
 

 

  
Abstract— The paper proposes a new contractual structure built 

within the critical illness policy model. The new product is 
represented by an accelerated critical illness with a special 
accelerated benefit in case of death for a specific cause. The inclusion 
of the benefit in case of a specific cause death does not involve 
additional cost to the life office beyond the critical illness benefit. On 
the contrary the new design ensures less expensive conditions in 
comparison with the standard policy and it is appealing from the 
market point of view, looking for more and more personalized 
clauses. 

We propose a novel form for modelling framework of the product 
under consideration. In order to highlight the profiles of commercial 
attractiveness of the product, we measure the premium price of the 
specific accelerated critical illness, which will be illustrated for 
different ages and compared to a standard accelerated product. 
Furthermore, actuarial valuations are performed for indicating how 
much money is needed to fulfil the obligations of the insurance 
contracts defining premiums to be received and benefits to be paid.. 
 

Keywords— Causes of death, Lee-Carter, Critical Illness, 
Insurance, forecasting. 

I. INTRODUCTION 

HE study of cause-specific mortality time series is one of 
the main sources of information for public health 

monitoring. Models for trends in mortality rates for different 
ages and sexes as well as for different countries are often 
based on the assumption that past trends in historical data will 
continue in the future. Mortality trends and related fluctuations 
determine changes in the causes of deaths. These causes have 
different age patterns and have shown different trends over 
recent years. At the same time, systematic changes in causes 
of death have been common across the industrialized 
economies.  

Recent literature has addressed the issue of cause-specific 
mortality analysis. In particular, Maccheroni et al. (2007) 
examine how the Lee-Carter model is not suitable for the 
analysis by causes of death. Sherris et. al. (2010) discuss the 
factors driving mortality changes based on causes of death. 
Tuljapurkar et al. (2000) show how mortality declines have 
had common trends in the G7 countries, although there is 
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evidence of variability in those trends. Booth et al. (2006) also 
demonstrate the difficulties related to the projections obtained 
by the decomposition of the population according to causes of 
death. Wilmoth (1995) shows how taking into account causes 
of death can influence projected trends and effectively 
highlights how cause of death influence is hidden in 
aggregated data. 

The World Health Organization (World Health 
Organization, 2009) has revised the international classification 
of diseases (ICD) approximately every 10 years since 1900. 
The purpose of revision is to stay abreast of advances in 
medical sciences, changes in medical terminology and to 
ensure the international comparability of health statistics. 
However, the ICD revision often causes major discontinuities 
in trends of mortality and morbidity statistics because of 
changes in classification rules for selecting underlying causes 
of death. The ranking of leading causes of death is also 
affected by this revision. These discontinuities lead not only to 
a misinterpretation of trends in mortality, but also to 
misinformation about the changes in life expectancy 
(Kochanek et al., 1994). Furthermore, without properly 
correcting these discontinuities, trends in age-specific death-
rates may become distorted; this distortion may lead to 
unreliable forecasts of life expectancy. The problem induced 
by the study of cause-specific mortality, related to the jumps 
caused by the reclassification ICD, can be mitigated by the 
model of Haberman et al. (2013). 

The Critical Illness Insurance market, in particular in UK, 
growth up to 1999, was followed by a plateau in 2000 and 
2001. Sales peaked in 2002, when over one  million  
accelerated critical  illness policies were sold (CMI, 2010).  
These policies pay an assurance benefit on the occurrence of a 
serious event, such as the diagnosis of an illness. Most are sold 
as ‘accelerated benefits’ riders with life insurance policies. In 
this context reliable projections of survival probabilities are 
crucial to correctly determine insurance premiums, technical 
provisions and other actuarial valuations.  

The contribution of this work is to propose an original 
insurance policy, in the market of the Critical Illness, 
designing a contract which includes a benefit in case of 
specific death-cause, beyond the benefit in case of specified 
illness for a policyholder more and more demanding. 

We introduce a modelling framework of the product under 
consideration and price the accelerated benfit by forecasting 
survival probabilities throughout tables for specific death-
causes.  
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The layout of the paper is the following: in section 2, we 
introduce the novel critical illness coverage and a mark-to-
market valuation framework. Section 3 describes a specific 
death-cause mortality model we use for projecting specific life 
tables. Numerical applications are illustrated in section 4. 
Concluding remarks are offered in section 5.  

II. CRITICAL ILLNESS COVER WITH A SPECIFIC ACCELERATED 

BENEFIT 

The basic critical illness policy is a very simple product. 
Normally, you have a lump sum cash payment that's paid upon 
the occurrence or diagnosis of one of a number of specified 
diseases or conditions. There are some conditions for setting 
the coverage. A benefit is paid if the assured suffers or dies for 
one the following critical conditions (Heart Attack, Coronary 
Artery Bypass Surgery, Stroke, Cancer, Major Head Trauma, 
Severe Burns 

There are two main contractual options: the Standalone 
Cover and the Accelerated Cover.   

The acceleration is the coverage in case of two events, one 
relating to the risk of falling ill and the other relating to the 
risk of dying.  

Actuarial models for Dread Disease (DD) insurance can be 
built up starting from a multistate structure. In Fig. 5 the 
following states are considered: 
 � � healthy; � � ill, dread disease suffer; ���� � dead being due to dread disease; 

 ���� � deaths being due to other causes 	 � the portion payable on DD diagnosis 1 � 	 � the portion payable on death 
 

                                                               λ 
�                             �             

                                                           1    1-λ         1-λ 
 

����   ����             ����   ���� 
 

Fig. 1 Multistate schemes for DD insurance. 
 

The following intensities define the time-continues 
probabilistic structure: 
 
���� � intensity of transition from a to i; 

������� � intensity of transition from a to d(O); 

��,������ � intensity of transition from i to d(O); 

��,������ � intensity of transition from i to d(D); 

The mortality of DD suffers is concerned, the calculation of 
actuarial values only requires the use of the total force of 
mortality ������ � ������, since benefits are usually 
independent on the cause of death. The probabilities of interest 
for actuarial calculations are: 

 

�� ��� � ��� �� ���!"���
#

� ��!"�������$%																																			 �1� 
	 �' �!",#�� � ��� (�) ���!"!�,�������

# � ��!"!�,������ ��*+                   (2) 

 

The attained age is denoted by , and * denotes the time 
elapsed since DD inception. 

Let us consider a temporary assurance with a DD acceleration 
benefit. We assume that, for a given sum S, the amount λS 
(where 0 . 	 / 1, the	acceleration	parameter	� is payable 
on DD diagnosis, while the remaining �1 � 	�< is payable on 
a specific cause of death if this occurs within the policy term 
n. In our case we let => ?,@�� denote the probability of death at 
time A for B cause and for simplicity we restrict our attention 
to an acceleration benefit with 	 � 1.  

If we calculate the single premium meeting the death benefit 
as well as the DD acceleration benefit, we have: 

 

C?,D�!��;F � ∑ �> ?���DHF>I# =?!>,@�� � J?!>�K>!F/M                     (3) 

where: 

- J? is the  probability of becoming a DD sufferer 
within one year 

- �> ?�� is the probability of being healthy at age x+1 
- K>!F/M is a discounted factor 
-  

The relevant annual premium is given by: 

 

N?:D| � QR,STUTT;V
�WR:S|XX                                                                        (4)            

 

In particular the value of the reserve is given by: 

 

Y?!�,DH�� � Y?!�,DH���!��;F� � N?:D|ZW?!�:DH�|��                                    (5) 

 

Let us indicate by [? the healthy curtate future lifetime of the 
insured aged x at issue. The cash flow scheme related to the 
policy at time  is the following, in the case of anticipated 
annual premiums: 
 

 
 
in which \ � 1,2, … , _,  ND!F � 0, `# � NF and where 
N?,a!F/b  is the premium amount payable up to time c and da 

is the critical illness benefit equal to the face value e. In light 
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of a fair valuation of the policy (Coppola et al. 2009), the 
stochastic flow of the portfolio fa at time\, \ > h by a trading 
strategy can be expressed as follows: 
 
 

f# = −B/bN?,F                                       if  \ = 0 
 
fa − N?,a!F,a + da,a" + da(ia − iaHF)/b  if  \ = 1,2, … , _
  

where ,a is the number of healthy assured among the survivors 
(briefly healthy survivors) at time \; 
ia" is the number of unhealthy assured among the survivors 
(briefly unhealthy survivors) at time  s, in particular having 
ia" = ia − iaHF, with ia	the number of the healthy and 
unhealthy survivors at time \. 
We formulate the stochastic provision at time t in its fair value 
form, replicating the stochastic flow ea at time \ as in the 
following equations: 
 
Y� = jkl� m�⁄ o =
jp∑ q− N?,a!F,a + da,a" + da(ia − iaHF)/b rD

aI�!M K(h, \)/
	mh                                           (6) 

 
where l� is the stochastic loss in t of the portfolio of c 
contracts in-force and m� is represented by the filtration km�o	∁	m 
containing the information flow at time t . On the basis of the 
conditional expectation calculus, we can write: 
 
Y� = p∑ q− N?,a!FB	 �� ? �aH� ?!� + daB=?t/b rD

aI�!M K(h, \)/
mhjK(h,\)/mh                                                                      (7)  
 

where N?� is the survival probability of assured aged x up to 
time t, =?>  is the rate of the ℎ − hℎ death or diagnosis of a 
critical illness, referred to an assured aged x, whichever occurs 
first and v(t,s) the stochastic present value at time t of one 
monetary unit at time \. 

III.  LEE-CARTER MODEL WITH CAUSE OF DEATH CODING 

ADJUSTMENTS 

Assume that the number of deaths are independent Poisson 
responses �?� ∼ Nv�\\v_(�?��?�).  Let < = k\F, \M … , \>	o be 
the times at which coding changes occur. In order to account 
for the coding changes, we assume as in Haberman et al., 
2013, that the force of mortality is given by: 
 

wvxyRz =	�? + {?[� + ∑ |?(�)f(�)>
�IF (h)                                (8) 

 
where:  
 

- �?� is the age-specific death rate for the x interval and 
the year t.  

- �? is the average age-specific mortality.  
- [� is the mortality index in the year t.  
- {? is a deviation in mortality due to changes in the [� 

index.  
- f(�)(h) = ma}~V ≤ h < \� is an indicator function. 

- |?(�) measures the magnitude of coding change at age 
x.  

 
This model assumes that there are different age-patterns 

�? + |?(�)for each period [\�HF, \�) where different causes of 
death coding system is used. The parameters in (8) can be 
estimated by maximizing the Poisson log-likelihood of the 
model.  The model is over parameterized since the structure is 
invariant under either the parameter transformations, that is for 
any constants �F, �M ≠ 0: 
 
p�?�,[�� � = k�? + �F{? , [� − �Fo                                            (9) 
 

p{?�,[�� � 	= � F�� {? , �M[��                                                       (10) 

 

�|?(�)� ,[�� = �|?(�) + Z�{? , [� − Z�f(�)(h)�,					� = 1,… , ℎ     (11) 

 
Transformation (9) and (10) are the original ones from the 
Lee-Carter model, whilst the family of transformation defined 

by (11) are induced by the new parameters |?(�) (Haberman et 
al., 2013). 
In order to ensure the complete characterization of the model, 
the following constraints need to be imposed: 
 
[�S = 0                                                                                 (12) 
 
∑ {?? = 1                                                                             (13) 
 
In the model the underlying mortality trend is captured only 

by [� whilst parameters |?(�) capture the discontinuities in 
mortality trend induced by the changes in the coding system of 
the causes of death. In order to accomplish this, we use the 
family of transformation defined in formula (11).  
Inspired by the procedure introduced by Ray et al. (2011), we 
set the constants Z� , � = 1,… , ℎ, by fitting the model 
 

[� = x(h) + ∑ |?(�)f(�)>
�IF (h) + ��                                       (14)                    

 
where x(h) is a continuous function fitted by a thin plate 
penalized regression spline and �� is an error term. Model 
(14) decomposes the time trend [� into: 
 

-  a smooth function x(h) representing the underlying 
mortality trend; 

- the jumps in mortality ∑ Z�f(�)(h)>
�IF  induced by data 

production changes  
- the noise �� around the underlying trend. 

The smoothes parameter of x(h) is derived using generalized 
cross-validation. 
Given constants Z� , � = 1,… , ℎ from model (14), respectively 

for [� and |?(�), are given by: 
 
[�  		[� − ∑ Z�f(�)(h)>

�IF                                        (15) 

|?(�)            |?(�)f(�) + Z�{? 								� = 1,… , ℎ                          (16) 
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which transfers the jumps in mortality due to data production 

changes to the |?��� parameters while [� represent the 
underlying mortality trend plus the fluctuations around this 
trend. 
 

IV.  NUMERICAL APPLICATION 

In order to highlight the profiles of commercial attractiveness 
of the product, we measure the premium price of the specific 
accelerated critical illness, which will be illustrated for 
different ages and compared to a standard accelerated product. 
First we calculate mortality rates as the number of persons for 
each age (��, sex �\�, and country �B� who die in a particular 
year �h� of a specified cause ���, divided by the number of 
persons of that age and sex in the country alive at the 
beginning of the year.  
 

�?� � �R,�,�,�,z
�R,�,�,�,z

                                                               (17) 

 
Data were obtained from the Mortality Database administered 
by the World Health Organization [2009] (WHO) which 
contains demographic information, including the number of 
deaths according to the underlying cause of death, for Italy 
over the last 50 years from 30 to 89 age. 
Causes of death are defined by the International Classification 
of Diseases (ICD), which ensures consistencies between 
countries. In this study, only the primary causes of death are 
consider to be used for the construction of the new policy that 
we intend to propose.The ICD changed three times between 
1950 and 2006, from ICD-7 to ICD-10, in order to take into 
account changes in science and technology and to refine the 
classification. In Italy there were two reclassifications (ICD7-
8 in 1968, ICD8-9 in 1979) The six main causes of death are 
diseases of the circulatory system, cancer, diseases of the 
respiratory system, external causes, infectious and parasitic 
diseases and other. 
In Figure 2 it is possible to observe the fitted parameters and 
in Figure 3 the fitting trend of the mortality index 		[� respect 
to that observed (that has two jumps in the years in which the 
ICD changed); both the graphs are referred to the cause of 
death related to the circulatory system.. Figures 4 and 5 are 
referred to the cause of death referred to the respiratory 
system. 
With these graphs we can see how the new transformation 
transfers the jumps in mortality due to data production  

changes to the δ�(�) parameters and leaves k� representing the 
underlying mortality trend plus the fluctuations around this 
trend. 
In the plots there are represented the evaluation of the 
parameters of the model (8). The model eliminates the 
discontinuities in the mortality rates.    
 
 
 
 
 
 
 

 
Fig. 2 Multistate schemes for DD insurance. 

 

 
 
Fig. 3:[�with the coding changes for different group age 
 

 
Fig. 4: Fitting parameters Respiratory System 
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Fig. 5: k�with the coding changes for different group age  
 
In order to project the age-specific death rates, the model 

assumes the constancy of �?, {? and |?(�). The only parameter 
to be projected through a procedure Box - Jenkis that serves to 
determine an appropriate ARIMA is k�. 
According to the model, the mortality rate is a linear trend on 
the basis of an ARIMA (0,1,0), which is well adapted to the 
representation of the evolution of the index over time. It 
therefore refers to the following model (Lee and Carter, 1992): 
 
k� = k�HF − c − e�                                                               (18) 
 
In the next plots we will see the performance of the insurance 
premium for different Critical Illness cover, a Stand-Alone, a 
Stand-alone Accelereted (with an accelerated benefit for 
death) and a Stand Alone with a benefit for specific cause of 
death. 

 
 
Fig. 6: Performance of the periodic premium for a TCM 
(Standalone and Accelerated Benefit), term 20 years   
 
 
 
 
 
 
 

 
Fig. 7: Performance of the periodic premium for a TCM 
(Accelerated Benefit and Accelerated Benefit for Cancer), 
term 20 years   
 
 
As you can see from the graphs, the premium for the policy 
that we propose in this work grows slower than the other. This 
means that it is less expensive than the Standard Stand Alone.  
It could be more palatable and accessible to families with 
middle and low incomes. 
 

V. CONCLUDING REMARKS 

Actuarial services are offered in several forms, more or less 
structured and complex, according to models in continuous 
transformation to the aim of matching as much as possible the 
need of coverage of each potential insured. The insurance 
companies are strongly interested in designing new products 
in which the individual can recognize his own characteristics 
and as a consequence contracts drafted according to generic 
profiles reveal to be unfit and poorly attractive. This tendency 
is going to strengthen the use of personalized models in 
actuarial valuations and in particular of the death probabilities 
disaggregated by cause of death. The paper considers this 
topic in the critical illness framework, matching the advantage 
of a specialized mortality description with a contract strictly 
connected with the longevity phenomenon, thanks to which 
health insurance products are going to be increasingly issued.  
In particular, in the paper we propose a new contractual model 
in which an accelerated critical illness is offered with a special 
accelerated benefit in case of death for a specific cause. 
Referring to specific cause of death involves smaller expenses 
and allows for covering the death risk too. The approach 
combining disaggregated death probabilities and contracts 
growing in longevity improvement conditions, opens in our 
opinion new horizons in the actuarial models. Advantages for 
both the counterparties can be got and marketing 
competitiveness can be improved. 
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