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Abstract— A class of hybrid systems (HS) unresolved with 

respect to the derivative is considered. Architecture of instrumental 
environment is designed in accordance with CSSL standard. Library 
of original numerical solvers, embedded in simulation environment, 
is presented. Algorithm of numerical analysis of HS modes is given. 
Theorem about the choice of the integration step considering the HS 
event function dynamic has been formulated and proved. Algorithm 
of accurate HS event detection with implicit continuous behaviour 
models is designed. Testing of the proposed algorithms in the ISMA 
instrumental environment is performed. Example of specification and 
analysis of electric power systems models is given. 

Keywords— computer aided analysis, software architecture, 
numerical simulation, differential equations, event detection, circuit 
simulation. 

I.  INTRODUCTION 
Hybrid systems (HS) theory is a modern and versatile 

apparatus for mathematical description of the complex 
dynamic processes in systems with different physical nature. 
Such systems are characterized by the composition of the 
continuous and discrete behaviours. Earlier the ISMA 
instrumental environment [1, 2] examined models and methods 
of HS analysis, continuous modes of which are described by 
the Cauchy problem with constraints. In this paper the 
extension of class of systems by models unresolved with 
respect to the derivative is proposed. Numerical analysis of the 
new class of problems requires using a specific integration and 
HS event detection algorithms. The described algorithms are 
implemented in the ISMA and successfully tested. 

II. CLASS OF SYSTEMS 
There are many systems (mechanical, electrical, chemical, 

biological, etc.), the behavior of which can be conveniently 
described as a sequential change of continuous modes. These 
systems are referred to as hybrid or event-continuous. Each 
mode is given by a set of differential-algebraic equations with 
the following constraints: 
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The vector-function ( )g x, y,t  is referred to as event 
function or guard. A predicate pr  determines the conditions of 
existence in the corresponding mode or state. Inequality 

( ) 0g x, y,t <  means that the phase trajectory in the current 
mode should not cross the border ( ) 0g x, y,t = . Events 
occurring in violation of this condition and leading to transition 
into another mode without crossing the border are referred to as 
one-sided. Many practical problems are characterized by stiff 
modes, and the surface of boundary ( ) 0g x, y,t =  has sharp 
angles or solution has several roots at the boundary [2]. 
Numerical analysis of such models by traditional methods is 
difficult or impossible, as it gives incorrect results. Therefore it 
is necessary to use special methods to detect events accurately. 

Computer analysis of these systems is typically performed 
in simulation tools, best of which are Charon (USA), AnyLogic 
(Russia), Scicos (France), MVS (Russia), Hybrid Toolbox and 
HyVisual (USA), DYMOLA (Sweden) and etc. 

In the simulation of electrical circuits, processes of 
chemical kinetics, electromechanical processes and many other 
applications a necessity arises to numerically analyze HS, 
modes of which are given by stiff implicit systems of high-
dimensional differential equations with strict one-sided 
constraint: 

 ( ) ( ) [ ] ( )0 0 0, , 0, : , 0, , , ,kF x x t pr g x t t t t x t x′ = < ∈ =  (2) 

where Nx R∈  is the vector of state variables, t R∈  is the 
argument, : N N NF R R R R× × →  is a continuous vector-
function for given mode of HS, : Ng R R R× →  is the event-
scalar function or the guard, 0x  is the value at the initial point 

0t . 

The problem (2) is usually stiff that leads to the application 
of implicit numerical formulas required Jacobi matrix 
inversion. Due to the ease of implementation and good 
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accuracy and stability properties Rosenbrock type methods [3, 
4] are widely used in solving stiff problems. 

III. ARCHITECTURE OF INSTRUMENTAL 
ENVIRONMENT 

Development of simulation languages, simulators, 
simulation systems, etc. is essentially influenced by the CSSL 
(continuous system simulation language) Standard 1968 [4]. 
Although forty years old, the structures defined in CSSL 
Standard are used up to now. End of 90ties, CSSL extended to 
implicit systems, while a new modelling language, Modelica, 
was introduced. In principle, the modelling paradigm changed 
from signal flow – oriented modelling (explicit systems) to 
power – oriented modelling (implicit systems), from “causal” 
signal modelling to “acausal” physical modelling. The early 
CSSS standard determined basic necessary features for a 
simulator, the late developments to implicit systems fixed 
extended features for simulation systems – both referred as 
classical CSSL features. In 1968, the CSSL standard set first 
challenges for features of simulation systems, defining 
necessary basic features for simulators and a certain structure 
for simulators. 

The CSSL standard also defines segments for discrete 
actions, first mainly used for modelling discrete control. So-
called DISCRETE regions or sections manage the 
communication between discrete and continuous world and 
compute the discrete model parts. For incorporating discrete 
actions, the simulation engine must interrupt the ODE solver 
and handle the event. For generality, efficient implementations 
set up and handle event lists, representing the time instants of 
discrete actions and the calculations associated with the action, 
where in-between consecutive discrete actions the ODE solver 
is to be called. In order to incorporate DAEs and discrete 
elements, the simulator’s translator must now extract from 
the model description the dynamic differential equations 
(derivative), the dynamic algebraic equations (algebraic), and 
the events (event i) with static algebraic equations and event 
time, as given in Fig. 1 [5] (extended structure of a simulation 
language due to CSSL standard). In principle, initial equations, 
parameter equations and terminal equations (initial, terminal) 
are special cases of events at time t = 0 and terminal time. 
Some simulators make use of a modified structure, which puts 
all discrete actions into one event module, where CASE - 
constructs distinguish between the different events. 

Simulation environment of complex dynamical and hybrid 
systems called ISMA (translated from Russian “Instrumental 
Facilities of Machine Analysis”) is developed at the department 
of Automated control systems of Novosibirsk state technical 
university (Russia) [6]. 

Specification of hybrid systems is carried out using 
graphical and symbolic languages that are the system content 
of instrumental environment. Analytical content is provided by 
numerical methods and algorithms for computer analysis 
corresponding to the chosen class of systems and methods for 
solving these models. ISMA environment is developed subject 
to simplicity of description of dynamical and hybrid 

 
Fig. 1. Extended structure of a simulation system due to extensions of the 
CSSL standard with discrete elements and with DAE modelling 

models in the language that is maximally close to the object 
language. Main features of ISMA are the following: 

• Composition of hybrid models is carried out in visual 
structural-textual form; 

• Structural form of model description corresponds to the 
classical description of systems by block diagrams and 
includes all necessary components such as integrators, 
accumulators, amplifiers, signal sources,  nonlinear 
elements and others; 

• Language of symbolic specification is approached 
maximal to the language of mathematical formulas; 

• Special module for specification of problems of 
chemical kinetics in the language of chemical reactions 
which  automatically translates them into a system of 
differential equations; 

• A variety of traditional and original numerical methods 
included methods that are intended for the analysis of 
ODE systems of medium and high stiffness; 

• Computer simulation in real time; 

• Graphic interpreter called GRIN provides a wide range 
of tools for analysis and visualization of simulation 
results such as scaling, tracing, optimization, displaying 
in the logarithmic scale and phase plane; 

• Extension of system functionality by adding new typical 
components and numerical methods. 

Architecture of ISMA software package (Fig. 2) is designed 
[7] in accordance with CSSL to unify existing mathematical 
program software for analysis of problems in various object 
domains: chemical kinetics, automation, electricity, etc. 
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Fig. 2. ISMA architecture 

IV. LIBRARY OF NUMERICAL METHODS 
Peculiarities of numerical analysis are defined by the 

configuration and implementation of the solver in the scheme 
interpreter. Solver is configured to numerical analysis not only 
of smooth dynamical systems but also systems with ordinary 
discontinuity and stiff systems [2, 8]. For the analysis of the 
stiff modes new original m - phasic methods of p  - order 
(Table I), developed by the authors, are included in the solver 
library. 

TABLE I.  LIBRARY OF NUMERICAL METHODS 

Method ( p , m ) Description 
DISPF (5, 6) Stability control, systems of medium 

and low stiffness 
RADAU5 (3, 3) Stiff systems 

DISPF1_RADAU 

Adaptive method DISPF in 
combination with RADAU5 with 
stiffness control, essentially stiff 

systems 

DP78ST (8, 13) 
Stability control, variable order and 

step, systems of medium stiffness and 
high precision 

RKF78ST (7, 13) 
Stability control, variable order and 

step, systems of medium stiffness and 
high precision 

RK2ST (2, 2), RK3ST 
(2, 3) 

Explicit methods with stability 
control for analysis of non-stiff 

systems 

DISPS1 Algorithm of variable order with 
adaptive stability region 

MK22 (2, 2), MK21 
(2, 2) 

Freezing of Jacobean matrix, stiff 
systems 

MK11F Algorithm of analysis of implicit 
problems 

 

Libraries of standard blocks and numerical methods are 
implemented as independent application modules that are 
loaded at run time. 

This approach allows to allocate in the application 
programming interface (API) a set of functions and classes 
required for the implementation of element libraries and 
numerical methods. Using the API any user with basic 
knowledge of object-oriented programming able to develop 
and built in the system new typical elements and numerical 
methods without recompiling the entire system. 

V. EVENT DETECTION IN HYBRID SYSTEMS 
The correct analysis of hybrid models is significantly 

depends on the accuracy of detection of the change of the local 
states of the HS. Therefore, the numerical analysis is necessary 
to control not only the accuracy and stability of the calculation, 
but also the dynamics of the event-function. The degree of 
approximation by the time the event occurred is defined by the 
behavior of event driven function. 

Analyze the behavior of the event function ( ),g x t . Let the 
method of the form 1n n n nx x h ϕ+ = + , where function nϕ  is 
calculated in point nt , is used for calculations. 

Then the event-function ( ),g x t  at point 1nt +  has a form 

( )1 ,n n n n n ng g x h t hϕ+ = + + . Decomposing the 1ng +  in a 
Taylor series and taking into account the linearity of 1ng + , we 
obtain the dependence of 1ng +  of the projected step nh : 

 1 .n n
n n n n

g g
g g h

x t
ϕ+

∂ ∂ = + ⋅ + ∂ ∂ 
 (3) 

Theorem. The choice of the step according to the formula 

 ( ) ( )1 / , 0,1 ,n n
n n n

g g
h g

x t
γ ϕ γ

∂ ∂ = − ⋅ + ∈ ∂ ∂ 
 (4) 

provides the event-dynamics behavior as a stable linear system, 
the solution of which is asymptotically approaching to the 
surface ( ), 0g x t = . 

Proof. Substituting (4) in (3), we have 1n ng gγ+ = , 
0,1, 2,...n =  Converting recurrently this expression we get 

1
1 0

n
ng gγ +

+ = . Given that 1γ < , then ng → ∞  takes place 
when n → ∞ . In addition, condition 0γ >  implies that 
function ng  does not change sign. Therefore, when 0 0g < , 

0ng <  will be valid for all n . Then the guard condition will 
never cross the potentially dangerous area ( ), 0n ng x t = , 
which completes the proof. 

A. Control of event function in the integration algorithm 
We complete the implicit problem’s integration algorithm 

by the algorithm of the step control that takes into account the 
event function dynamics. 

Let the solution nx  and n ny x′=  at the point nt  is 
calculated with the step nh . In addition, the new accuracy step 
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1
ac
nh +  is computed by the formula (4). Then the approximate 

solution at the point 1nt +  is calculated as follows 

Step 1. Calculate the functions 

( ) ( ) ( ), ,
, , , .n n n nn n

n n n

g x t g x tg g
g g x t

x x t t
∂ ∂∂ ∂

= = =
∂ ∂ ∂ ∂

 

Step 2. Calculate ,n n
n n

g g
g

x t
ϕ

∂ ∂′ = +
∂ ∂

 where n nyϕ = . 

Step 3. If 0ng ′ < , then 1 1
ac

n nh h+ +=  and go to the Step 6. 

Step 4. Calculate the new “Event” step 1
ev
nh +  by the formula 

( )1 1ev n
n

n

g
h

g
γ+ = −

′
. 

Step 5. Calculate the new step 1nh +  by the formula 

Step 6. Go to the next integration step. 

In the Step 3, unlike the previously presented algorithm [9], 
we determine the direction of event-function change. Near the 
boundary regime denominator (4) will be positive, and away 
from the boundary ( ), 0g x t =  it becomes negative. Then, 
defining the direction of event-function change, we do not 
impose any further restrictions on the integration step if the 
event-function is removed from the state boundary. 

B. Tests 
To illustrate the capacity for work of the proposed 

algorithms consider a simple hybrid system – a bouncing ball. 
Modal behavior can be given by an implicit system of 
differential equations 

 0, 0,y v v a′ ′− = + =   (5) 

where y  is the height from the surface of the ball rebound, v  is 
the ball velocity, a  is the free fall acceleration. An event 
occurs at the moment when the ball touches the rebound 
surface 0y = , therefore the event function takes the form 

,g y= −  and the predicate : 0pr y− < . At the moment of 
rebound the ball changes the moving direction. Let the rebound 
is inelastic, then when the event occurs the velocity changes 
according to the rule v vα= − ⋅ , where α  is the retention rate 
of speed. 

Moments of the ball rebound from the surface and values of 
the variable h  when the event occurs are shown in Figure 3. A 
significant error 1 0.75ε ≈  in detection of event changes is 
made when calculating event function without dynamics 
control (Fig. 3a). This leads to violation of condition of one-
sidedness of the events and as a result to erroneous global 
solution. Using of algorithm of asymptotic approximation to 
the regime border (Fig. 3b) provides about an order more 
accurate detection of the moment when regime of HS has 
changed 2 0.06ε ≈ . 

 
Fig. 3. Moments of event detection: a) without dynamics control; b) with 

asymptotic approximation to regime border 

VI. SIMULATION OF FAULT IN AN ELECTRICAL 
NETWORK 

As an illustration of a new class of systems and as a test 
case for the formulated algorithms analyze the model of three-
phase fault in an electrical network. Schematic diagram of the 
electrical power system (EPS) built in graphics editor of the 
ISMA instrumental environment is shown in Fig. 4. 

 
Fig. 4. Schematic diagram of the electrical network 

Considered scheme consists of generator G, transformers 
1Т , 2Т , line L  and load Н . In the equivalent circuit in Fig. 5 

capacitive conductivity of the line and transformer non-load 
loses are not taken into account and the load is taken into 
account by approximately active and inductive reactance. 

Transient is initiated by the contact closure К . In this case 
previously established mode of power system is changed to the 
new mode corresponding fault and another system 
configuration. Thus, the model is a two-mode hybrid system 
(HS) [2]. 

 
Fig. 5. Schematic diagram of the electrical network 

The discrete behavior of the hybrid system is illustrated by 
the state chart shown in Fig. 6. State init corresponds to the 
functioning of EPS before the fault. Switching to state short 
corresponded to the fault condition occurs when a logical 
predicate pr is carried out. 

 
Fig. 6. Behavior map 
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In the graphics editor of schematic diagrams of EPS hybrid 
behavior is specified in the configuration editor window for the 
equivalent circuit of a transmission line L  as shown in Fig. 7. 

 
 

Fig. 7. Configuring the parameters of the equivalent circuit 

The mathematical model is composed by Park-Gorev 
equations in rotating coordinate system ( ),d q  associated with 
the generator rotor G . Let the axis q  is ahead of the axis d . 
Obtain a system of equations for the generator G  

( ) ( )

( )
1 1cos sin

0,

d q Gd

f gGd
d ad ad q Gq aq h

u t u t ri
di didi

L L L L i L i
dt dt dt

θ θ

ω

− + − + +

+ − − − − =
 

( ) ( )

( )
1 1sin cos

0,

d q Gq

Gq h
q aq d Gd ad f g

u t u t ri
di di

L L L i L i i
dt dt

θ θ

ω

− − + − + +

 + − + − + = 
 

0f g Gd
f f f f ad ad

di di di
u r i L L L

dt dt dt
− + + + − = , 

0g f Gd
g g g ad ad

di di di
r i L L L

dt dt dt
+ + − = , 

0Gqh
h h h aq

didi
r i L L

dt dt
+ − = , 

( ) ( )d q Gq aq h Gd ad Gq f g

J

T L L i L i i L i i id
dt T
ω ∂

 + − + − + = , 

d
dt
θ ω= . 

Here the index f  refers to the excitation winding and 
indices g  and h  refers to the longitudinal and transverse 
damper contours respectively. 

Equations for the area of the equivalent circuit 1-2: 

12
1 2 12 12

d
d d G d G q

di
u u R i L i

dt
 − = + − 
 

, 

12
1 2 12 12

q
q q G q G d

di
u u R i L i

dt
 

− = + − 
 

. 

For the areas 3-4, 4-5 and 6-0 equations will have a similar 
form. 

Equations for the transformer 1T : 

( )3 1 1 13d T q du K u u= + , ( )3 1 1 13q T q du K u u= − , 

( )34 1 12 123d T q di K i i= + , ( )34 1 12 123q T q di K i i= − . 

Here 1TK  is a transformation ratio. Equations for the 
transformer 2T  are treated similarly. 

Equations of the first Kirchhoff’s law for point 1: 

( ) ( ) 12cos sinGd Gq di t i t iθ θ− − − = , 

( ) ( ) 12sin cosGd Gq qi t i t iθ θ− + − = . 

When an event corresponded to the fault occurs in HS, the 
voltage in point 4 is equated to zero 4 4 0d qu u= = . In this case 
in the equivalent circuit two independent contours are formed. 
The equations for sections of the contours remain the same.  

Plots of some state variables obtained in ISMA are shown 
in Figure 8. Calculation results correspond to theoretical 
statements and coincide with results obtained in MATLAB. 

 
Fig. 8. Simulation results in ISMA 

VII. CONCLUSIONS 
In this paper the new class of hybrid systems within the 

ISMA instrumental environment, the modal behavior of which 
is defined by a system of ODE unresolved with respect to the 
derivative, is introduced. Architecture of instrumental 
environment is designed in accordance with CSSL standard. 
The new original method of switching point’s localization is 
proposed. The algorithm easily complements the existing 
numerical solvers based on explicit and semi-explicit schemes 
including the proposed algorithm of implicit problem’s 
analysis. Model of new HS system class is presented and 
studied in ISMA. 
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