neutral measure

dSt = rStdt+
√
vtStdW

S
t + YtSt−dNt, (11)

dvt = −κ(vt − v̄)dt+ ξvtdB
H
t , (12)

where κ, v̄, ξ are model parameters, such that, κ is a mean-
reversion rate, v̄ stands for an average volatility level and
finally, ξ is so-called volatility of volatility. Under the notation
St− we understand lims→t− Ss and (Nt)t≥0 , (W

S
t )t≥0 is a

Poisson process and a standard Wiener process respectively.
Yt denotes an amplitude of a jump at t (conditional on
occurrence of the jump).

A stochastic process (BHt )t≥0 can be formally defined as

BHt =

t∫
0

(t− s+ ε)H−1/2dWs, (13)

where H is a long-memory parameter, ε is a non-negative
approximation factor [10] and, as previously, (Wt)t≥0 repre-
sents a standard Wiener process. Thao [22] showed that for
ε→ 0, (BHt )ε converges uniformly to a non-Markov process
and H in that case coincides with the well-known Hurst
parameter ranging in [0, 1]. For financial applications we are
interested in a long-range dependence of volatility, therefore

we consider H ∈ (0.5, 1]. Moreover, if ε > 0 then BHt is a
semi-martingale [24]. Hence, the Itô stochastic calculus can
be used when deriving an explicit model price for European
options. dBt corresponds to the following integral which was
defined for arbitrary stochastic process with bounded variation
(Ft)t≥0 by Nguyen & Thao [23]

t∫
0

FsdBs := FtBt −
t∫

0

BsdFs − [F,B]t , (14)

provided the right-hand side integral exists in a Riemann-
Stieltjes sense, while [F,B]t being a quadratic variation of
FtBt. Under this setup we are able to rewrite the original
system of stochastic differential equations into

dSt = rStdt+
√
vtStdW

S
t + YtSt−dNt, (15)

dvt = αdt+ βdW v
t , (16)

with the drift process α := α(St, vt,t ) = (aξϕt − κ)vt + θ
and diffusion β := β(St, vt,t ) = ξvtε

a, where a := H − 1/2,
θ := κv̄ is a constant and ϕt represents an Itô integral,

ϕt =

∫ t

0

(t− s+ ε)H−3/2dWϕ
s (17)

alongside standard Wiener processes (W v
t )t≥0, (W

ϕ
t )t≥0.

We add an instantaneous correlation E[dWS
t dW

v
t ] = ρdt

to mimic the stock-volatility leverage effect and we also
consider a jump process with log-normally distributed jump
sizes. Jump times are due to Poisson process (Nt)t≥0 with
parameter λ. To simplify the pricing problem, YtdNt is set
to be stochastically independent on processes driving SDE’s
(15)-(16).

The above described setting is referred to as the FSV model
throughout this text. In the calibration problem (5) for the FSV
model, the vector of parameters to be optimized will be Θ =
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(v0, κ, v̄, ξ, ρ, λ, αJ , γJ , H). Their meaning is summarized in
TABLE II.

TABLE II
LIST OF FSV MODEL PARAMETERS.

v0 κ v̄
initial volatility mean reversion rate average volatility

ξ ρ λ
volatility of volatility correlation coef. Poisson hazard rate

αJ γJ H
expected jump size variance of jump sizes Hurst parameter

B. Semi-closed form solution
In what follows, we present a semi-closed form solution

to the pricing problem for European options. The solution is
about to be derived for pure-diffusion dynamics first, then the
jump part is considered.

We focus on a European call option expiring at time T with
pay-off (ST −K)+ where K is a strike price of the contract.
The modeled price V should equal to a discounted expected
pay-off under a risk-neutral measure,

V (τ,K) = e−rτE
[
(ST −K)+

]
= StP1(St, vt, τ)− e−rτKP2(St, vt, τ)

= extP1(xt, vt, τ)− e−rτKP2(xt, vt, τ). (18)

In (18) we expressed V using a time to maturity τ := T − t
and logarithm of the underlying price xt := ln(St). P1, P2

can be interpreted as the risk-neutral probabilities that option
expires in the money conditional on the value of xt and
finally r is assumed to be a uniquely determined risk-free rate
constant. We will retrieve P1, P2 in terms of characteristic
functions fn = fn(φ, τ), n = 1, 2

Pn =
1

2
+

1

π

∫ ∞
0

<
[
eiφ ln(K)fn

iφ

]
dφ, (19)

where <(z) denotes a real part of the complex number z and
i denotes the imaginary unit. Following the original article by
Heston [8], characteristic functions are to be found as

fn = exp {Cn(τ, φ) +Dn(τ, φ)v0 + iφx} . (20)

The pricing problem can be formulated using partial differ-
ential equations as the initial value problem [20]

−∂V
∂τ

+
1

2
vt
∂2V

∂x2
t

+

(
r − 1

2
vt

)
∂V

∂xt
+ ρβvt

∂2V

∂vt∂xt

−rV +
1

2
vtβ

2 ∂
2V

∂v2
t

+ α
∂V

∂vt
= 0; (21)

V (0,K) = (ST −K)+. (22)

We are able to split (21) into two equations with respect to
P1, P2:

−∂P1

∂τ
+

1

2
vt
∂2P1

∂x2
t

+

(
r +

1

2
vt

)
∂P1

∂xt
+ ρβvt

∂2P1

∂vt∂xt

+
1

2
vtβ

2 ∂
2P1

∂v2
t

+ (α+ ρβvt)
∂P1

∂vt
= 0.

(23)

−∂P2

∂τ
+

1

2
vt
∂2P2

∂x2
t

+

(
r − 1

2
vt

)
∂P2

∂xt
+ ρβvt

∂2P2

∂vt∂xt

+
1

2
vtβ

2 ∂
2P2

∂v2
t

+ α
∂P2

∂vt
= 0.

(24)

Using arguments in [17], [20] and a discounted version of
the Feynman-Kac theorem, characteristic functions (20) satisfy
the previous equations and thus we can substitute fn, n = 1, 2
into (23), (24) respectively. Combining α = (aξϕt− κ)vt + θ
alongside equations expressed in terms of (20), we arrive at
the modified initial value problem

∂D1

∂τ
= ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ

+ (aξϕt − κ+ ρβ)D1; (25)
∂D2

∂τ
= ρβiφD2 −

1

2
φ2 +

1

2
β2D2

2 −
1

2
iφ+ (aξϕt − κ)D2;

(26)
∂Cn
∂τ

= riφ+ θDn; (27)

with the initial condition

Cn(0, φ) = Dn(0, φ) = 0. (28)

The first two equations for Dn are known as the Riccati
equations with constant coefficients. Once Dn are obtained,
the last two ordinary differential equations are solved by a
direct integration.

Proposition 1. The characteristic functions of the logarithmic
stock price fn = fn(τ, φ) under the FSV model take the form

fn = exp {Cn(τ, φ) +Dn(τ, φ)v0 + iφ ln(St) + ψ(φ)τ}

with

Cn(τ, φ) = rφiτ + θYnτ −
2θ

β2
ln

(
1− gnednτ

1− gn

)
,

Dn(τ, φ) = Yn

(
1− ednτ

1− gnednτ

)
,

ψ = −λiφ
(
eαJ+γ2

J/2 − 1
)

+ λ
(
eiφαJ−φ2γ2

J/2 − 1
)

Yn =
bn − ρβφi+ dn

β2

gn =
bn − ρβφi+ dn
bn − ρβφi− dn

,

dn =
√

(ρβφi− bn)2 − β2(2unφi− φ2),

β = ξεH−1/2√vt, u1 = 1/2, u2 = −1/2, θ = κv̄,

b1 = κ− (H − 1/2)ξϕt − ρβ,
b2 = κ− (H − 1/2)ξϕt.

Outline of the proof. Firstly, we solve the initial value prob-
lem (25)-(27), which gives us characteristic functions under
the FSV model without jumps (see [20]). Using stochastic
independence of the jump process and diffusion processes,
the joint characteristic function is obtained as a product of
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individual characteristic functions [7]. Particular steps of the
proof can be found in [17].

Characteristic functions fn are used in expression (19) to
evaluate the risk-neutral probabilities Pn. The integral was
computed, in our case, by an adaptive Lobatto quadrature,
implemented in MATLAB’s quadl() function. When Pn
corresponding to the given European call are obtained, the
price is retrieved by expression (18).

C. Calibration results

The formula is an explicit version of the one in [10] and,
as we illustrate on market data, it is ready to be used out of
the box. To compare the new FSV approach with the Heston
model introduced in previous sections, we utilized market
data on the British FTSE 100 stock index (8th January 2014).
The index was quoted at 6,721.80 points and our main data
set consisted of 82 traded options. In terms of moneyness,
considered options are of both in-the-money, at-the-money
and out-of-the-money.

TABLE III
CALIBRATION ERRORS. FTSE 100 OPTION MARKET, WEIGHTS A, DATA

SET OBTAINED ON 8th JANUARY 2014.

Model Algorithm AARE [%] MARE [%]

FSV model GA+LSQ 2.34 20.53
SA+LSQ 2.34 20.53

Heston model GA+LSQ 3.36 19.01
SA+LSQ 4.43 29.34

For the model comparison, global optimizers (GA, SA)
were used to obtain initial guess for a trust-region local
search method (LSQ). The FSV model provided slightly better
average market errors and also was more consistent throughout
different sets of weights. However, the optimization problem
(5) is more complicated for this approach,which is caused
by having four more parameters to calibrate compared to the
Heston model.

TABLE IV
CALIBRATION ERRORS. FTSE 100 OPTION MARKET, WEIGHTS B, DATA

SET OBTAINED ON 8th JANUARY 2014.

Model Algorithm AARE [%] MARE [%]

FSV model GA+LSQ 2.33 20.49
SA+LSQ 2.34 20.53

Heston model GA+LSQ 5.07 32.36
SA+LSQ 4.15 23.33

V. CONCLUSION

In this paper, we compared several optimization approaches
on the problem of option market calibration. Firstly, we
summoned a very popular model of market dynamics - the
Heston model. The corresponding optimization problem is
non-convex and may contain many local minima, hence any
local search method without a good initial guess may fail

TABLE V
CALIBRATION ERRORS. FTSE 100 OPTION MARKET, WEIGHTS C, DATA

SET OBTAINED ON 8th JANUARY 2014.

Model Algorithm AARE [%] MARE [%]

FSV model GA+LSQ 2.34 20.53
SA+LSQ 2.34 20.53

Heston model GA+LSQ 3.35 18.85
SA+LSQ 3.52 19.93

(a) FSV model

(b) Heston model

Fig. 3. Calibration from FTSE 100 call option market using Genetic
Algorithm combined with a local search method. Displayed average relative
errors were obtained for weights B.

to achieve satisfactory results. To overcome this well-known
calibration issue, we set a fine deterministic grid for initial
starting points. The best result of a trust region minimizer for
these points (AARE =0.58%) is taken as a reference point for
comparison of less heuristic and more efficient approaches.

Using Genetic Algorithm (GA) combined with a local opti-
mizer (LSQ) we were able to get close to the reference result
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(AARE =0.65%) in terms of the average absolute relative error
and even achieve superior maximum absolute error. All used
methods were also tested for different sets of weights, all of
which should emphasize more liquid market contracts by using
bid-ask spread.

Last but not least, we took a closer look at the calibration
problem with respect to the newly proposed approximative
fractional volatility model. Beforehand, we showed that this
model attained a ’Heston-like’ semi-closed formula. This
means only a single integral expression needs to be numeri-
cally evaluated in order to obtain a European option price. Up
to now, the fractional model was purely theoretically justified,
whereas we provided an empirical calibration results applying
the proposed optimization technique satisfactorily and also
presented a comparison with the Heston model on the FTSE
100 index option market.

Investigation of optimization techniques for calibration of
stochastic volatility models is an ongoing research. Possible
performance and accuracy improvements of Gauss-Newton
methods involve for example precalculation of gradients or
Hessian matrix which is rather complicated task even in
Heston model. Another possibility is to use the variable metric
methods for nonlinear least squares as they are introduced in
[15]. Complexity of the FSV model then opens space for fine
tuning the global optimizers whose implementation in parallel
and distributed computing environments is a further issue.
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