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Abstract

In this paper we study a version of Ramsey’s discrete time
Growth Model where the evolution of Labor through time
is stochastic. Taking advantage of recent theoretical results
in the field of Markov Decision Processes, a first set of con-
ditions on the model are established that guarantee a long-
term stable behaviour of the underlying Markov chain.
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1 Introduction

Ramsey’s seminal work on economic growth has been ex-
tended in many ways, but, to the best of our knowledge, the
study of a random discrete time version is still in its youth
(see [18]) and provides an opportunity for a fruitful inter-
action between economists and mathematicians that should
lead to better simulations and consequently, to a better un-
derstanding of the effects of the random deviations in the
growth of an economy and its impact on the population. In
this paper a first random model is proposed where the pop-
ulation, i.e., the Labor (force) grows in a stochastic manner.

The structure of the paper is simple: the model is spelled
out, as well as a set underlying Assumptions, and its long-
term stability is established. Due to space constraints, for
the technical proofs the reader is referred to a theoretical
paper ([20]) where a general framework is built.
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2 Ramsey Growth Model driven by
Stochastic Labor

Our model considers a random number of consumers, the
population or Labor Lt, whose growth is Markovian:

Lt+1 = Ltηt, (1)
L0 is known

where Lt denotes the number of consumers at time t,
t = 0, 1, ..., and {ηt} is a sequence of independent and
identically distributed (iid) random variables, such that
P (ηt > 0) = 1.

Remark 2.1. In the literature of economic growth models
is usual to assume that the number of consumers grow very
slowly in time (see [12] and [18]). Observe that the model
presented in this paper is a first step in an effort to weaken
that constraint of the model.

The production function for the economy is given by

Yt = F (Kt, Lt),

K0 is known,

i.e. the production Yt is a function of capital,Kt, and labor,
Lt, where the production function, F , is a homogeneous
function of degree one. The output must be split between
consumptions Ct = ctLt and the gross investment It, i.e.

Ct + It = Yt. (2)

Let δ ∈ (0, 1) be the depreciation rate of capital. Then the
evolution equation for capital is given by:

Kt+1 = (1− δ)Kt + It. (3)

Substituting (3) in (2), it is obtained,

Ct − (1− δ)Kt +Kt+1 = Yt. (4)

In the usual way, all variables can normalized into per
capita terms, namely, yt := Yt/Lt and xt := Kt/Lt. Then
(4) can be expressed in the following way:

ct − (1− δ)xt +Kt+1/Lt = yt = F (xt, 1).
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Now, using (1) in the previous relation, it is obtained

xt+1 = ξt(F (xt, 1) + (1− δ)xt − ct),

t = 0, 1, 2, ..., where ξt := (ηt)
−1. Define h(x) :=

F (x, 1) + (1 − δ)x, x ∈ X := [0,∞), h henceforth to
be identified as the production function.

The transition law of the system is given by

xt+1 = ξt(h(xt)− ct),

where ct ∈ [0, h(xt)] and {ξt} is a sequence of iid random
variables, with x0 = x known.
Let ξ a generic element of {ξt}. Suppose that ξ has a den-
sity ∆, which is strictly positive and continuous second
derivative, i.e, ∆ ∈ C2((0,∞)). Furthermore, suppose that
E[ξp] andE[ξ−1] exist and both are finite, where p > 1 and
E denotes the expectation operator. Let A be defined by

A = ∪x∈X [0, h(x)] .

A is called control set.

Definition 2.2. A plan or consumption sequence is a se-
quence π = {πt}∞t=0 of stochastic kernel πt on the control
set A given the history

ht = (x1, c1, ..., xt−1, ct−1, xt), (5)

for each t = 0, 1, ... and satisfying the constraints
πt(A(xt)|ht) = 1, t = 0, 1, · · · . The set of all plans will
be denoted by Π.

Let F be the set of all measurable functions f : X → A,
such that f(x) ∈ A(x) for every x ∈ X . A plan π ∈ Π
is stationary if there exists f ∈ F such that, under π, the
control f(x) is applied at each time t = 0, 1, . . .. In this
case, a stationary plan is denoted by f .

Given an initial capital x = x0 ∈ X and a plan π ∈ Π
then Pπx denotes the probability measure on the canonical
space (Ω,=), where Ω := (X ×A)

∞ and = is their corre-
sponding σ-algebra of Borel on Ω, where the performance
index used to evaluate the quality of the plan π is deter-
mined by

v(π, x) = Eπx

[ ∞∑
t=0

αtU(ct)

]
where U : [0,∞) → R is a measurable function known as
utility function and α ∈ [0, 1] is the discount factor.

The goal of the controller is to maximize utility of con-
sumption on all plans π ∈ Π, that is:

V (x) := sup
π∈Π

Eπx

[ ∞∑
t=0

αtU(ct)

]
,

x ∈ X .
For ulterior reference, this model be called Ramsey

Growth Model under Stochastic Labor, or RSL.
The RSL model is a Markov Decision Process (MDPs)

(see [8] and [9]). In fact, the Markov Control Model could

be identified in the following way: X = A = [0,∞),
A(x) = [0, h(x)], x ∈ X , the transition law Q is given
by

Q (B|x, c) =

∫
IB ((h(x)− c)s) ∆(s)ds,

(x, c) ∈ K := {(x, c)|x ∈ X, c ∈ A(x)}. Futhermore, the
reward function is given by an utility function U .
In this context, a plan is called a policy.

The following assumptions are well known in the context
of economic growth models (see [2], [5], [11], [12] [13],
[15], [16], [17], [19] and [18]), guaranteeing the existence
of an optimal plan, the validity of the dynamic program-
ming algorithm and a characterization of the optimal plan
via a version of an stochastic Euler equation in the context
of MDPs (see [5] and [6]). Through of this work, Assump-
tions 2.3 and 2.4 below, are supposed to hold.

Assumption 2.3. The production function h, satisfies:
h ∈ C2((0,∞)), is a concave function on X ,h′ > 0 and

h(0) = 0 and,
Let h′(0) := lim

x↓0
h′(x). Suppose that h′(0) ≥ 1 and

αh′(0) > E[ξ−1]. (6)

Assumption 2.4. The utility function U satisfies:

a) U ∈ C2((0,∞),R), with U ′ > 0 and U ′′ < 0,
U ′(0) =∞ and U ′(∞) = 0,

b) There is a function ϑ defined on S with E[ϑ(ξ)] <∞,
and this satifies that

|U ′(h(s(h(x)− c)))h′(s(h(x)− a))s∆(s)| ≤ ϑ(s),
(7)

s ∈ S, c ∈ (0, h(x)).

3 Basic Properties of the RSL
Assumptions 2.3 and 2.4 guarantee that two powerful tools,
Dynamic Programming and Euler equation, can be used in
the study of our RSL.

In paper [20], using results from [8], [9] and [10] it is
shown that the standard Dynamic Programming techniques
hold for the RSL, in particular, in [20] it is shown how the
result in [3] ensure uniqueness of the optimal policy. More-
over, in [5] it is shown that for such optimal policy the op-
timal action is an interior point in [0, h(x)] for each x ∈ X .

In short, under the above assumptions, the value func-
tion of the corresponding MDP satisfies Bellman’s optimal-
ity equation, the optimal comsumption plan is unique and
value iteration works. For details see [20].

Similarly, in [20], the results in [5] an [6] allow us to es-
tablish a MDP Euler equation in the context of the classical
Value Iteration Algorithm, i.e.:

The optimal plan f satisfies

U ′(f(x)) = αE[h′(ξ(h(x)−f(x)))U ′(f(ξ(h(x)−f(x))))ξ],
(8)
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x > 0. Reciprocally, if f ∈ F satifies (8) and

lim
t→∞

αtEfx [h′(xt)U
′(f(xt))xt] = 0, (9)

then f is an optimal plan.
For further results and details, see [20].

4 Stability of the RSL
Inspired by Nishimura and Stachurski in [16], it is possi-
ble to use Euler’s equation ([20], [5] and [6]) to establish
ergodic convergence towards a invariant probability mea-
sue of the optimal processse using density functions of the
driving noise defined on (0,∞) the optimal process also
converges in Lp if p ≥ 1.

Let f ∈ F be the stationary optimal plan for the RSL
model, the stochastic optimal process is given by

xt+1 = ξt(h(xt)− f(xt)),

t = 0, 1, 2, . . ., x0 = x ∈ X = [0,∞), known.
In order to avoid trivialities, we assume x0 > 0. We

know that:

Q(B|x, f(x)) =

∫
{ s|s(h(x)−f(x))∈B}

∆(s)ds, x > 0,

due to the fact that h − f is strictly positive and that the
density ∆ is continuous and also strictly positive, we get
that kernel Q( ·|x, f(x)) is determined by

q1(y|x, f(x)) := ∆

(
y

h(x)− f(x)

)
1

h(x)− f(x)
, x > 0.

Given x > 0, inductively, for each time t ≥ 1, xt distribu-
tion has density qt determined by

qt(y) =

∫
q1(y|x, f(x))qt−1(x)dx.

For each A ∈ B(X) we define measure:

Ξ(A) :=

∫
B

∆(s)ds.

Lemma 4.1. The optimal process {xn} is Ξ-irreducible
and strongly aperiodic.

Proof. See [20]

Let W be defined forx ∈ (0,∞) as

W (x) := [U ′(f(x))h′(x)]1/2 + xp + 1, (10)

donde p > 1.

Lemma 4.2. W is a Lyapunov function.

Proof. See [20]

From the previous results, in a dense technical deduction
involving classical Markov Decision Processes techniques
(see [20]) it is possible to prove the fundamental theorem
of this paper, that due to space limitations, we will simply
state:

Theorem 4.3. There exists a unique invariant probability
measure P for the optimal process of the RSL. In fact, this
process is W -geometrically ergodic.

Proof. See [20]

And a very interesting side result is the following:

Theorem 4.4. The corresponding optimal process of the
RSL converges in mean.

Proof. See [20]

5 Concluding remarks.
This first RSL has noteworthy stability properties: a unique
invariant measure and geometric convergence. The Markov
Decision Process Euler Equation approach is a powerful
tool for the analysis of economic models like the RSL.

This paper is a first step in a much wider research pro-
gramme where a further study of this and related models is
pursued. In particular, actual simulations and actual calcu-
lation of the invariant probability measure should provide
us with a better picture of the behaviour of this stochas-
tic model. Also, the study of the robustness of the optimal
policies, the trajectories and the invariant probability under
perturbations of the model is of great importance.
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[3] Cruz-Suárez D., Montes-de-Oca R. and Salem-Silva F.,
Conditions for the uniqueness of optimal policies of
discounted Markov decision processes, Math. Methods
Oper. Res. 60, 415-436, (2004).
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