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Abstract—This paper deals with a hybrid actuator composed by
a piezo and a hydraulic part controlled using two cascade Lyapunov
controllers for camless engine motor applications. The idea is to
use the advantages of both, the high precision of the piezo and the
force of the hydraulic part. In fact, piezoelectric actuators (PEAs)
are commonly used for precision positionings, despite PEAs present
nonlinearities, such as hysteresis, saturations, and creep. In the control
problem such nonlinearities must be taken into account. In this paper
the Preisach dynamic model with the above mentioned nonlinearities
is considered together with cascade controllers which are Lyapunov
based. The sampled control laws are derived using the well known
Backward Euler method. An analysis of the Backward and Forward
Euler method is also presented. In particular, the hysteresis effect is
considered and a model with a switching function is used also for
the controller design. Simulations with real data are shown.

Index Terms—Lyapunov approach, hybrid actuators.

I. INTRODUCTION

REcently, variable engine valve control has attracted a
lot of attention because of its ability to improve fuel

economy, reduce NOx emissions and to increase torque per-
formance over a wider range than a conventional spark-ignition
engine. In combination with microprocessor control, key func-
tions of the motor management can be efficiently controlled
by such mechatronic actuators. For moving distances between
5 and 8 mm, however, there are many actuator types with
different advantages and drawbacks. We presented an adaptive
PID controller design for a valve actuator control. In [1] a U-
magnet structure is considered in which the Maxwell attracting
force is quadratic to the current and inversely quadratic to the
distance between the valve armature and the electromagnets.
Using the topology presented in [1], it is possible to have
the availability of a very big force with a small current.
Nevertheless, difficulties connected with the control structure
and in particular with the control for high cycles of the motor
encouraged us to test other topologies. The main idea of this
paper is using a hybrid actuator consisting of a piezo and a
hydraulic part in order to take advantages of both of them:
the high precision and velocity of the piezo and the force of
the hydraulic part. Hydraulic actuators have been an attractive
field since many years. Recently in [2] a nonlinear model of a
hydraulic actuator considering amplitude and rate saturations,
identified by an innovative method is proposed. An actuator
model is taken into account with a first-order transfer function
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and nonlinear functions of saturation with unknown parame-
ters. Piezo actuators demonstrate generally less difficulties of
electromagnetic compatibility due to the quasi-absence of the
inductance effects. The objective of this paper is to show a
model of a hybrid actuator and a Lyapunov cascade regulator
using, in one case, the Forward Euler discrete approximation,
and finally, the case of Backward Euler approximation. The
paper is organized with the following sections. Section II is
devoted to the model description. After that, in Section III and
IV, the control laws are derived. The paper ends with Section
V in which simulation results of the proposed valve using
real data are presented. After that, the conclusions follow.

The main nomenclature

Vin(t): input voltage
Vz(t): internal piezo voltage
i(t): piezo input current
R0: input resistance in the piezo model
Ra: parasite resistance in the piezo model
Ca: parasite capacitance in the piezo model
Cz: internal capacitance in the piezo model
xp(t): internal position of the piezo part
x(t) = x1(t): position of the piezo mass
ẋ(t) = x2(t): velocity of the piezo mass
H(xp(t), Vin(t)): hysteresis characteristic of the piezo
Mp/3: moving piezo mass
Kx: internal spring constant of the piezo
K: spring constant acting on the piezo
D: damping constant acting on the piezo
Doil: damping constant of the oil chamber acting on the
piezo
xSK(t): position of the servo piston
MSK(t): mass of the servo piston
KSK(t): spring constant acting on the servo piston
DSK(t): damping constant acting on the servo piston
W: piezo→ servopiston ratio
Qth: mass flux of the hydraulic part
TH : time constant of the linear model of the hydraulic
part
TM : time constant of the linear model of the mechanical
part
VH : steady-state factor of the linear model of the hy-
draulic part
VM : steady-state factor constant of the linear model of
the mechanical part
K2Lidx: characteristic value of the velocity-dependent
internal leakage
Ts: sampling time
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II. MODELING OF THE PIEZO HYDRAULIC ACTUATOR

In the diagram of Fig. 1 the T-A connection links the couple
of valves with the tank and the P-B connection links the couple
of valves with the pump. In the position of Fig. 1 connections
T-A and P-B are maximally open and the couple of valves are
closed because point B is under pressure. When the piezo acts
its force, the mechanical servo valve moves and begins to close
these connections. When the mechanical servo valve is in the
middle position, both connections (T-A and P-B) are closed
and connections A-P and B-T begin to open. At this position
also both motor valves begin to open because point A is under
pressure. Figure 1 shows in detail a part of the hybrid structure

Fig. 1. Scheme of the whole Hybrid Piezo Hydraulic structure

which consists of a piezo actuator combined with a mechanical
part. These two parts are connected by a stroke ratio to adapt
the stroke length. The proposed nonlinearity model for PEA
is quite similar to these presented in [3] and in [4] which
show a sandwich model for a PEA. According to this proposed
sandwich model, a PEA is constituted like a three layer
sandwich. The middle layer is the effective piezo layer (P-
layer), and the two outside layers connected to the electrodes
are known in the literature as interfacing layers (I-layers). The
P-layer is the layer that has the ordinary characteristics of
piezo effects but without the nonlinearities of hysteresis and
creep so that its behavior can be modeled by an equivalent
linear circuitry. In contrast, the I-layers do not contribute any
piezo effect; they are just parts of the circuit connecting P-layer
to the electrodes in series. In [4] it is hypothesized that each
of the I-layers can be equivalently represented by a capacitor
and a resistor connected together in parallel. Together with
the equivalent circuitry for P-layer, Fig. 2 shows the equivalent
circuitry for a PEA with the I-layer nonlinearities of hysteresis
and creep, in which two I-layers are combined together as
Ca and Ra. The I-layer capacitor, Ca, is an ordinary one,
which might be varied slightly with some factors, but here
it would be assumed constant first for simplicity. The I-

Fig. 2. Electrical part of the model

layer resistor, Ra , however, is really an extraordinary one
with a significant nonlinearity. The resistance is either fairly
large, say Ra > 106 Ω, when the voltage ∥Va∥ < Vh, or
is fairly small, say Ra < 1000, when ∥Va∥ > Vh. In [4],
the threshold voltage, Vh, is defined as the hysteresis voltage
of a PEA. The authors in [4] gave this definition due to the
observation that there is a significant difference and an abrupt
change in resistance across this threshold voltage and it is this
resistance difference and change across Vh that introduces the
nonlinearities of hysteresis and creep in a PEA. The hysteresis
effect could be seen as a function of input Vin(t) and output
y(t) as follows: H(y(t), Vin(t)), see Fig. 3. According to this
model, if Vh = 0, then the hysteresis will disappear, and if
Ra = ∞ when ∥Va∥ < Vh, then the creep will also disappear.
Based on this proposed sandwich model and the equivalent
circuitry as shown in Fig. 2, we can further derive the state
model as follows:

V̇a(t) = −
( 1

Ra
+

1

Ro

)Va(t)

Ca
− Vz(t)

CaRo
+

Vin(t)

CaRo
(1)

V̇z(t) =
Q̇b

Cz
+

1

Cz

(
− Va(t)

Ro
− Vz(t)

Ro
+

Vin(t)

Ro

)
,

(2)

where Qb = DyFz(t) is the ”back electric charge force”
(back-ecf) in a PEA, see [4]. According to [4] and the notation
of Fig. 4, it is possible to write:

Fz(t) = Mp/3ẍ(t) +Dẋ(t) +Kx(t) +Kxx(t). (3)

K and D are the elasticity and the friction constant of
the spring which is antagonist to the piezo effect and is
incorporated in the PEA. Cz is the total capacitance of the
PEA and Ro is the contact resistance. For further details on
this model see [4]. Considering the whole system described
in Fig. 4 with the assumptions of incompressibility of the
oil, the whole mechanical system can be represented by a
spring mass structure as shown in the conceptual scheme of
Fig. 4. In this system the following notation is adopted: Kx

Proceedings of the 2014 International Conference on Circuits, Systems and Control

ISBN: 978-1-61804-216-3 20



is the elasticity constant factor of the PEA. In the technical
literature, factor DxKx = Tem is known with the name
”transformer ratio” and states the most important characteristic
of the electromechanical transducer. Mp/3 is, in our case, the
moving mass of the piezo structure which is a fraction of
whole piezo mass, MSK is the sum of the mass of the piston
with the oil and the moving actuator and Mv is the mass of
the valve. It is possible to notice that the moving mass of the
piezo structure is just a fraction of the whole piezo mass. The
value of this fraction is given by the constructer of the piezo
device and it is determined by experimental measurements.
KSK and DSK are the characteristics of the antagonist spring
to the mechanical servo valve, see Fig. 4. Doil is the friction
constant of the oil. Moreover, according to [4], motion xp(t)
of diagram in Fig. 3 is:

xp(t) = DxVz(t). (4)

According to diagram of Fig. 2, it is possible to write as
follows:

Vz = Vin(t)−R0i(t)−H(xp(t), Vin(t)), (5)

where R0 is the connection resistance and i(t) is the input
current as shown in Fig. 2. H(xp(t), Vin(t)) is the function
which describes the hysteresis effect mentioned above and
shown in the simulation of Fig. 3. Considering the whole
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Fig. 3. Simulated Hysteresis curve of the piezo part of the actuator:
H(xp(t), Vin(t))

system described in Fig. 4, the electrical and mechanical
systems described in Figs. 2, 3 and 4 can be represented by
the following mathematical expressions:

Mp

3
ẍ(t) +MSK ẍSK(t) +Kx(t) +Dẋ(t) +KSKxSK(t)

+DSK ẋSK(t) +DoilẋSK(t) +Kx

(
x(t)−∆xp(Vin(t))

)
= 0, (6)

where ∆xp(t) represents the interval function of xp(t) as
shown in Fig. 3 which, according to equation (4), can be

expressed as:
∆xp(t) = Dx∆Vz(t). (7)

Finally, using equations (5) and (7),

Kx∆xp(t) = KxDx

(
Vin(t)−R0i(t)−H(∆xp(t), Vin(t))

)
,

(8)
which represents the interval force generated by the piezo
device. Equation (6) can be expressed in the following way:

Mp

3
ẍ(t) +MSK ẍSK(t) +Kx(t) +Dẋ(t) +KSKxSK(t)

+DSK ẋSK(t)+DoilẋSK(t)+Kxx(t) = Kx∆xp(Vin(t)).
(9)

It is to be noticed that under quasi-static conditions (low
velocity ranges) the following relation holds:

xSK(t) ≈ Wx(t), (10)

where W is the position ratio above defined and it states the
incompressibility of the oil in the conic chamber. Fd(t) is the
combustion back pressure in terms of force. According to Fig.

Fig. 4. Mass spring model of the whole actuator

3 in which an upper bound and a lower bound of the hysteresis
curve are indicated, it is possible to write that:

∆xp(Vin(t)) = [−a a] + bVin(t), (11)

with a ∈ R and b ∈ R two positive constants are indicated. In
particular,

∆xp(Vin(t)) = −a+ bVin(t), (12)

and
∆xp(Vin(t)) = a+ bVin(t). (13)

Considering this notation, the system represented in (6) can
be split into the following two models:

Mp

3
ẍ(t)+MSK ẍSK(t)+Kx(t)+Dẋ(t)+KSKxSK(t)+

DSK ẋSK(t) +DoilẋSK(t) +Kxx(t) = ∆xp(Vin(t)), (14)
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and

Mp

3
ẍ(t)+MSK ẍSK(t)+Kx(t)+Dẋ(t)+KSKxSK(t)+

DSK ẋSK(t) +DoilẋSK(t) +Kxx(t) = ∆xp(Vin(t)), (15)

III. CONTROL OF THE PIEZO MECHANICAL PART OF THE
ACTUATOR

If x(t) = x1(t), then:

ẋ1(t) = x2(t) (16)

ẋ2(t) =
−Dx2(t)−W (DSK +Doil)x2(t)

Mp

3 +MSKW
+

−(K +Kx +KSKW )x1(t)
Mp

3 +MSKW
+

3KxbVin(t) + (−1)qa
Mp

3 +MSKW
, (17)

where q = 1, 2. If it is assumed that Vin(t) = Vz(t), then[
ẋ1SK

(t)
ẋ2SK

(t)

]
=

[
0 1

− cn
an

− bn
an

]
·
[

x1(t)
x2(t)

]
+[

0
3Kxb
an

]
·
[
Vz(t) +

a(−1)q

3Kxb

]
, (18)

where
an =

MP

3
+MSK ·W (19)

bn = D +DSK ·W (20)

cn = Kx +K +KSK ·W. (21)

To sum up, it is possible to write the following general
expression for the dynamics of the piezo part of the actuator:

ẋ(t) = An ·x(t) +Bn ·
[
Vz(t) +

a(−1)q

3Kxb

]
. (22)

To obtain the servo piston position it is enough to remember
that in quasi-static conditions the following expressions hold:
xSK(t) ≈ Wx1(t) and ẋSK(t) ≈ Wx2(t).

A. A Lyapunov based controller for the piezo mechanic actu-
ator

For designing a controller for the piezo mechanical part of
the actuator, it is to consider that, according to the real data
which we have, the piezo part of the model results to be more
than 10 times faster than the mechanical part. This allows us to
consider just the mechanical model in order to conceive a pos-
sible control law. Considering Ki(t) = e(t) = xd(t)−x(t), in
which xd(t) represents the desired state vector (position and
velocity) of the servo mechanical piston. Defining

V(Ki) =
K2

i (t)

2
, then it follows that: (23)

V̇(Ki) = Ki(t)K̇i(t). (24)

In order to find a stabile solution, it is possible to choose the
following function:

V̇(Ki) = −η(t)Ki
2(t), (25)

with η a positive definite diagonal matrix is indicated. Com-
paring (24) with (25), the following relationship is obtained:

Ki(t)K̇i(t) = −ηK2
i (t), (26)

and finally
Ki(t)

(
K̇i(t) + ηKi(t)

)
= 0. (27)

The no trivial solution follows from the condition

K̇i(t) + ηKi(t) = 0, (28)

which can be rewritten as:

ẋd(t)− ẋ(t) + η
(
xd(t)− x(t)

)
= 0. (29)

Considering Eq. (22) the following expression is obtained:

ẋd(t)− An ·x(t) + Bn ·
[
Vz(t) +

a(−1)q

3Kxb

]
+

η
(
xd(t)− x(t)

)
= 0, (30)

it follows that:

Vz(t) = pinv(Bn) ·(
An ·x(t)− ẋd(t)− η

(
xd(t) + x(t)

))
− a(−1)q

3Kxb
, (31)

where Moore-Penrose Pseudoinverse of matrix Bn is used.
Considering that the model of Eq. (22) is a minimum phase
model, then signal Vz(t) is a limited one. Using the control
of Eq. (31), the following error dynamics is obtained:

ė(t) + ηe(t) = 0. (32)

If a non exact cancellation is considered, then:

ė(t) + ηe(t) = ∆(xd(t),x(t)), (33)

where ∆(xd(t),x(t)) represents the cancellation error which
can be assumed to be limited because of model of Eq. (22)
being a minimum phase one. Considering the Forward Euler
sampling approximation, Eq. (33) becomes:

e(k)− e(k− 1) + Tsηe(k− 1) = Ts∆(xd(k− 1),x(k− 1)),
(34)

where Ts equals the sampling time. It is well known that
in order to obtain the asymptotic stability it must be η <
diag(2/Ts), but in this case parameter η does not influence
the reduction of the error. In fact, we can write the following
relation:

e(k) = (I−Tsη)e(k− 1)+Ts∆(xd(k− 1),x(k− 1)). (35)

If Backward Euler sampling approximation is considered, then
Eq. (33) becomes:

e(k)− e(k − 1) + Tsηe(k) = Ts∆(xd(k),x(k)), (36)

and in case of no exact cancellation through parameter η it
is possible to control the error: the bigger parameter η is, the
smaller the error becomes. In fact, we can write the following
relation:

e(k) = (I+ Tsη)
−1e(k − 1)+

(I+ Tsη)
−1Ts∆(xd(k − 1),x(k − 1)). (37)
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If the Backward Euler sampling method is considered for the
control law of Eq. (31), then:

Vz(k) = pinv(Bn) ·
(

An ·x(k)−
xd(k)− xd(k − 1)

Ts
−

η
(
xd(k) + x(k)

))
− a(−1)q

3Kxb
, (38)

where Moore-Penrose Pseudoinverse of Bn is used.

IV. MODELLING AND CONTROL OF THE HYDRAULIC PART
OF THE ACTUATOR

In Fig. 5 a possible linear model often utilised in practical
applications is presented. The model was presented in [5]
and it is a possible linear approximation utilized in many
industrial applications, see the industrial cases presented in
[5]. In Fig. 5 this model in which, the following parameters
are visible, is represented: TH which represents the time
constant of the hydraulic part, TM which represents the time
constant of the mechanic part. VH and VM represent the
steady state factors of the hydraulic and mechanical transfer
function respectively. The other parameter which characterises
the hydraulic-mechanical model is K2Lidx. In fact, parameter
K2Lidx is a characteristic value of the velocity-dependent
internal leakage. This parameter multiplied by the velocity of
the valve states a loosing force as represented in the block
diagram of Fig. 5. Parameter AAK is the surface of the moving
part (servo piston). Observing Fig. 5 and considering that

Fig. 5. Hydraulic model structure

variable Qth is the mass flux involved in the hydraulic actuator,
the following calculations are derived:

bm = Qth(s)− am (39)

VV (s) = bm · VH ·VM ·AAK

(TH · s+ 1) · (TM · s+ 1)
(40)

VV (s) = bm · VH ·VM ·AAK

TH ·TM · s2 + (TH + TM ) · s+ 1
(41)

am = VV (s) · (AAK +K2Lidx), (42)

bm = Qth(s)− VV (s) · (AAK +K2Lidx), (43)

VV (s) = (Qth(s)− VV (s) · (AAK +K2Lidx)) ·
VH ·VM ·AAK

TH ·TM · s2 + (TH + TM ) · s+ 1
(44)

Considering the transfer function, then:

VV (s)

Qth(s)
=

dm
am · s2 + bm · s+ cm

, (45)

where:

am = TH ·TM , (46)

bm = (TH + TM ), (47)

cm = 1 + VH ·VM ·AAK · (AAK +K2Lidx), (48)

dm = VH ·VM ·AAK , (49)

am · s2 ·VV (s) + b · s ·VV (s) + c ·VV (s)− dm ·Qth(s) = 0.
(50)

Considering the back Laplace transform, then:

am · V̈V (t) + b · V̇V (t) + c ·VV (t)− dm ·Qth(t) = 0. (51)

If the following positions are considered:

x1(t) = VV (t) (52)

x2(t) = ẋ1(t) (53)

then:

ẋ1(t) = x2(t) (54)

ẋ2(t) =
1

am
· (dm ·Qth(t)− bm ·x2(t)− cm ·x1(t)) (55)

and[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

− cm
am

− bm
am

]
·
[

x1(t)
x2(t)

]
+[

0
dm

am

]
·Qth(t). (56)

It is possible to write the following general equation:

ẋ(t) = Am ·x(t) +Bm ·Qth(t). (57)

Concerning the control aspects, similar considerations as for
the piezo mechanical part of the actuator can be done and the
following sampled control law can be derived using Backward
Euler sampling method, the following final inverse equation
is obtained:

Qth(k) = pinv(Bm) ·
(
Am ·x(k)−

xd(k)− xd(k − 1)

Ts
− η

(
xd(k) + x(k)

))
, (58)

where Moore-Penrose Pseudoinverse of Bm is used.
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Fig. 6. Control scheme

V. SIMULATION RESULTS

The control scheme is shown in Fig. 6 in which the control
laws of equations (38) and (58) are inside the internal and
external Lyapunov blocks. After the external Lyapunov block
an inversion block is put to state the algebraic relation between
variable Qth and variable xSK . Figure 7 shows the final
results concerning the tracking of a desired position of an
exhaust valve with 8000 rpm. Figure 8 shows the final results
concerning the tracking of a desired velocity of an exhaust
valve with 8000 rpm. Concerning the force acting directly on
the valve at the opening time which has a peak value equal
to 700 N circa and it is reduced to a few Newton acting on
the piezo part thanks to the decoupling structure of the hybrid
actuator. This is one of the greatest advantages of these hybrid
actuators. The model of such kind of a disturbance is obtained
as an exponent function of the position of the valve. The
digital controller is set to work with a sampling time equal
to 20× 10−6 s, according to the specifications of the Digital
Signal Processor which we are intended to test the system
with.

VI. CONCLUSIONS AND FUTURE OBJECTIVES

A. Conclusions

This paper deals with a hybrid actuator composed by a
piezo and a hydraulic part and its control structure for camless
engine motor applications. The idea is to use the advantages
of both, the high precision of the piezo and the force of
the hydraulic part. The proposed control scheme considers
two Laypunov based controllers. Backward and Forward Euler
sampling methods are compared. Simulations with real data of
a motor and of a piezo actuator are shown for the controller
realized by Backward Euler method.
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