

Abstract—Distributed systems are steadily gaining significance

in today’s IT landscape. They are increasing in size and complexity,
so is their demand on high availability. While managing distributed
systems, there is a major issue to be addressed: How do we manage
to keep high availability even in a case where one or more parts of
the system fail? To address this issue, a distributed system should
efficiently balance the load that the application has to handle and
should be provided with a fault tolerance mechanism. This paper
describes the principles of fault tolerance and load balancing as well
as their practical implementation on the example of GlassFish.

Keywords—Apache HTTP Server, Balance, GlassFish, fault

tolerance, load balancing.

I. INTRODUCTION
AULT tolerance and load balancing are of great
importance for high availability. High availability requires

24-hour per day, 7-day per week system accessibility.

A. Fault Tolerance
Generally, the term fault tolerance means that a system is

able to keep operating even if some parts of the system fail.
Fault tolerance is often needed when it comes to vital systems,
e.g., the engines of an airliner. Although a fault tolerant
system can compensate the failure of one or more parts, its
performance might be compromised; e.g., an airliner would
still be able to land with only one engine working, but it might
not be able to take off again.

A common approach to fault tolerance is to distribute the
system’s software among one or more redundant physical
servers. Thus, if the primary server fails, one of the parallel
running servers can take over and handle all further requests.
Although a request that is processed by the primary server
might get lost in the instant where the server fails, all further
requests will be handled properly. In such a scenario, each
redundant server would cause additional costs, but will not
increase the performance of the entire system. Therefore, in
practice redundant systems are often used to enhance the
performance in the first place and serve as a failover only if
needed.

Since it would be very inconvenient to let the user switch
between the individual servers (especially for web

Prof. A. Koschel, Michael Heine, and Lars Knemeyer are with Faculty IV,

Department of Computer Science, Hannover University of Applied Sciences
and Arts, Hannover, Germany (e-mail: akoschel@acm.org).

I. Astrova is with InVision Software OÜ, Tallinn, Estonia (e-mail:
irinaastrova@yahoo.com).

applications), some kind of a dispatcher so-called a load
balancer is needed to allocate the incoming requests to the
servers.

B. Load Balancing
Load balancing describes the spreading of system’s load

(e.g., the incoming requests) among multiple server processes.
Thereby the server processes might either be hosted on a
single physical server or be distributed over multiple physical
servers (one server per process). If all the processes are
running on one physical server, this is called vertical scaling.
In a case where each server process is hosted on a dedicated
physical server, this is called horizontal scaling.

No matter which scaling is used, the motivation for load
balancing is: avoiding (scalability) bottlenecks, achieving
optimal resource utilization, avoiding overload, and
minimizing response time [1]. Since the performance of one
single server can be not good enough to handle all the
incoming requests for a frequently used system (e.g., a web
application), the scaling method of choice would usually be
horizontal scaling. In addition, horizontal scaling enables to
build an efficient and fault tolerant system. By contrast,
vertical scaling relies on a single physical server and thus, it
can provide no tolerance against hardware failures.

To make the distribution of the system’s software
transparent to the user, the server processes are merged
logically to a so-called cluster. This cluster is accessed
through a load balancer, which appears as a single server
process to the user. The load balancer itself is not part of the
cluster. Rather, it runs on its own dedicated server. For the
load balancer to be able to pass the incoming requests to the
instances in the cluster, the IP addresses and port numbers of
all server processes should be registered in the load balancer.
Once an incoming request has arrived, the load balancer routes
the request to a server process in the cluster. A particular
server process is selected on the basis of the used load-
balancing algorithm (e.g., round-robin, random, weight-based
or dynamic/pending request counting).

No matter which algorithm is used, the load balancer also
needs to be able to detect whether a server process is running
or not. If the server process is down, the request should
automatically be redirected to the next process in the cluster
according to the used load-balancing algorithm.

The load balancer should also provide support for stickiness
(e.g., cookie-based or URL encoding). With stickiness, the
load balancer will always route all requests coming from a
particular user to the same server process as the first request.

Fault tolerance and load balancing on the
example of GlassFish

Arne Koschel, Michael Heine, Lars Knemeyer, and Irina Astrova

F

Proceedings of the 2014 International Conference on Communications, Signal Processing and Computers

ISBN: 978-1-61804-215-6 104

This enables the software hosted by the server process to keep
track of the user’s actions.

II. GLASSFISH
GlassFish [2] is one of the most commonly used application

servers in the field of Java applications. GlassFish uses the
following terminology:

Instance: A server process that hosts the application.
Node: A physical machine hosting the GlassFish software

that runs instances.
Cluster: A logical component that contains all instances on

all nodes making up the cluster.

A. Fault Tolerance
GlassFish is based on a Domain Administration

Architecture (DAA). This architecture enables to manage the
whole cluster as if it were a single instance. The setup and
configuration of the cluster with all the contained nodes and
instances are done on a Domain Administration Server (DAS).
The DAS is a server process. It is commonly hosted on a
dedicated physical machine (see Fig. 1).

Fig. 1. GlassFish cluster

The DAS can also host web applications itself, which is

usually done during the development (see Fig. 2).

Fig. 2. Domain Administration Server (DAS)

To set up a new cluster, what is needed are a DAS (residing

on its own physical machine) and one physical machine for
each node in the cluster. Since the nodes should be able to run
the GlassFish software, the operating system of choice for the
nodes should be UNIX or Windows. For the DAS to be able to
connect to the nodes, the machines should be accessible
through either SSH or DCOM. Furthermore, all nodes have to
be part of the same subnet as the DAS because the instances in
the cluster need to communicate with one another via UDP
multicasts. The setup and administration procedure can be
done either from the command line interface or from the
GlassFish administration console of the DAS.

At runtime, the DAS is used to manage the instances and
acts as a central repository for all domain specific information
(e.g. configuration information, resources and applications). If
a new instance is added to the cluster, this instance will
receive all necessary information from the DAS and cache it
locally. Thus, once an instance has been failed, it can be
reintegrated into the existing cluster without the DAS using
the cached domain information.

Although a cluster can keep working properly without the
DAS, it is common practice to implement a failover or at least
a recovery strategy for the DAS as well. There are three basic
approaches to this [3]. One is to periodically create backups of
the domain data on the central repository and recreate the
DAS on another GlassFish installation directory. Another
approach is to periodically create backups of the whole
GlassFish installation directory (including the domain root
directory) and transfer it to a new host that inherits the
network identity from the former host. Yet another approach is
to use a hardware-based high availability solution for the DAS
that automatically brings up a backup system with exactly the
same configuration as the primary system where the original
DAS fails.

In a cluster, fault tolerance is achieved through session
replication. This means that the complete session state
(including an HTTP session, EJB data and sign-on
information) is replicated and stored beyond the instance that
is actually handling the particular session’s requests. Before
GlassFish version 3, the session state data could be saved in a

Proceedings of the 2014 International Conference on Communications, Signal Processing and Computers

ISBN: 978-1-61804-215-6 105

Highly Available Database (HADB). Since GlassFish version
3, this approach has been replaced by session replication.
Session replication has three main advantages: (1) it is much
easier to manage (since it is automatically configured by the
DAS), (2) the load balancer does not need to know anything
about a failover mechanism in the cluster, and (3) there is no
more need for a failover of the HADB.

Session replication does not store all the session state data
at one point. Rather, it distributes the replicated session
information of one instance among the other instances in the
cluster. A hash algorithm is used to determine which instance
will store the state of a particular session. Thus in a cluster
with three instances, a session S1 on an instance I1 might be
replicated to an instance I2, while a session S2 from an
instance I1 might be replicated to an instance I3. Fig. 3
illustrates such a scenario.

The hash algorithm can also be used to determine which
instance is storing the replicated data of a particular session.
This becomes important if the instance that has actually
handled the session fails and the load balancer redirects the
session’s requests to an instance that does not have any
information about the session’s state. Based on Figure 3, the
following scenario is possible. I1 handles S2 and replicates the
session’s state to I3. When I1 fails, the load balancer redirects
the further requests to I2. Since I2 does not know the state of
S2, it uses the hash algorithm to identify I3 as the host of the
replicated session data. I2 obtains the state of S2 from I3. I3
deletes its copy of the transferred session state. I2 determines
the new replication target (using the hash algorithm again) and
handles the requests.

Fig. 3. Session replication

B. Load Balancing
GlassFish provides nearly all the functionality needed to set

up a highly available and fault tolerant environment for web
applications. The missing components are those that are not
directly associated with the application server. Looking at the

logical communication flow, the missing components are, on
the one hand, those that are arranged behind the application
servers (e.g., a database) and, on the other hand, those that are
in front of the application servers (e.g., a load balancer).

Fig. 4 illustrates a cluster that is accessed through a load
balancer and has a database connected on the backend. This
cluster is an abstract representation of three instances.

Fig. 4. GlassFish

III. EXAMPLE
To practically apply the concepts of fault tolerance and load

balancing, we at first created a local cluster with two
instances. By “local”, we mean that all the instances as well as
the DAS were running on the same machine. Each instance
had three ports: a port for HTTP connections to the server, a
port for HTTPS connections to the server and an admin
configuration port (which became more important later when
the cluster was distributed).

After setting up the local cluster, we used Balance [4] as a
load balancer to enable load balancing in the cluster. The
Balance was started from the command line. The resulting
setup is shown in Fig. 5.

Fig. 5. Local cluster setup

We tested the local cluster by deploying a sample web

Proceedings of the 2014 International Conference on Communications, Signal Processing and Computers

ISBN: 978-1-61804-215-6 106

application onto the cluster and simulating different failover
scenarios. The sample web application was a Java Server
Faces (JSF) application. It contained three counters: one was
manually stored in the HTTP session, another counter was
stored inside a session scoped by JSF managed bean, and yet
another counter was stored inside a session scoped by stateful
session bean.

Our next step was to distribute the cluster over multiple
physical nodes. The Balance and the DAS were running on
one machine, whereas the other two machines hosted the two
instances in the cluster (one machine per instance). The
resulting setup is shown in Fig. 6. In this setup, the load
balancer was connected to two servers (10.0.1.102 and
10.0.1.103); both were listening on port 8080 and hosting
the sample web application.

Fig. 6. Distributed cluster setup

We tested the distributed cluster against the sample web

application again and particularly checked the behavior of the
cluster in different failover scenarios.

To conclude the example, we critically looked at the
previous setup to spot possible weaknesses of the
configuration and to make suggestions for possible
improvements. We identified the Balance and the DAS as
single points of failure. If the Balance fails, no request will
reach the instances. However, a failure of the DAS will not
result in a complete failure of the cluster as the cluster can
keep on running autonomously without the DAS. To solve the
first problem, we suggest to have multiple Balances so that
one Balance can take over if the other one fails.

IV. CONCLUSION AND FUTURE WORK
During the tests on both the local and distributed cluster, it

became apparent that in some failover scenarios the Balance
redirects request from a single client to different instances in
the cluster. Therefore, in the future we are going to replace the
Balance with the Apache HTTP Server [5]. The biggest
advantage of the Apache HTTP Server is its support for
stickiness.

Although the Apache HTTP Server is more sophisticated
and potent than the Balance, it is more difficult to configure.
To use the Apache HTTP Server as a load balancer, it should
be installed with the following modules: mod_proxy,
mod_proxy_http, mod_proxy_ajp and
mod_proxy_balancer [6]. After the installation, the
Apache HTTP Server as well as the DAS need further
configuration. In the Apache HTTP Server configuration, the
lines shown in Fig. 7 should be added. The placeholder
[Web-App] stands for the name of the hosted web
application, whereas the placeholders [Instance 1] and
[Instance 2] represent names of the two instances that
can be chosen freely. In the DAS configuration, a new
property called INSTANCE should be added to the cluster.

<Proxy balancer://myCluster>
 BalancerMember
 http://10.0.1.102:[Port]
 route=[Instance 1]
 BalancerMember
 http://10.0.1.103:[Port]
 route=[Instance 2]
</Proxy>

ProxyPreserveHost On
ProxyPass /[Web-App]

balancer://myCluster -
/[Web-App] stickysession=JSESSIONID
<Location /balancer-manager>
 SetHandler balancer-manager
 Order Deny,Allow
 Allow from all
</Location>

Fig. 7. Apache HTTP Server configuration

ACKNOWLEDGMENT
We would like to thank Mats Lennart Henke from

Hannover University of Applied Sciences and Arts, Hannover,
Germany, for his help in preparing this paper.

REFERENCES
[1] A. Koschel. High availability, fault tolerance, clustering concepts and

sample approaches with os/hardware, corba and java ee/j2ee products.
paul.inform.fh-hannover.de:
/home/daten/skripte/skripte/master/qualitaet_verteilter_systeme/ss2012/
Vorlesung/05_QVS_SoSe12_j2-co_lb-ft.pdf, 2012.

[2] Oracle Corporation. Glassfish - open source application server.
http://glassfish.java.net/

[3] Oracle Corporation. GlassFish Server Open Source Edition High
Availability Administration Guide, Release 3.1.2. Oracle Corporation,
Redwood City, CA 94065.

[4] Inlab Software GmbH. Balance. https://www.inlab.de/balance.html
[5] Apache Software Foundation. The apache http server project.

http://httpd.apache.org/
[6] Apache Software Foundation. Apache module mod proxy balancer.

http://httpd.apache.org/ docs/2.2/mod/mod_proxy_balancer.html

Proceedings of the 2014 International Conference on Communications, Signal Processing and Computers

ISBN: 978-1-61804-215-6 107

