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Abstract—We continue the study of the bifurcations and the
structural stability of planar bimodal linear dynamical systems
(that is, systems consisting of two linear dynamics acting on each
side of a straight line, assuming continuity along the separating
line). Here we determine the tangency-saddle singularities in the
saddle/spiral case, the only where they can appear.

I. INTRODUCTION

Piecewise linear systems constitute a class of non-linear
systems which have recently attracted the interest of re-
searchers because of their interesting properties and the wide
range of applications from which they arise. In [4] and
[5] one studies the controllability of BLDS (bimodal linear
dynamical systems). In [6] one begins the study of its structural
stability. The structural stability of a system warrants that its
qualitative behavior is preserved under small perturbations of
their parameters. One focuses in planar BLDS, that is, two
planar linear subsystems acting in complementary halfplanes,
assuming continuity in the separating straight line. They have
interesting theoretical properties as well as applications (see,
for example, [1], [2], [4] and [7]).

In Section 3 we recall the results in [6]: by adapting the
necessary conditions in [8], one obtains the list of possi-
ble structurally stable planar BLDS and one concludes that
structural stability holds when (real) spirals do not appear;
in addition, one studies the finite periodic orbits for the
saddle/spiral case.

In Section 4 we enlarge this study to the tangency-saddle
singularities. They can appear only in the saddle/spiral case.
We prove that it does for a sequence of values of the trace
of the spiral subsystem, whereas for the remainder values the
BLDS is structurally stable.

Throughout the paper, R will denote the set of real
numbers, Mn×m(R) the set of matrices having n rows and m
columns and entries in R (in the case where n = m, we will
simply write Mn(R)) and Gln(R) the group of non-singular
matrices in Mn(R). Finally, we will denote by e1, . . . , en the
natural basis of the Euclidean space Rn.

II. STRUCTURALLY STABLE PLANAR BIMODAL LINEAR
SYSTEMS

Let us consider a bimodal linear dynamical system given
by

{ ẋ(t) = A1x(t) +B1 if Cx(t) ≤ 0

{ ẋ(t) = A2x(t) +B2 if Cx(t) ≥ 0

where A1, A2 ∈ Mn(R); B1, B2 ∈ Mn×1(R); C ∈
M1×n(R). We assume that the dynamics is continuous along
the separating hyperplane H = {x ∈ Rn : Cx = 0}; that is
to say, that both subsystems coincide for Cx(t) = 0.
By means of a linear change in the state variable x(t), we can
consider C = (1 0 . . . 0) ∈M1×n(R). Hence H = {x ∈ Rn :
x1 = 0} and continuity along H is equivalent to:

B2 = B1, A2ei = A1ei, 2 ≤ i ≤ n.
We will write from now on B = B1 = B2.

Definition 1: In the above conditions, we say that the
triple of matrices (A1, A2, B) defines a bimodal linear dy-
namical system. (BLDS.)

The placement of the equilibrium points will play a signi-
ficative role in the dynamics of a BLDS. So, we define:

Definition 2: Let us assume that a subsystem of a BLDS
has a unique equilibrium point, not lying in the separating
hyperplane. We say that this equilibrium point is real if it
is located in the halfspace corresponding to the considered
subsystem. Otherwise, we say that the equilibrium point is
virtual.

Our goal is to characterize the planar BLDS which are
structurally stable in the sense of [8].

Definition 3: A triple of matrices (A1, A2, B) defin-
ing a BLDS is said to be (regularly) structurally stable if
it has a neighborhood V (A1, A2, B) such that for every
(A

′

1, A
′

2, B
′
) ∈ V (A1, A2, B) there is a homeomorphism of

R2 preserving the hyperplane H which maps the oriented
orbits of (A

′

1, A
′

2, B
′
) into those of (A1, A2, B) and it is

differentiable when restricted to finite periodic orbits.

A natural tool in the study of BLDS is simplifying the
matrices A1, A2, B by means of changes in the variables
x(t) which preserve the qualitative behavior of the system
(in particular, the condition of structurally stability). So, we
consider linear changes in the state variables space preserving
the hyperplanes x1(t) = k, which will be called admissible
basis changes. Thus, they are basis changes given by a matrix
S ∈ Gln(R),

S =

(
1 0
U T

)
, T ∈ Gln−1(R), U ∈Mn−1×1(R).
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See [3] for the resulting reduced forms.

Also, translations parallel to the hyperplane H are allowed.

III. PRELIMINARIES

In [6] one proves the following results. Firstly,

Theorem 1: 1. The triples of matrices representing a
structurally stable BLDS can be reduced (by means of
an admissible basis change and a translation parallel
to the separating line) to the form:

A1 =

(
T 1
−D 0

)
, A2 =

(
τ 1
−∆ 0

)
, B =

(
0
b

)
(∗)

In particular, the only tangency point is (0, 0).
2. The only possible structurally stable BLDS are those

in Table 1.
3. A sufficient condition in order to be structurally stable

is that none subsystem is a real spiral (cases 1, 2, 4,
5, 6, 8, 9, 10, 12, 13, 14 and 16).

4. In the case 3, it is structurally stable if and only if
4.a the finite periodic orbits are hyperbolic and

disjoint from the tangency points
4.b there are not finite orbits connecting two

saddles
4.c there are not finite orbits connecting a saddle

and a tangency point
5. In the cases 7, 11 and 15, it is structurally stable if

and only if condition (a) holds.

Subsystem 1 \ 2 Virtual saddle Real node Real spiral Real imp. node

Real saddle 1 (b > 0) 2 (b > 0) 3 (b > 0) 4 (b > 0)
Virtual node 5 (b < 0) 6 (b > 0) 7 (b > 0) 8 (b > 0)
Virtual spiral 9 (b < 0) 10 (b < 0) 11 (b > 0) 12 (b > 0)

Virtual imp. node 13 (b < 0) 14 (b < 0) 15 (b < 0) 16 (b > 0)
TABLE I.

Secondly, one focuses on conditions (a), (b) of case 3
for divergent spirals. Thus, let us assume a BLDS as in (*),
verifying:

- The left subsystem is a (real) saddle, i.e.: D < 0, b >
0. In particular, its equilibrium point is ( bD ,−T

b
D ),

and the invariant manifold cut the separating line at
(0,− b

λ2
) and (0,− b

λ1
), where λ2 < 0 < λ1 are the

eigenvalues of A1. (λ1 + λ2 = T , λ1λ2 = D.)
- The right subsystem is a (real) divergent spiral, i.e.:

τ > 0, τ2 < 4∆, b > 0. In particular, its equilibrium
point is ( b∆ ,−τ

b
∆ ). We write α ± iβ, β > 0 the

eigenvalues of A2. (2α = τ , α2 + β2 = ∆.)

Theorem 2: In the above conditions:

1. 1.a If T > 0, then there is not homoclinic orbit.
1.b If T = 0, then there is a homoclinic orbit

only for τ = 0, which is a not considered
case.

1.c If T < 0, the only homoclinic (i.e., saddle-
loop) orbit appears for τ = τH > 0 verifying

exp(αt) sin(βt−ϕ)+
β

M
= 0, π+ϕ ≤ βt ≤ 3π

2
+ϕ

being

t =
1

τ
ln(

λ2
2

λ2
1

λ2
1 − τλ1 + ∆

λ2
2 − τλ2 + ∆

)

where M cos(ϕ) = α − α2+β2

λ2
,

M sin(ϕ) = β.
Moreover, τH > T∆

D .
2. 2.a If T > 0, then there are not finite periodic

orbits.
2.b If T = 0, then there are finite periodic orbits

(all of them) only for τ = 0, which is a not
considered case.

2.c If T < 0, a finite periodic orbit appears for
0 < τ < τH , which is hyperbolic (indeed,
attractive) and disjoint from the tangency
points, and no saddle-tangency orbits appear.

3. In particular, the systems in case 3 with T < 0 and
0 < τ < τH are structurally stable.

IV. THE TANGENCY-SADDLE SINGULARITIES

Here we tackle the case 3 for T < 0, τ > τH . We will
see that there is a decreasing sequence τ1, τ2, ... → τH of
values of τ where tangency-saddle singularities appear. For
the remainder values, the BLDS is structurally stable.

Theorem 3: In the conditions of case 3 and T < 0:

1. There exists a maximal value of τ , τ1 (see Figure 1),
for which a tangency-saddle orbit appears. This is for
τ = τ1 > 0 verifying

exp(αt) sin(βt−ϕ)+
β

M
= 0, π+ϕ ≤ βt ≤ 3π

2
+ϕ

being

t =
1

τ
ln(

1 + τ + ∆

λ2
1

)

where M cos(ϕ) = α, M sin(ϕ) = β.
Moreover, τ1 > λ2

1 −∆− 1.
It is the only value of τ for which the tangent orbit
at (0, 0) has its first intersection with the separating
hyperplane just at (0,−b/λ1).

2. There exists a decreasing sequence
(τ1, τ2, ..., τk, ...) → τH , k ≥ 1 (see Figures 2
and 3), for which tangency-saddle orbits appear.
For the value τ = τk the orbit starting in the
tangency point (0, 0) has its (2k − 1)th intersection
with the separating hyperplane just at (0,−b/λ1).

3. For the remainder values of τ > τH , the BLDS is
structurally stable.

Proof:

1. From [6], the first intersection of a spiral passing
through (0, 0) with the hyperplane must verify

exp(αt) sin(βt−ϕ)+
β

M
= 0, π+ϕ ≤ βt ≤ 3π

2
+ϕ

where M cos(ϕ) = α, M sin(ϕ) = β.
Moreover, again from [6], a spiral cuts x1 = 0 in x21

and x22 if and only if

exp(µt) =
b+ µx22

b+ µx21
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where µ = α+ iβ. Imposing that x21 = 0 and x22 =
−b/λ1 we get

t =
1

τ
ln(

1 + τ + ∆

λ2
1

)

and from it the bound for τ1.
2. For τ = τ1 the tangent orbit at (0, 0) intersects x1 =

0 just at (0,−b/λ1) (see Figure 1). When τ decreases,
this (first) intersection point ascends, so that the orbit
completes a full turn and intersects the axe x1 = 0
twice between (0,−b/λ2) and (0,−b/λ1), and again
under (0,−b/λ1) if τ−τ1 is small enough. It is clear
that this third intersection ascends when τ increases,
so that for a certain (unique) value τ = τ2 this third
intersection point is just (0,−b/λ1) (see Figure 2).
Additional degrowth of τ gives a second turn (with
two additional intersections between (0,−b/λ2) and
(0,−b/λ1) and a fifth intersection with x1 = 0 under
(0,−b/λ1). As above, for a certain (unique) value
τ = τ3 this fifth intersection point is just (0,−b/λ1)
(see Figure 3).
By recurrence, one obtains a sequence of decreasing
values τ1, τ2, ..., τk, ... for which the tangent orbit at
(0, 0) intersects x1 = 0 in 0, 1, ..., 2k − 2, ... points
between (0,−b/λ2) and (0,−b/λ1), and another one
just at (0,−b/λ1).
An analogous reasoning shows that lim τk = τH :
for τ = τH the saddle orbit through (0,−b/λ2)
intersects again x1 = 0 at (0,−b/λ1), whereas the
tangent orbit at (0, 0) turns over the spiral toward
this homoclinic orbit; for any slightly greater value
τH +ε the above saddle orbit intersects x1 = 0 under
(0,−b/λ1), so that the tangent orbit passes between
this new intersection point and (0,−b/λ1); therefore,
the reasoning in the above paragraph shows that there
is some τk < τH + ε.

3. By construction, for τk < τ < τk+1 there are not
tangency-saddle orbits. Moreover, the orbits for τ run
between the ones for τk and τk+1 so that neither finite
periodic orbits nor saddle-tangency orbits can occur.

Exemp 1: For T = −1, D = −1,∆ = 5, b = 1, we
plot the tangency-saddle orbits: τ1 = 1.145, τ2 = 0.782, τ3 =
0.745; τH = 0.742.

Fig. 1. Appearance of a tangency-saddle orbit: T = −1, D = −1, τ =
τ1 = 1.145,∆ = 5, b = 1

Fig. 2. Appearance of a tangency-saddle orbit: T = −1, D = −1, τ =
τ2 = 0.782,∆ = 5, b = 1

Fig. 3. Appearance of a tangency-saddle orbit: T = −1, D = −1, τ =
τ3 = 0.745,∆ = 5, b = 1
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