RECENT ADVANCES in POWER SYSTEMS, ENERGY, ENVIRONMENT

Interlaken, Switzerland
February 22-24, 2014
RECENT ADVANCES in POWER SYSTEMS, ENERGY, ENVIRONMENT

Interlaken, Switzerland
February 22-24, 2014
Organizing Committee

General Chairs (EDITORS)

- Professor Aida Bulucea,
 University of Craiova,
 Craiova, Romania
- Professor Eduardo Mario Dias
 Electrical Energy and Automation
 Engineering Department /
 Escola Politecnica da Universidade de Sao Paulo
 Brazil

Senior Program Chair

- Lecturer Dr. George Tsekouras
 Hellenic Naval Academy, Greece

Program Chairs

- Professor Germano Lambert-Torres,
 Itajuba, MG,
 Brazil
- Professor Claudio Talarico,
 Gonzaga University, Spokane,
 WA, USA
- Professor Zhuo Li,
 Beijing University Of Technology,
 Beijing, China

Tutorials Chair

- Professor Pradip Majumdar
 Department of Mechanical Engineering
 Northern Illinois University
 Dekalb, Illinois, USA

Special Session Chair

- Professor Shuliang Li,
 The University of Westminster,
 London, UK
Workshops Chair
• Prof. Frangiskos V. Topalis,
 National Technical University of Athens,
 Greece

Local Organizing Chair
• Professor Jan Awrejcewicz,
 Technical University of Lodz,
 Lodz, Poland

Publication Chair
• Professor Vincenzo Niola
 Departement of Mechanical Engineering for Energetics
 University of Naples "Federico II"
 Naples, Italy

Publicity Committee
• Professor Fotios Rigas,
 School of Chemical Engineering,
 National Technical University of Athens,
 Greece
• Professor Myriam Lazard
 Institut Superieur d’ Ingenierie de la Conception
 Saint Die, France

International Liaisons
• Prof. Jiri Klima,
 Technical faculty of CZU in Prague,
 Czech Repulic
• Prof. P. Pardalos, Department of
 Industrial and Systems Engineering,
 University of Florida, USA
• Professor S. Sohrab,
 Northwestern University, IL,
 USA

Steering Committee
• Professor Aida Bulucea, University of Craiova, Romania
• Professor Zoran Bojkovic, Univ. of Belgrade, Serbia
• Professor Claudio Talarico, Gonzaga University, Spokane, USA
• Professor Imre Rudas, Obuda University, Budapest, Hungary
Program Committee

Prof. Germano Lambert-Torres, Itajuba, MG, Brazil
Prof. Jiri Klima, Technical faculty of CZU in Prague, Czech Republic
Prof. Goricanec Darko, University of Maribor, Maribor, Slovenia
Prof. Ze Santos, Rua A, 119. Conj. Jardim Costa do Sol, Brazil
Prof. Ehab Bayoumi, Chalmers University of Technology, Goteborg, Sweden
Prof. Luis Tavares Rua, Cmte Guyubricht, 119. Conj. Jardim Costa do Sol. Atalaia, Brazil
Prof. Igor Kuzle, Faculty of electrical engineering and computing, Zagreb, Croatia
Prof. Nikolay Djagarov, Technical University of Varna, Bulgaria
Prof. Darko Goricanec, University of Maribor, Maribor, Slovenia
Prof. Maria do Rosario Alves Calado, University of Beira Interior, Portugal
Prof. Gheorghe-Daniel Andreescu, "Politehnica" University of Timisoara, Romania
Prof. Patricia Jota, Av. Amazonas 7675, BH, MG, Brazil
Prof. Frangiskos V. Topalis, National Technical University of Athens, Greece
Prof. Bharat Doshi, John Hopkins University, Mayrland, USA
Prof. Gang Yao, University of Illinois at Urbana - Champaign, USA
Prof. Lu Peng, Lusian State University, Baton Rouge, LA, USA
Prof. Pavel Loskot, Swansea University, UKProf. N. Afgan, UNESCO Chair Holder, Instituto Superior Tecnico, Lisbon, Portugal
Prof. F. Akgun, Gebze Kocaeli, Turkey
Prof. Y. Baudoin, Royal Military Academy, Brussels, Belgium
Prof. M. Dasenakis, Dept. of Chemistry, University of Athens, Greece.
Prof. G. E. Froudakis, University of Crete, Herakleion, Greece
Prof. R.S.R. Gorla, Cleveland State University, Cleveland, Ohio, USA
Prof. M. Heiermann, Dr., Department of Technology Assessment and Substance Flow, Potsdam, Germany
Prof. C. Helmis, University of Athens, Athens, Greece
Prof. I. Kazachkov, National Technical University of Ukraine (NTUU KPI), Kyiv, Ukraine
Prof. A. M.A. Kazim, UAE University, United Arab Emirates
Prof. G. Kiriakidis, University of Crete, Herakleion, Greece
Prof. D. Kotzias, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Italy
Prof. A. Kurbatskiy, Novosibirsk State University, Department of Physics, Russia
Prof. S. Linderoth, Head of Research on Fuel Cells and Materials Chemistry at Riso National Laboratory. Denmark
Prof. P. Lunghi, Dipartimento di Ingegneria Industriale, University degli Studi di Perugia, Italy
Prof. C. Makris, A, Department of Computer Engineering and Informatics., University of Patras, Greece
Prof. J. Van Mierlo, Department of Electrotechnical Engineering and Energy Technology (ETEC) Vrije Universiteit Brussel, Belgium
Prof. S. Ozdogan, Marmara University, Goztepe Campus, Kuyubasi, Kadikoy, Istanbul, Turkey
Prof. P. Pardalos, Department of Industrial and Systems Engineering, University of Florida, USA
Prof. I. Poulios, Dept. of Chemistry, Aristotle University of Thessaloniki, Greece.
Prof. F. Rigas, School of Chemical Engineering, National Technical University of Athens, Greece.
Prof. S. Sohrab, Northwestern University, IL, USA
Prof. A. Stamou, National Technical University of Athens, Greece
Prof. A. I. Zouboulis, Dept. of Chemistry, Aristotle University of Thessaloniki, Greece.
Prof. Z. A. Vale, ISEP - Instituto Superior de Engenharia do Porto Rua António Bernardino de Almeida, Portugal
Additional Reviewers

Matthias Buyle
Artesis Hogeschool Antwerpen, Belgium

Lesley Farmer
California State University Long Beach, CA, USA

Deolinda Rasteiro
Coimbra Institute of Engineering, Portugal

Sorinel Oprisan
College of Charleston, CA, USA

Santoso Wibowo
CQ University, Australia

Yamagishi Hiromitsu
Ehime University, Japan

Kei Eguchi
Fukuoka Institute of Technology, Japan

Shinji Osada
Gifu University School of Medicine, Japan

Tetsuya Yoshida
Hokkaido University, Japan

Xiang Bai
Huazhong University of Science and Technology, China

Philippe Dondon
Institut polytechnique de Bordeaux, France

José Carlos Metrôlho
Instituto Politecnico de Castelo Branco, Portugal

João Bastos
Instituto Superior de Engenharia do Porto, Portugal

Takuya Yamano
Kanagawa University, Japan

Hessam Ghasemnejad
Kingston University London, UK

Konstantin Volkov
Kingston University London, UK

Eleazar Jimenez Serrano
Kyushu University, Japan

Jon Burley
Michigan State University, MI, USA

Manoj K. Jha
Morgan State University in Baltimore, USA

Frederic Kuznik
National Institute of Applied Sciences, Lyon, France

Stavros Ponis
National Technical University of Athens, Greece

Ole Christian Boe
Norwegian Military Academy, Norway

Imre Rudas
Obuda University, Budapest, Hungary

Masaji Tanaka
Okayama University of Science, Japan

Francesco Rotondo
Polytechnic of Bari University, Italy

George Barreto
Pontificia Universidad Javeriana, Colombia

Dmitrijs Serduks
Riga Technical University, Latvia

Andrey Dmitriev
Russian Academy of Sciences, Russia

Tetsuya Shimamura
Saitama University, Japan

Francesco Zirilli
Sapienza Universita di Roma, Italy

Minhui Yan
Shanghai Maritime University, China

Valeri Mladenov
Technical University of Sofia, Bulgaria

Jose Flores
The University of South Dakota, SD, USA

James Vance
The University of Virginia's College at Wise, VA, USA

Genqi Xu
Tianjin University, China

Zhong-Jie Han
Tianjin University, China

Kazuhiko Natori
Toho University, Japan

Moran Wang
Tsinghua University, China

M. Javed Khan
Tuskegee University, AL, USA

Bazil Taha Ahmed
Universidad Autonoma de Madrid, Spain

Alejandro Fuentes-Penna
Universidad Autónoma del Estado de Hidalgo, Mexico

Miguel Carriegos
Universidad de Leon, Spain

Angel F. Tenorio
Universidad Pablo de Olavide, Spain

Abelha Antonio
Universidade do Minho, Portugal
Table of Contents

Plenary Lecture 1: Discrete Lyapunov Controllers for an Actuator in Camless Engines
Paolo Mercorelli
13

Plenary Lecture 2: EMG-Analysis for Intelligent Robotic based Rehabilitation
Thomas Schrader
14

Plenary Lecture 3: Atmospheric Boundary Layer Effects on Aerodynamics of NREL Phase VI Windturbine in Parked Condition
Mohammad Moshfeghi
15

Plenary Lecture 4: Laminar and Turbulent Simulations of Several TVD Schemes in Two-Dimensions
Edisson S. G. Maciel
16

Plenary Lecture 5: The Flocking Based and GPU Accelerated Internet Traffic Classification
Zhiguang Xu
18

Plenary Lecture 6: The State of Civil Political Culture among Youth: Goals and Results of Education
Irina Dolinina
19

Modelling and Cost Estimation of Stirling Engine for CHP Applications
Ana C. Ferreira, Ricardo F. Oliveira, Manuel L. Nunes, Luís B. Martins, Senhorinha F. Teixeira
21

Energy-Economical Efficiency of Building Heating and Cooling by Heat Pump Systems
Ioan Sarbu, Daniel Dan, Calin Sebarchievici
30

Problems of Fast Frequency Variation Control in Interconnected Power Systems
V. Chuvychin, A. Sauhats, R. Petrichenko, G. Bochkarjova
38

A Robust Stabilizer H₂-PSS Applied to Power System (Application under GUI/MATLAB)
Ghouraf Djamel Eddine, Naceri Abdellatif
44

The Stochastic Approach for Determination of Transmission Line Wire Cross Section
Lubov Petrichenko, Antans Sauhats, Svetlana Guseva, Svetlana Berjozkina, Viktoria Neimane
50

Multi-Objective Optimization using NDSPSO with Cost, Emission and Loss Objectives
S. Sivanagaraju, Ch. V. Suresh, K. Srikumar, A. V. Naresh Babu
57

Study of the Voltage Stability of Distribution Network Connected Induction Machines
Trinh Trong Chuong, Truong Viet Anh
63

Genetic-based Neuro-Fuzzy Design of FACTS Controller in Power System
Sattar Jaber Al-Isawi
69
The Efficiency of the Active Power Filters in High Power DC Drive Systems
B. Miedzinski, A. Kozlowski, J. Wosik, M. Kalus

A Comparative Analysis of UPQC-P, UPQC-Q and UPQC-VAmin - A Simulation Study
Yash Pal, A. Swarup

A MULTISCALE-based Model for Composite Materials with Embedded PZT Filaments
Tarek M. Hatem, Mohamed Abdel-Meguid

An Approach for Optimal Placement, Rating and Investment Cost Recovery of a TCSC in Double Auction Power Market
Prashant Kumar Tiwari, Yog Raj Sood

Influence of Environmental Parameters on Spatial Distribution of Pollen Grains in Columbia Basin
Peter Šiška, Štefan Poláčik

Android Application Front-end for an Energy Brokerage Agent
Christos Petsos, Kostas Kalogirou, Evangelos Bekiaris

Distribution System Analysis with Time Varying Winter Load and Growth
V. V. S. N. Murty, Ashwani Kumar

Assessment of Restructured Indian Power Sector: Availability, Demand and Shortage
Yog Raj Sood, Rajnish Shrivastava, Naveen Kumar Sharma

A Robust AVR-PSS Synthesis using Genetic Algorithms (Application under GUI/MATLAB)
Ghouraf Djamel Eddine, Kabi Wahiba, Naceri Abdellatif, Horch Abdessamed

Energy Efficiency Potential Assessment and Ranking for Schools in Teresina City

Power Management System in Electro-Solar Vehicle
Hemza Saidi, Abdelhamid Mudoun

Optimal DFIG Location and Impact of Load Model in Pool Electricity Market
Ashwani Kumar, Manish Kumar, K. S. Sandhu

MODELING of Dislocation Evolution in Multi-Junction based Photovoltaic Devices
Tarek M. Hatem, Mohamed T. Elewa

On an Accurate Estimation of HV Insulators Contamination: Combined Image Statistical Features and Neural Networks Approach
Luqman Maraaba, Hussain Al-Duwaish, Zakariya Al-Hamouz
Intelligent Control of DFIG based Variable Speed Wind Turbine System using Artificial Neural Network
Sathans, Jitender Rohilla

Daylighting Rules of Thumb and a Comparison of Different Floor Depth under Overcast and Intermediate Sky Without Sun
M. F. M. A. Sadin, N. L. N. Ibrahim, K. Sopian, E. Salleh

Ecological Refrigerants used in Refrigeration, Airconditioning and Heat Pump Systems
Ioan Sarbu, Emilian Stefan Valea

Ordinal Optimization Approach to Power System Objectives in the Presence of SVC and TCSC
K. Srikumar, Ch. V. Suresh, S. Sivanagaraju, V. Ganesh

Removal of Anionic Dyes from Aqueous Solutions using Local Activated Kaolins as Adsorbers
F. Z. El Berrichi, S. Zen

Plasma-Assisted Ignition and Combustion of Pulverized Coal at Thermal Power Plants of Kazakhstan
V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

A Novel STATCOM Wide Area Feedback Controller for Improving Stability in Multimachine System
Aman Ganesh, Ratna Dahiya, G. K. Singh

Sliding Mode Control of Chopper Connecting Wind Turbine with Grid based on Synchronous Generator
Ahmed Tahour, Abdel Ghani Aissaoui, Mohamed Abid, Najib Essounbouli, Frederic Nollet

The Fundamental Problems of Transmission of Data and Voice by Using PLC via High Voltage Lines
Javad Abdi, Azam FamilKhalili

Economic Analysis of Wind Turbine Using New Cost Model
Sahil Bajaj, Kanwarjit Singh Sandhu

Comparative Germination Studies in Mature Seeds of Haloxylon Salicornicum
L. Almulla

Applying GIS to Assessment of Ecosystems in the Landscape Level Case Study from the Czech Republic
Vilém Pechanec, Ivo Machar, Aleš Vávra, Helena Kiliánová

Controlled Output of Wind Turbine during Wind Variations
Navjot Singh Sandhu, Shelly Vadhera, Kanwarjit Singh Sandhu
Plenary Lecture 1

Discrete Lyapunov Controllers for an Actuator in Camless Engines

Professor Paolo Mercorelli
Leuphana University of Lueneburg
Germany
E-mail: mercorelli@uni.leuphana.de

Abstract: This paper deals with a hybrid actuator composed by a piezo and a hydraulic part controlled using two cascade Lyapunov controllers for camless engine motor applications. The idea is to use the advantages of both, the high precision of the piezo and the force of the hydraulic part. In fact, piezoelectric actuators (PEAs) are commonly used for precision positionings, despite PEAs present nonlinearities, such as hysteresis, saturations, and creep. In the control problem such nonlinearities must be taken into account. In this paper the Preisach dynamic model with the above mentioned nonlinearities is considered together with cascade controllers which are Lyapunov based. The sampled control laws are derived using the well known Backward Euler method. An analysis of the Backward and Forward Euler method is also presented. In particular, the hysteresis effect is considered and a model with a switching function is used also for the controller design. Simulations with real data are shown.

Brief Biography of the Speaker: Paolo Mercorelli received the (Laurea) M.S. degree in Electronic Engineering from the University of Florence, Florence, Italy, in 1992, and the Ph.D. degree in Systems Engineering from the University of Bologna, Bologna, Italy, in 1998. In 1997, he was a Visiting Researcher for one year in the Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, USA. From 1998 to 2001, he was a Postdoctoral Researcher with Asea Brown Boveri, Heidelberg, Germany. From 2002 to 2005, he was a Senior Researcher with the Institute of Automation and Informatics, Wernigerode, Germany, where he was the Leader of the Control Group. From 2005 to 2011, he was an Associate Professor of Process Informatics with Ostfalia University of Applied Sciences, Wolfsburg, Germany. In 2010 he received the call from the German University in Cairo (Egypt) for a Full Professorship (Chair) in Mechatronics which he declined. In 2011 he was a Visiting Professor at Villanova University, Philadelphia, USA. Since 2012 he has been a Full Professor (Chair) of Control and Drive Systems at the Institute of Product and Process Innovation, Leuphana University of Lueneburg, Lueneburg, Germany.
Research interests: His current research interests include mechatronics, automatic control, signal processing, wavelets; sensorless control; Kalman filter, camless control, knock control, lambda control, robotics.

The full paper of this lecture can be found on page 19 of the Proceedings of the 2014 International Conference on Circuits, Systems and Control, as well as in the CD-ROM proceedings.
Plenary Lecture 2

EMG-Analysis for Intelligent Robotic based Rehabilitation

Professor Thomas Schrader
University of Applied Sciences Brandenburg
Germany
E-mail: thomas.schrader@computer.org

Abstract: The establishment of wireless sensor network (WSN) technology in physiotherapy and rehabilitation is a clue for improvement of the therapeutic process, quality assessment and development of supporting technologies such as robotics. Especially for complex therapeutic interventions such as sensorimotor training, a continuous monitoring during the therapy as well as for all sessions would be quite useful. For the usage of robotic support in rehabilitation various input information about the status of patient and his/her activity status of various muscles have to be detected and evaluated. The critical point for robotic intervention is the response time. Under physiotherapeutic and rehabilitation conditions, the robotic device should be able to react differently and in various patterns. A complex analysis procedure of input signals such as EMG is essential to ensure an effective response of the robot. However sensor nodes in a wireless (body) area network have limited resources for calculating and storage processes. A stepwise procedure with distributed analysis tasks is proposed. Electromyogram (EMG) measurements of eight muscles were collected and evaluated in an experimental setting of a sensorimotor training using different types of balance boards. Fast and easy methods for detection of activity and rest states based on time domain analysis using low pass IIR filter and dynamic threshold adaption. These procedures can be done on the sensor nodes themselves or special calculation nodes in the network. More advanced methods in frequency domain or analysis of dynamical system behavior request much more system power in calculation as well as storage. These tasks could be done on the level of mobile devices such as mobile phones or tablet computers. A broad range of resources can be provided by cloud/internet. Such level based organization of analysis and system control can be compared with biological systems such as human nervous system.
Plenary Lecture 3

Atmospheric Boundary Layer Effects on Aerodynamics of NREL Phase VI Windturbine in Parked Condition

Professor Mohammad Moshfeghi
Sogang University, South Korea
E-mail: mmoshfeghi@sogang.ac.kr

Abstract: In a natural condition, the wind is affected by the groundcover and the type of terrains which impose vertical velocity profile to the wind. This wind profile, which is also called atmospheric boundary layer (ABL), dramatically influences the aerodynamic behaviors and loadings of horizontalaxis wind turbines. However, for the sake of simplicity, many numerical simulations only deal with the uniform wind speed. To consider the effects of the ABL, numerical simulations of the two-bladed NREL Phase VI wind turbines aerodynamic at the parked condition are conducted under both uniform and ABL. The Deaves-Harris (DH)model is applied to the ABL. The wind turbine blades are kept at the six o’clock position and are considered at two different pitch angles. The aerodynamic forces and moments of the uniform the DH model are compared. The results show that the pitch angle at which the HAWT is parked plays an important role on the blade loading. Also it is observed that for the fully separated conditions, the Down-blade and the blade in the uniform wind are under approximately similar aerodynamic loadings, while the Up-blade encounters more aerodynamic loads, which is even noticeable value for this small wind turbine. This in turn means that for an appropriate and exact design, effects of ABL should be considered with more care.

Brief Biography of the Speaker: Dr. Mohammad Moshfeghi works in Multi-phenomena CFD Engineerng Research Center (ERC) Sogang University, Seoul, South Korea. He is also Lecturer in Qazvin Azad University. He has a registered patent: "Split-Blade For Horizontal Axis Wind Turbines" (Inventors: Mohammad Moshfeghi, Nahmkeon Hur).
Plenary Lecture 4

Laminar and Turbulent Simulations of Several TVD Schemes in Two-Dimensions

Professor Edisson S. G. Maciel
Federal University of Great Dourados, Brazil
E-mail: edisavio@edissonsavio.eng.br

Abstract: This work, first part of this study, describes five numerical tools to perform perfect gas simulations of the laminar and turbulent viscous flow in two-dimensions. The Van Leer, Harten, Frink, Parikh and Pirzadeh, Liou and Steffen Jr. and Radespiel and Kroll schemes, in their first- and second-order versions, are implemented to accomplish the numerical simulations. The Navier-Stokes equations, on a finite volume context and employing structured spatial discretization, are applied to solve the supersonic flow along a ramp in two-dimensions. Three turbulence models are applied to close the system, namely: Cebeci and Smith, Baldwin and Lomax and Sparlat and Allmaras. On the one hand, the second-order version of the Van Leer, Frink, Parikh and Pirzadeh, Liou and Steffen Jr., and Radespiel and Kroll schemes is obtained from a “MUSCL” extrapolation procedure, whereas on the other hand, the second order version of the Harten scheme is obtained from the modified flux function approach. The convergence process is accelerated to the steady state condition through a spatially variable time step procedure, which has proved effective gains in terms of computational acceleration (see Maciel). The results have shown that, with the exception of the Harten scheme, all other schemes have yielded the best result in terms of the prediction of the shock angle at the ramp. Moreover, the wall pressure distribution is also better predicted by the Van Leer scheme. This work treats the laminar first- and second-order and the Cebeci and Smith second-order results obtained by the five schemes.

Brief Biography of the Speaker: Professor Edisson Sávio de Góes Maciel was born in Recife, Pernambuco, Brazil in 1969, February, 25. He studied in Pernambuco until obtains his Master degree in Thermal Engineering, in 1996, August. With the desire of study aerospace and aeronautical problems using numerical methods as tools, he obtains his Doctor degree in Aeronautical Engineering, in 2002, December, in ITA and his Post-Doctor degree in Aerospace Engineering, in 2009, July, also in ITA. He is currently Professor at UFGD (Federal University of Great Dourados) – Mato Grosso do Sul – Brasil. He is author in 47 papers in international journals, 2 books, 67 papers in international conference proceedings. His research interests includes a) Applications of the Euler equations to solve inviscid perfect gas 2D and 3D flows (Structured and unstructured discretizations) b) Applications of the Navier-Stokes equations to solve viscous perfect gas 2D and 3D flows (Structured and unstructured discretizations) c) Applications of the Euler and Navier-Stokes to solve magnetogas dynamics flows 2D and 3D; (Structured and unstructured discretizations) d) Applications of algebraic, one-equation, and two-equations turbulence models to predict turbulent effects in viscous 2D flows (Structured and unstructured discretizations), e) Study of artificial dissipation models to centered schemes
in 2D and 3D spaces (Structured and unstructured discretizations) f)Applications of the Euler and Navier-Stokes equations to solve reentry flows in the Earth atmosphere and entry flows in Mars atmosphere in 2D and 3D (Structured and unstructured discretizations).

The full paper of this lecture can be found on page 79 of the Proceedings of the 2014 International Conference on Mechanics, Fluid Mechanics, Heat and Mass Transfer, as well as in the CD-ROM proceedings.
Plenary Lecture 5

The Flocking Based and GPU Accelerated Internet Traffic Classification

Professor Zhiguang Xu
Valdosta State University
USA
E-mail: zxu@valdosta.edu

Abstract: Mainstream attentions have been brought to the issue of Internet traffic classification due to its political, economic, and legal impacts on appropriate use, pricing, and management of the Internet. Nowadays, both the research and operational communities prefer to classify network traffic through approaches that are based on the statistics of traffic flow features due to their high accuracy and improved robustness. However, these approaches are faced with two main challenges: identify key flow features that capture fundamental characteristics of different types of traffic in an unsupervised way; and complete the task of traffic classification with acceptable time and space costs. In this paper, we address these challenges using a biologically inspired computational model that imitates the flocking behavior of social animals (e.g. birds) and implement it in the form of parallel programs on the Graphics Processing Unit (GPU) based platform of CUDA from NVIDIA™. The experimental results demonstrate that our flocking model accelerated by GPU can not only effectively select and prioritize key flow features to classify both well-known and unseen network traffic into different categories, but also get the job done significantly faster than its traditional CPU-based counterparts due to the high magnitude of parallelism that it exhibits.

Brief Biography of the Speaker: Prof. Zhiguang Xu received his Ph.D. in Computer Science from University of Central Florida, FL, USA in 2001. He is currently Professor of Computer Science in the Department of Math and Computer Science at Valdosta State University, GA, USA. His research and teaching interests include Computer Networking, Artificial Intelligence, Parallel and Distributed Computing, and Computer Science Education. Professor Xu is author or co-author of more than 25 published papers in refereed journals or conference proceedings. He has been awarded many grants from both academic and industrial entities. He is actively serving as committee member, reviewer, or lecturer of many national and international conferences and organizations.

The full paper of this lecture can be found on page 88 of the Proceedings of the 2014 International Conference on Mathematical Methods, Mathematical Models and Simulation in Science and Engineering, as well as in the CD-ROM proceedings.
Plenary Lecture 6

The State of Civil Political Culture among Youth: Goals and Results of Education

Professor Irina Dolinina
Perm National Research University, Russia
E-mail: irina_edu@mail.ru

Abstract: Political culture is viewed as a phenomenon of social reality. Attitudes toward it (its meaning or significance) are historically conditioned. This research studies enduring presuppositions about (dispositions toward) society and the state, and how these are reflected in conscious stereotypes and cognitive structures among young people within the sociocultural mechanisms that form and modify the basic characteristics of political culture.

Brief Biography of the Speaker: Prof. Irina Dolinina was born in 1960, in Perm, Russia. She is Team Leader in the Research Project «Formation of the political culture of the students», and Professor of Philosophy and Law of the Faculty of Humanities, Perm National Research Technical University since 2012. She has received a lot of honors and awards (2012 - Diploma of the All-Russian Roswitha fund national education and the Education Committee of the State Duma of the Federal Assembly of the Russian Federation. 2013 - Diploma of the All-Russian Roswitha fund national education and the Education Committee of the State Duma of the Federal Assembly of the Russian Federation. Diploma-Russian contest "Best Science Book in the humanitarian sphere - 2013). Prof. Dolinina has various professional organizations and activities. (Expert on the legislative activities of the Council of Federation of Russia. Board member of the Interregional Association "For civic education." Director of the Research Centre of the political culture).

The full paper of this lecture can be found on page 57 of the Proceedings of the 2014 International Conference on Educational Technologies and Education, as well as in the CD-ROM proceedings.