

“And just like everything else important in your life, Bouquet CNP

development environment is cloud-based”
- Re-phrased from the video on [29]

“Primitives + Control Network = Control Network Program”
Claimed in Sec. II C

Abstract—The ultimate goal of this paper is to introduce a cloud
development environment for Control Network Programming (CNP)
called Bouquet. However, our route to that goal is not strait. We
address a number of related objectives and use the corresponding
conclusions. We discuss the distinguishing features of CNP and
deduct the summarizing maxim “Primitives + Control Network =
Control Network Program”. Then we analyze the types of CNP
development environments paying special attention to the most
advanced CNP IDE, SpiderCNP. We address the reasons for devising
a cloud compiler, and include an extended review of cloud IDEs and
their advantages. Finally, we are at a position to explain the
principles and some design and implementation details of the
Bouquet cloud CNP environment. All these issues are considered
within the context of teaching and learning – teaching major concepts
of computer science and mathematics with the help of CNP tools, and
learning CNP by students, programmers, and researchers.

Keywords—Control Network Programming, CNP, cloud IDE,
cloud compiler, online compiler, learning system.

I. INTRODUCTION

ontrol Network Programming (CNP) is an unusual
programming style. It is especially advantageous for

solving problems which exhibit one or more of the following
traits: the problem description or its procedural solution have a
natural graph-like representation, involve nondeterminism or
randomness, are based on search. Distinguishing features of
CNP are discussed in Section II.

We have been successfully using CNP as a tool for
simulating various computational models and algorithms in our
Computer/Software Engineering curricula at undergraduate
and graduate levels. Other areas where concepts such as
computation, search, inference, nondeterminism and

K. Kratchanov is with the Department of Software Engineering, Yaşar
University, Izmir, Turkey (phone: +90-232-411-5289; e-mail:
kostadin.kratchanov@yasar.edu.tr).

B. Yüksel graduated from the Department of Computer Engineering,
Yaşar University, Izmir, Turkey, and is currently a Ph.D. student at the
Department of Computer Science and Engineering, Koç University, Sariyer,
Istanbul, Turkey (email: byuksel13@ku.edu.tr).

T. Golemanov (email: TGolemanov@ecs.uni-ruse.bg) and E. Golemanova
(EGolemanova@ecs.uni-ruse.bg) are with the Department of Computing,
University of Ruse, Bulgaria.

randomness are fundamental, and where CNP could be a great
teaching tool, are Computer Science, Mathematics, Industrial
Engineering, Robotics, and others. A short summary of our
teaching experience with CNP is given in Sec. II E.

We need a CNP programming environment in order to
create, modify, compile, and run CNP applications. Such a
powerful IDE (with embedded graphical editor) is SpiderCNP.
This report focuses on describing a much simpler, light-
weight, online cloud CNP compiler which we call the Bouquet
compiler. (Bouquet is the English equivalent of the name of
the programmer most involved in the development of this
compiler, Buket). Being run in the cloud, this approach is not
only ‘trendy’ but in fact frees a user from the burden related to
installation, maintenance and updating the tool. This is
especially important for a user who wants to learn the basics of
CNP and use it for running demos or creating their own small-
size CNP applications. Generally, our students belong to this
class of user, together with other students, researchers or
programmers whose aims are to get basic awareness of CNP
and its possibilities but are not yet its heavy users.

II. DISTINGUISHING FEATURES OF CNP AS A NEW
PROGRAMMING PARADIGM

A. Introduction to CNP
he name Control Network Programming or CNP can be
deciphered as ‘programming through control networks’. It

is a combination of the declarative and imperative
programming styles. A ‘program’ consists of two fundamental
parts. The first one is called a Control Network (CN). It can
be considered as a declarative description of the problem at
hand and is an explicit system of graphs called subnets. The
arrows of the subnets are labeled with sequences of simple
actions, called primitives. The primitives are defined
separately or taken from existing libraries simple procedures.

In CNP, other synonymic names for the computation
process would be inference or search. The goal is to find a
path from the initial node of the CN to a final node, possibly
going in the process through invoked subnets. The execution
of a primitive might result in failure in which case the system
executes primitives backwards, restoring the state of the data,
and attempts another path. The passing of the control through
the CN is thus highly intuitive and easily understandable.

Some major resources describing the technical details of
CNP are [5]-[9]. How CNP can be applied for solving

Learning Control Network Programming with
the Bouquet Cloud Compiler

Kostadin Kratchanov, Buket Yüksel, Tzanko Golemanov, and Emilia Golemanova

C T

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 29

different types of problems is demonstrated in [10]. The
computation/inference in a CN program is based on search.
Therefore, the built-in powerful tools for user control of the
computation can be used to implement heuristic search
strategies in an unusual, non-procedural manner [11]-[13].

B. CNP distinguishing features
We describe CNP as a new programming paradigm

extending and integrating declarative programming, imperative
programming, and programming rule-based systems. As all
other programming paradigms CNP is universal – that is, it can
be used for implementing any algorithm. However, it is
especially effective when solving problems which can be
naturally represented in a graph-like manner, and/or whose
descriptions exhibit nondeterminism and declarativeness.

As we mentioned already, the CN can be looked at as a
declarative description of the problem to be solved. Typical
illustration of this viewpoint is the CNP solutions to the
Animals classification problem in [10], the Map traversal
problem in [7], the non-recursive heuristic solutions to the
same problem in [13] as well as its iterative and recursive
solutions in [7] and [13], the iterative and recursive solutions
to the Wolves and sheep problem in [10], etc.

CNP can be successfully used for typical procedural
solutions as well. Such an example is the SelectionSort
algorithm in [10]. Here, the CN is an explicit graphical
representation of the program control (as understood in
imperative programming). In other words, in CNP the program
control is extracted from the imperative program and made
explicit. The actions on data are defined in the simple and
well-understood primitives. This helps for easier
understanding, creating, modifying, or verifying the algorithm.

In both cases of considering a CN as a declarative problem
description or as an explicit description of the control in a
procedural solution, CNP can be also described as a type of
graphical programming. Indeed, the CN (being the leading
principal part of the CN program) is a recursive set of graphs.
Depending on the development environment used this net (the
CN) may be actually seen and edited in a graphical editor, or
may be coded textually using our simple language for
describing graphs called Spider.

‘Executing’ the CN is a kind of search. CNP has been
equipped with powerful means to control this search – namely
numerous system options and control states [7],[8],[12]. Some
of these can also introduce randomness. This makes CNP a
very powerful tool for realizing a great number of
search approaches. Especially interesting and unusual
are implementations of algorithms based on local
search, as the execution of the CN is in fact a particular
type of local search itself. This approach is called non-
procedural implementation [11]-[13]. It does not
involve writing any search algorithm in the usual sense –
a behavior equivalent to the corresponding search
algorithm is achieved ‘automatically’ trough the built-in
search control tools.

C. Primitives + Control network = Control network
programming

Back in 1975, Niklaus Wirth proclaimed: “Algorithms +
Data Structures = Programs” [1]. First of all, this applies to
structured, imperative programs. In 1979, sighting logic
programs Robert Kowalski responded: “Algorithms = logic +
control” [2]. Modifying the famous Wirth’s statement,
Zbigniew Michalewicz added in 1992: “Generic Algorithms +
Data Structures = Evolution Programs” [3].

Here we notice and proclaim: “Primitives + Control
Network = Control Network Program”.

Our statement has a very direct and literal meaning: a
Control Network (CN) program consists of two parts:
definitions of primitives, and a CN using these primitives.
Physically, a CN programming (CNP) project includes two
main files – one that contains the primitive definitions, and a
second one with a textual representation of the CN. In more
detail this will be discussed in the following sections.

Figure 1 NDA

A note is needed. We apologize to the data for somehow
neglecting its importance. The data does exist and is
important. We refer to the first major component of a CN
program as “Primitives”. To be maximally precise, we
should’ve called it “Data and Primitives”. The primitives act
on data. The data is usually declared in the same file where the
primitives are (or in other project modules used). However, for
simplicity, we’ll keep the shorter name “Primitives”. It is
understood by default that there is data processed by these
primitives. Generally, in CNP one focuses more on the
computation control rather than on the data. As a matter of fact
the control is explicit, and is presented graphically by the CN.

D. An exemplary CNP application
As an illustration, we show here the CNP simulation of a

Figure 2a The NDA main subnet

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 30

nondeterministic automaton which accepts strings over the
alphabet {a,b} that include exactly two a’s or at least two b’s
(Problem 1.4b from [4] but implemented as an NDA). The
graph of this NDA is shown in Fig. 1 (screenshot from
JFLAP). The CN of the CNP implementation consists of two
subnets. The main subnet called NDA is shown in Fig. 2a, and
the subnet Graph - in Fig. 2b. The screenshots are from the
SpiderCNP programming environment discussed below. An
exemplary dialogue with the user is given in Fig. 3c. This CNP
example is used in the PhD course Theory of Computation and
the undergraduate course Discrete Computational Structures II
at Yaşar University.

Figure 2b The Graph subnet

Figure 2c Console
The following primitives are used in the CN. Primitive Init

performs some initialization and prompts the user to enter the
input string. Primitive Test(c) completes successfully if the
current input character equals c. Primitive Add(n) adds the
string n as the name of the current node into the solution path.
Primitive Complete checks if there are additional symbols in
the input string that have not been read and used. Using this
primitive in the main subnet ensures that no unused symbols
have remained in the input string. Finally, primitive Print
displays the solution path.

E. CNP in education
At Yaşar University, we have been systematically using

CNP for three years in teaching the courses of Artificial
Intelligence (4th year undergraduate) and Theory of
Computation (PhD.) in our Computer/Software Engineering
curricula, and we have found it to be a very useful tool in

simulating various models and algorithms. Other possible
areas include Formal languages and automata, Compilers,
Algorithm analysis and design, Concepts of programming
languages, Discrete mathematics, Logic, Digital design,
Algorithms and data structures, and more.

In general, it is the prevailing view of the educators in areas
such as computer science and mathematics that students tend
to have substantial difficulties in apprehending the ideas
behind nondeterministic and randomized (also referred to as
stochastic) computation models and algorithms. CNP can be a
great instrument to help understanding and getting confident
with these concepts [17],[18]. In fact, our experience and
surveying results strongly suggest that understanding and using
CNP for our students (who have already developed a strong
procedural way of thinking) is substantially easier than Prolog.

III. PROGRAMMING ENVIRONMENTS FOR CNP
o practice CNP, i.e., to create, edit, compile, and run CNP
applications one needs an appropriate development

environment. A number of such environments have been
created.

A. SpiderCNP – a CNP IDE for graphical programming
The most powerful one is SpiderCNP [14]. It has two

versions. They are integrated as a tool in the Delphi and
Lazarus IDEs, respectively. A fundamental advantage of the
chosen approach is the possibility to use all the features and
tools of the larger encompassing environment and the latest
versions of the programming language around which the IDE
is built. This programming language is also used to program
the primitives. The installation process consists of three steps:
install the Delphi or Lazarus IDE, then run a simple
installation program that installs SpiderCNP as a tool of the
IDE, and finally fix some settings.

Delphi is a sophisticated, ambitious, advanced professional
environment which, of course, is an important advantage of
this approach. However, this is also its main disadvantage
when using it in teaching. The IDE is rather expensive, free
academic versions are very difficult or impossible to obtain,
updates in the IDE are difficult for the same reason. The
second disadvantage is the size of the software product and
correspondingly the difficulties in its installation. Difficult
installation was the single most important drawback of the
CNP approach identified by the students in their surveys and
comments during the first year of using CNP in teaching.

In our opinion the switch to the SpiderCNP version based
on Lazarus (called also LazarusCNP) brought essential
advantages. Lazarus is a free product; it is pretty easy to
download the latest version of the product, and much easier to
install it. The IDE is also quite advanced and stable. We have
been using LazarusCNP for two years and it is our most
advanced and well-tested CNP development environment.

Although the installation still requires the same three steps,
it now takes less than 5 minutes, and all the components to
install are free. The corresponding installation instructions and
download files are available at [19].

T

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 31

Before discussing the CNP IDE further we need to
understand the architecture of a CNP application.

Figure 3 Structure of a CNP application

B. Architecture of a CNP application
There are two types of applications in Free Pascal (also

known as OO Pascal) which is the core of Lazarus: console
applications and window applications. Correspondingly, we
have the same two types of CNP applications. Console
applications are simpler; the I/O is realized through a DOS-
type console. Such an I/O console is shown in Fig. 2c. The I/O
of a window application is performed through various built-in
or user-defined windows. This allows the creation of
applications with more attractively looking and modern I/O. In
practically all cases of teaching applications the console I/O is
enough and even easier to follow. The online CNP compiler
that we will be describing further in this report allows console
applications only. Therefore, we will introduce the structure of
a CNP application for the case of console applications only
(although the differences are minimal). It is shown in Fig. 3.

A CNP application is created as a Lazarus project. All the
files of the project (i.e., the CNP application) are placed in a
folder. As we know, a CN program consists of two
fundamental parts: primitives and CN. The file with the
primitives is SpiderUnit.pas. Technically, it is an OO Pascal
file in which the primitives are defined as procedures. The file
may contain also definitions of global data. The CN is
specified in the text file SpiderNet.txt. It describes the CN in
textual form using a very simple language for specifying nets
called Spider – see [6],[10] for a description of this language.

The CNP compiler (called SpiderCompiler.exe) uses the
above two files (the CN and the Primitives) to produce a
Pascal program as its object file SpiderUnit.spi. This program

includes directly a copy of the definitions of the primitives and
the global data. The behavior of the program corresponds to
that of an interpreter that would execute the CN according to
its semantics. The CNP compiler has been developed using
ideas similar to recursive decent.

As any Lazarus project, the project folder contains some
other files. The only one important for our description here is
Project1.lpr. A CNP user may well survive without knowing
about it, but if (s)he wants to change the initial and concluding
text in the output, the user may do corresponding
modifications there.

All Lazarus files included in the project, as well as the
SpiderUnit.spi file, are used by the lazbuild.exe file (which is
part of the Lazarus IDE) to create the file project1.exe. This
executable file is the CNP application. It can be called
(executed) from inside the IDE, or directly as a stand-alone
executable file.

The general view of the SpiderCNP IDE can be seen in Fig.
2a. In the main window, the user may switch between
displaying the CN (graphical view or textual view; the latter is
the file SpiderNet.txt), primitives (file SpiderUnit.pas), or
console (file Project1.lpr). Normally, the CN is studied and
edited in the graphical view. However, if preferred, the textual
file may be modified (currently, for a given project, only one
of these options is possible). The textual view of the Graph
subnet shown graphically in Fig. 2b, is given in Fig. 4.

Clearly, the most distinguishing feature of LazarusCNP is
the existence of graphical editor of CNs. The CNP IDE has
many other features, including tracing the execution within the
graphical editor on the graphical view of the CN.

Working with a CNP project means creating and modifying
as needed the three components (files) described: CN,
primitives and project1.lpr.

C.Possible principles for designing a CNP development
environment

Historically, the first CNP were run using interpreters
which interpreted the CN. However, for over fifteen years all
CNP environments use a compiler (e.g., [5]) – an approach
which we found to have substantial advantages.

As we emphasizes earlier, a CN program consists of
primitive definitions and a CN. For representing the CN we
have always used the simple Spider language mentioned
before. The second question arising is how to specify/program
the primitives.

It is possible to use a special, defined by us programming
language for primitives which, in a way, will make CNP self-
contained. We have decided against this approach, however, as
it will imply constant improvements, extensions, and
modifications to the language and the corresponding
environment, for which we must be responsible, together with
the corresponding documentation, installation files, etc.

Following the approach we have chosen, we must integrate
our CNP development environment with the external IDE
of a programming language. As already mentioned, our main
CNP development environment, LazarusCNP is integrated as a

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 32

tool inside the Lazarus IDE. Therefore, a CNP developer can
avail of all the powerful features of Lazarus. Also, a developer
working in Lazarus, can in principle create a ‘regular’ Lazarus
project (e.g., in OO Pascal) using CNP only for subtasks
where CNP would be most effective. Naturally, this approach
also has drawbacks, the major one being the necessity to
obtain, download and learn the basics of Lazarus. This
disadvantage is not so severe as Lazarus is freely available and
well maintained; however it still exists. For example, we need
to have Lazarus installed in our teaching labs.

Figure 4 Textual view of Graph subnet

An alternative promising approach is to develop a ‘stand-
alone’ CNP environment which does not depend directly on
any specific external development environment. However, in
contrast to the approach with a specially design programming
languages for coding the primitives which was mentioned
above, a natural and highly appealing approach would be to
use primitives programmed in different programming
languages and eventually developed in different IDEs. This
idea is aligned with the modern-day idea of language
interoperability [20]-[24]. The idea could be implemented on
the base of any of the two major groups of managed languages
– the .NET SLI compliant languages and JVM compliant
languages [25],[26]. Creating such a light-weight and highly-
flexible CNP development environment is in our plans for the
near future. In particular, being able to write primitives in a

language of the student’s choice is a highly desired feature of a
CNP environment used in teaching. The learners of CNP come
from different backgrounds, have different personal
preferences, and would like to be able to use the language they
feel most confident with. A main idea behind creating the
declarative-driven approach of CNP is that ‘programming’ can
be done by any user, including those with very limited or even
non-existing experience in programming.

Finally, we can develop the previous approach even further
by using a cloud CNP development environment the core
component of which is a cloud CNP compiler.

A short survey of cloud compilers and development
environments follows. The sections afterwards describe our
current working CNP cloud compiler called Bouquet.

D.Cloud IDEs and compilers
It is widely accepted that cloud computing is undoubtedly

one of the biggest buzzwords in the technology world today.
According to Fast Company [27], the cloud is a vast network
of low-cost, high availability computing resources. Almost
60% of companies are already in the cloud and an additional
20% are planning to do so within the next 12 months. Cloud
computing refers to application service provisioning where
typical client server software is run at a remote location. Such
services are given popular acronyms like 'SaaS' (software as a
service), 'PaaS' (platform as a service), 'IaaS' (infrastructure as
a service), 'HaaS' (hardware as a service) and finally 'EaaS'
(everything as a service) [28].

Cloud computing has well-known advantages and
challenges which we are not going to address here in general.
Instead, we discuss below the advantages and limitations of
cloud IDE’s, simpler development tools, and compilers.

Software development, and in particular its most important
component – compiling - can also be shifted from being
performed on a user’s physical computer into being done in
the cloud using available remote software resources. The result
of this approach is the so called cloud development
environments (most developed ones are referred to as cloud
IDEs). Some authors use the phrase online
environment/platform or online compiler – this is technically
correct but does not emphasize well enough the nature of a
cloud application – it is not simply contents available from the
internet but it is actually an integrated resource/service
available remotely, most often from a dynamic website. A
cloud development environment may include much more than
a single compiler – editors, libraries, online execution
facilities, user storage, etc.

For some reason lifting the code production into the cloud is
happening later than many other types of business and other
applications. Advancement in cloud compiling and cloud IDEs
is a comparatively recent development, an emerging
technology.

Some of the most interesting representatives of currently
available cloud development environments are [29]-[44].

They have different features. Some are simple and free;
many of the best ones are (as it should be expected) paid and

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 33

highly professional. Some sites
support many (e.g., 60) languages,
others are highly specialized and focus
on one particular programming
language or tool. Some allow for the
execution of the compiled object
program on the cloud server or even
for the deployment of the compiled
embedded code into a particular
device. Some IDEs also allow the
developed code to be deployed into
cloud platforms such as Windows
Azure, Amazon Cloud Services, or
Heroku.

Jimenez, founder of [32],
summarizes: “The online IDE is one
of the final frontiers of apps ported to
the web. I would like to be able to
develop from any computer or
operating system and have the same
experience without having to install
software or install anything.”

The following advantages of cloud
compilers may be identified (not all
sites possess all advantages).

It can be frustrating to have to
install volumes of software just to
write a little bit of code. Cloud IDEs
keep it simple by making all these
tools available in the cloud with the
click of a mouse. Some cloud IDEs
come equipped with almost every
tool, library, etc. that the code developer may ever need. With
an online IDE, one can get their projects up and running faster
than ever by skipping over tedious installations, and getting
right down to the programming of the project itself.

The local computer is not loaded with large-size software,
neither is computer time and other resources used for
compilation and other related tasks.

Cloud IDEs allow the code to be accessed and edited from
just about any computer worldwide, freeing the programmer
from the need to have constant access to a single computer
where all the tools and files are. Typically, cloud IDEs are
cross-browser and device-friendly. They have been tested
across all modern desktop and mobile web browsers like
Internet Explorer, Firefox, Chrome, and Safari. With support
for touchscreen interaction one could write code all from their
mobile or tablet device. It is possible to log into
one’s online IDE with a smartphone or tablet, edit the code,
test it and send it off to a client in a matter of minutes.

A developer is now able to program for a wide selection of
devices, without actually needing to go out and purchase them.
They can write for Mac, Windows, Linux or even an iPhone or
iPad without spending the money on buying one of each.

A cloud IDE can integrate features that can hardly be

achieved by a compiler installed on a local computer.
The remote server can be more powerful (in terms of speed,

storage and memory) than a local computer. The compiler,
editor and other components may be most advanced and
possess most useful and increasing the developer’s
productivity features. E.g., the cloud compiler may include
advanced code optimizing features, the editors may support
features such as autocomplete, syntax checking, multiple
cursors, keyboard shortcuts, etc. Live editing might be
supported where you can see real-time updates as you tweak
your code. Advanced tracing may be included, even simulating
the state of data. Powerful latest popular and non-standard
libraries may be made available. The software components on
the cloud-based site will be kept up-to-date at any time.

You can have a user account at the cloud IDE – a central
depository and a virtual console. You can forget about
Dropbox, USB sticks, external drives — with a cloud IDE
central depository your code is always accessible online. You
can access files directly from your folders on the IDE or from
Dropbox, Google Drive, Amazon S3, etc. You can keep a
revision history. You do not have to compile into local native
images or re-download pre-compiled native images.

An especially important feature is the possibility to easily
share your code and collaborate. Some cloud IDEs enable

Figure 5 The Bouquet cloud CNP compiler

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 34

developers around the world such as teammates or peers to
edit the same code and chat together in real time.

Some IDE’s allow the developer to integrate with many
other services that are important within the development life
cycle. Thus the user can work with the tools they know and
like, or even develop and integrate their own extensions.

Some sites offer for download local servers that can
automatically synch with the cloud workspace.

Of course, cloud IDE’s also have shortcuts and limitations –
some of them are inherent, other relate to the fact that the
technology is only emerging. One of the major issues is
security – both in relation to the user code, and in relation to
the integrity of the servers of the provider. Another issue is the
client-server communication, in particular during the editing.
Usage of graphical tools such as graphical editors or complex
graphical I/O in the developed programs might be a serious
challenge. Reaction to errors on the server and auto-safe
functionality are another issue to address.

E. Cloud IDE’s and learning systems
It is often claimed that online IDEs and compilers are a

perfect learning tool for students and other persons learning
programming with a particular programming language or tool.
Some of the systems mentioned in the previous subsection
have been actually created mainly as a learning tool.

A cloud IDE is easy to be used by students. They can create
their codes all from the comfort of their browsers. All the
heavy lifting has been done by the creators of the cloud IDE,
so students and learners can just focus on writing and learning
code. A cloud IDE is a natural sandbox for learning a
programming language. You can write code in the computer
lab and pick up where you left off at home. You can learn
programming by visualizing code execution, use advanced
editors, etc.

Many of the other assets which cloud IDEs demonstrate and
we discussed in the previous subsection, can be considered as
essential advantages from the viewpoint of learning systems.

It is also natural to integrate a cloud IDE/compiler within an
integrated learning system. In addition to the IDE, an
integrated learning environment may include reference guides,
online interactive tutorials, pdf and video tutorials, demos,
tests, problems, projects, other resources, etc.

Cloud IDE sites often include blogs and forums. You can
easily get help from the programming community as well as
from other students and learners.

In addition to teaching and learning, cloud IDEs may be
used in training courses and certification, recruitment,
programming contests, and similar activities.

IV. THE BOUQUET CNP CLOUD COMPILER

ollowing the modern trends in ‘lifting’ compilers into the
cloud described above, and first of all understanding the

substantial advantages of cloud IDEs, we have developed two
online CNP compilers. One of them is the subject of [45]. The

second one, called Bouquet compiler, is introduced below. It
can be accessed at [46].

The general view of the cloud compiler is shown in Fig. 5.
The data that can be seen are from the NDA application
described earlier in Sec. II D (where SpiderCNP was used).

The webpage includes three input and one output forms. An
input area exists for each of the three files that specify a CNP
application: SpiderUnit.pas for the primitives, SpiderNet.txt
for the textual representation of the CN, and the console file
project1.lpr. These files were discussed in Sec. III B.

In order to compile a CNP application we must enter (e.g.,
write or copy) the corresponding files into the three input
windows. We can also use the Browse button under each form.
Three exemplary applications are prepared in advance and
their files can be loaded with the click of a single button – the
Animals classification, Map traversal, and the Technical
example. These are the major examples used for introducing
CNP in [5]-[7],[9],[10], as well as in teaching CNP at
university.

When the three input files of an application are ready, the
user can activate the Compile button. This triggers the
following sequence on actions. A project folder with a
partially random name is created on the virtual server. The
randomness of the folder name allows multiple independent
users to work simultaneously with the cloud CNP
environment. A new CNP project is created in that folder. The
input files from the forms are uploaded into the project folder.
Then compilation/building is started by executing the file
SpiderCompilerCloud.exe on the virtual server. This file is a
cloud version of SpiderCompiler.exe (see Fig. 3). The
generated name of the project folder is given as an argument to
SpiderCompilerCloud.exe. In addition to the application
executable file, a second output file, CompResult.txt is
produced which contains details of the compilation and is most
useful in the case of errors. Finally, lazbuild.exe is run which
in absence of errors generates the CNP application executable
file project1.exe and saves it in the application folder in the
cloud. The user can now push the Download project1.exe
button and download the executable file of the CNP
application to their local computer. Execution of the
application file directly in the cloud is not offered due to the
security policy of the cloud services provider.

In case the CNP compiler or the Lazarus builder encounter
errors, corresponding messages will be displayed in the output
window. The text displayed is a filtered version of
CompResult.txt. After fixing the errors the user can initiate
compilation again.

Currently the Bouquet CNP environment is hosted using
Amazon Elastic Compute Cloud (Amazon EC2) web services
[47]. We found this advanced but still convenient and user-
friendly cloud services platform suitable and attractive.
However, this is a paid service and we will have to find an
alternative solution in the future.

The cloud CNP environment is installed on a remote virtual
server (rented from Amazon WS). Windows 2008 R2 server

F

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 35

with IIS7 is installed on the virtual server instance. The
application is coded in ASP.NET and C# using web forms
with code behind. Setting properly the server configuration
actually proved to be probably the most difficult part of
developing the CNP compiler as allowing an executable file
(the CNP cloud compiler) to run on the server was a hard job.

V. FUTURE DEVELOPMENT

s an emerging technology, today's online compilers are
certainly not without their limitations. Most online

compilers have yet to integrate reliable version control
capabilities which are necessary on production projects, as
well as to enhance their integrated auto-save functionality to
temporarily make up for lost ground, for example when the
internet connection is lost.

Bouquet is more than just a compiler, more precisely – it is
a simple development environment. It is, however, still not a
cloud IDE. It is missing many of the advanced features of
cloud IDEs discussed in Sec. III D and E. Development
continues.

The first most important feature that needs further research
and improvement would be the possibility to use the graphical
editor in the cloud version of the environment.

Another important task is to integrate the cloud environment
into an advanced learning system for studying and improving
skills in CNP. Such a system is currently under development.

REFERENCES

[1] N. Wirth, Algorithms + Data Structures = Programs. Prentice-Hall,
1975.

[2] R. Kowalski, “Algorithms = Logic + Control”, Comm. ACM, vol. 22,
1979, pp. 424-436.

[3] Z. Michalewicz, Generic Algorithms + Data Structures = Evolution
Programs. Springer, 1992.

[4] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Thomson,
2012.

[5] K. Kratchanov, T. Golemanov, and E. Golemanova, “Control Network
Programming”, in Proc. 6th IEEE/ACIS Conf. on Computer and
Information Science (ICIS 2007), July 2007, Melbourne, Australia, pp.
1012-1018.

[6] K. Kratchanov, E. Golemanova, and T. Golemanov, “Control Network
Programs and Their Execution”, in Proc. 8th WSEAS Int. Conf. on AI,
Knowledge Engineering & Data Bases (AIKED ’09), Feb 2009,
Cambridge, UK, pp. 417-422.

[7] K. Kratchanov, T. Golemanov, and E. Golemanova, “Control Network
Programming: Static Search Control with System Options”, in Proc. 8th

WSEAS Int. Conf. on AI, Knowledge Engineering & Data Bases
(AIKED ’09), Feb 2009, Cambridge, UK, pp. 423-428.

[8] K. Kratchanov, T. Golemanov, E. Golemanova, and T. Ercan, “Control
Network Programming with SPIDER: Dynamic Search Control”, in
Knowledge-Based and Intelligent Information and Engineering
Systems, Proc. 14th Intl Conf. (KES 2010), Cardiff, UK, Sep 2010, Part
II, Lecture Notes in Computer Science (Lecture Notes in Artificial
Intelligence), vol. 6277, Springer, 2010, pp. 253-262.

[9] K. Kratchanov, E. Golemanova, T. Golemanov, and Y. Gökçen,
“Implementing Search Strategies in Winspider I: Introduction to Control
Network Programming and Search” in Knowledge-Based Automated
Software Engineering, I. Stanev, and K. Grigorova, Eds., Cambridge
Scholars Publ., 2012, pp. 87-113.

[10] K. Kratchanov, E. Golemanova, and T .Golemanov, “Control Network
Programming Illustrated: Solving Problems With Inherent Graph-Like
Structure”, in Proc. 7th IEEE/ACIS Int. Conf. on Computer and

Information Science (ICIS 2008), May 2008, Portland, Oregon, USA,
pp. 453-459.

[11] K. Kratchanov, E. Golemanova, T. Golemanov, and T. Ercan, “Non-
Procedural Implementation of Local Heuristic Search in Control
Network Programming”, in: Knowledge-Based and Intelligent
Information and Engineering Systems, Proc. 14th Intl Conf. (KES
2010), Cardiff, UK, Sep 2010, Part II, Lecture Notes in Computer
Science (Lecture Notes in Artificial Intelligence), vol. 6277, Springer,
2010, pp. 263-272.

[12] K. Kratchanov, E. Golemanova, T. Golemanov, and Y .Gökçen,
“Implementing Search Strategies in Winspider II: Declarative,
Procedural, and Hybrid Approaches”, in Knowledge-Based Automated
Software Engineering, I. Stanev and K. Grigorova, Eds., Cambridge
Scholars Publ., 2012, pp. 115-135.

[13] E. Golemanova, “Declarative Implementations of Search Strategies for
Solving CSPs in Control Network Programming”. WSEAS Transactions
on Computers, vol. 12, No.4, 2013, pp. 174-183.

[14] T. Golemanov, “SpiderCNP - an Integrated Environment for Visual
Control Network Programming”. University of Ruse Annual, vol. 51,
2012, ser. 3.2, pp. 123-127 (in Bulgarian).

[15] http://www.embarcadero.com/products/delphi
[16] http://www.lazarus.freepascal.org/
[17] K. Kratchanov, E. Golemanova, T. Golemanov, and B. Külahçıoğlu,

“Using Control Network Programming in Teaching Nondeterminism”,
in Proc. 13th Int. Conf. on Computer Systems and Technologies
(CompSysTech’12), Ruse, B. Rachev and A. Smrikarov, Eds., ACM
Press, New York, 2012, pp. 391-398. Also, ACM Digital Library,
http://dl.acm.org/citation.cfm?id=2383333&dl=ACM&coll=DL&CFID
=169141915&CFTOKEN=28327026.

[18] K. Kratchanov, E. Golemanova, T. Golemanov, and B. Külahçıoğlu,
“Using Control Network Programming in Teaching Randomization”, in
Int. Conf. Electronics, Information and Communication Engineering,
Macau (EICE 2012), ASME, 2012, pp. 67-71. Also, in ASME Digital
Library: http://dx.doi.org/10.1115/1.859971.paper14.

[19] http://controlnetworkprogramming.com.
[20] http://msdn.microsoft.com/en-us/library/vstudio/a2c7tshk(v=vs.100)

.aspx.
[21] http://msdn.microsoft.com/en-us/library/a2c7tshk.aspx.
[22] http://forums.codeguru.com/showthread.php?369066-NET-Framework-

IL-What-is-Language-Interoperability.
[23] M. B. Enevoldsen, Object Oriented Language Interoperability

(Master's Thesis), Uni. Of Aarhus, 2004 (available at http://users-
cs.au.dk/beta/eclipse/mbeOOLI.pdf.

[24] http://en.wikipedia.org/wiki/Language_interoperability.
[25] http://en.wikipedia.org/wiki/List_of_CLI_languages.
[26] http://en.wikipedia.org/wiki/List_of_JVM_languages.
[27] http://www.fastcompany.com/3001010/cloud-computing.
[28] http://en.wikipedia.org/wiki/Cloud_computing.
[29] https://c9.io/.
[30] http://www.compileonline.com/.
[31] https://compilr.com/.
[32] https://shiftedit.net/.
[33] http://codepad.org/.
[34] http://pythontutor.com/.
[35] http://ideone.com/.
[36] http://www.onlinecompiler.net/.
[37] http://www.tutorialspoint.com/.
[38] http://www.w3schools.com/.
[39] http://codebender.cc/.
[40] http://cloudcompiling.com/.
[41] http://mbed.org/.
[42] https://ludei.com/.
[43] http://www.silverlightshow.net/items/Windows-Phone-8-Compile-in-

the-Cloud.aspx.
[44] http://www.codeproject.com/Articles/199537/What-are-Online-

Compilers-Online-IDE-s.
[45] http://controlnetworkprogramming.com/cloud.html.
[46] T. Golemanov, K. Kratchanov, and E. Golemanova, “SpiderCloud – a

Cloud-Based Control Network Programming Environment”, to appear
in Univ. of Ruse Annual, 2013 (in Bulgarian).

[47] http://aws.amazon.com/ec2/.

A

Proceedings of the 2014 International Conference on Educational Technologies and Education

ISBN: 978-1-61804-218-7 36

