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Abstract—Limited storage, channel bandwidth, and battery lifetime are
the main concerns when dealing with Wireless Visual Sensor Networks
(WVSNs). Surveillance application for WVSNs is one of the important
applications that requires high detection reliability and robust tracking, while
minimizing the usage of energy as visual sensor nodes can be left for months
without any human interaction. In surveillance applications, within WVSN,
only single view target tracking is achieved to keep minimum number of visual
sensor nodes in a ’wake-up’ state to optimize the use of nodes and save battery
life time, which is limited in WVSNs. Least Mean square (LMS) adaptive
filter is used for tracking to estimate target’s next location. Moreover, WVSNs
retrieve large data sets such as video, and still images from the environment
requiring high storage and high bandwidth for transmission which are limited.
Hence, suitable representation of data is needed to achieve energy efficient
wireless transmission and minimum storage. In this paper, the impact of CS is
investigated in designing target detection and tracking techniques for WVSNs-
based surveillance applications, without compromising the energy constraint
which is one of the main characteristics of WVSNs. Results have shown that
with compressive sensing (CS) up to 31% measurements of data are required
to be transmitted, while preserving the detection and tracking accuracy which
is measured through comparing targets trajectory tracking.

Keywords— Compressive sensing, LMS, Surveillance applica-
tions, Target tracking, WVSN

I. INTRODUCTION

Wireless Visual Sensor Networks (WVSNs) have gained sig-
nificant importance in the last few years and have emerged in
several distinctive applications [1], [2]. Due to the evolvement of
new technologies and techniques, there are immediate needs for
automated energy-efficient surveillance systems. WVSN has targeted
various surveillance applications in commercial, law enforcement
and military purpose as well as traffic control, security in shopping
malls and amusement parks. Systems have been developed for video
surveillance including highway, subway and tunnel monitoring, in
addition to remote surveillance of human activities such as elderly
or patients care.

Visual sensor nodes are resource constraint devices bringing the
special characteristics of WVSNs such as energy, storage and band-
width constraints which introduced new challenges [3]. In WVSN
large data sets such as video, and still images are to be retrieved
from the environment requiring high storage and high bandwidth
for transmission. Higher complexity of data processing and analysis
is also challenging which are all quite costly in terms of energy
consumption. Furthermore, wireless channels in surveillance applica-
tions are subject to noisy conditions; therefore, detection and tracking
reliability within such resource constrained condition is the main
challenge when designing WVSN surveillance applications. Energy
efficient processing and efficient compression techniques are the
strongest candidates to overcome such constrains while transmitting
data for WVSN applications and hence minimize energy expenditure
[2], [4].

Much work is present in the literature for surveillance applications
within WVSNs [5], [6], [7]. Moreover, there is significant literature
for target tracking surveillance applications in WVSN. Kalman filter-
ing [8], [9] is relatively the best linear estimator for target tracking.
Kalman filters are robust under optimal conditions, otherwise adaptive
approaches are needed to solve these problems which can be either
computationally expensive or not always be applicable in real time
tracking.
Classical active contour [10] for target tracking fails in tracking
multiple targets at once so occlusion problems are difficult to solve. In
[11], the active contour is modified to resolve occlusion problem by
performing merging and splitting when two targets get close together
or move apart. However, there is a probability that the target is lost
if the displacement of the target between two consecutive frames
is large. Least Mean Sqaure (LMS) algorithm is relatively simple,
has much lower computational complexity than the original Kalman
filters and other adaptive algorithms; it does not require correlation
function calculation nor does it require matrix inversions. Moreover,
it is suitable for real time image applications [12], [13].

Based on the above literature, to attain a trade off between
computational complexity and detection and tracking accuracy in
the context of energy constrained WVSN, an image processing
scheme is required with optimal pre-processing and post-processing
can provide intended target detection and tracking accuracy within
energy constraint nature of WVSN. Moreover, high volume data sets
acquired in WVSN surveillance applications, should be represented
in such a way that it requires optimum storage, energy, and allow
reliable transmission due to the constraint on the physical and radio
resources. In a surveillance application within WVSN, an image
is captured and required to be sampled for storage as well as to
be transmitted through wireless channel. According to Shannon-
Nyquist sampling theory the minimum number of samples required to
accurately reconstruct the signal without losses is twice its maximum
frequency [14]. It is always challenging to reduce this sampling
rate as much as possible, hence reducing the computation energy
and storage. Recently proposed Compressive Sensing (CS) [14] is
expected to be a strong candidate to overcome the above mentioned
limitations where CS has been considered for different aspects of
surveillance applications due to its energy efficient and low power
processing as reported in [15], [16]..

CS theory shows that a signal can be reconstructed from far fewer
samples than required by Nyquist theory as it is always challenging
to reduce the sampling rate as possible, provided that the signal is
sparse (where most of the signal’s energy is concentrated in few non-
zero coefficients) or compressible in some basis domain [17].
In [15], compressive sensing for background subtraction and multi-
view ground plane target tracking are proposed. A convex opti-
mization known as basis pursuit or orthogonal matching pursuit is
exploited to recover only the target in the difference image using
the compressive measurements to eliminate the requirement of any
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Fig. 1. Compressive sensing measurement process

auxiliary image reconstruction. Other work in compressive sensing
for surveillance applications has been proposed in [18], where an
image is projected on a set of random sensing basis yielding some
measurements. In this paper, the impact of CS is investigated in
designing target detection and tracking techniques for WVSNs-based
surveillance applications, without compromising the energy constraint
which is one of the main characteristics of WVSNs. CS is expected
to reduce the size of sampled data with low complexity processing
due to its low power simple process [17], hence saving space, energy
of processing and transmission as well as channel bandwidth. Hence,
a compressive sensing-based single/multi target tracking using LMS
is proposed which is expected to reduce energy consumption, space
requirement and communication overhead, with acceptable tracking
reliability which will be represented as minimal mean square error
(MSE).

The rest of the paper is organized as follows, Introduction to CS
is presented in Section II. Section III presents the proposed system
model. The proposed technique for CS-based target tracking is given
in Section IV. Simulations and results are provided in Section V and
finally the conclusion in Section VI.

II. COMPRESSIVE SENSING THEORY

Suppose image X of size (N × N) is K-sparse that either sparse
by nature or sparse in Ψ domain, CS exploits the sparsity nature
of frames, so it compresses the image using far fewer measurements
[19], [17], [20]. Although, it is not necessary for the signal itself to be
sparse but compressible or sparse in some known transform domain
Ψ according to the nature of the image, smooth signals are sparse
in the Fourier basis, and piecewise smooth signals are sparse in a
wavelet basis. Ψ is the basis invertible Orthonormal function of size
(N×N) driven from a transform such as the DCT, fourier, or wavelet,
where K � N, that is, only K coefficients of x are nonzero and the
remaining are zero, thus the K-sparse image X is compressible. CS
then guarantees acceptable reconstruction and recovery of the image
from lower measurements compared to those required by shannon-
Nyquist theory as long as the number of measurements satisfies a
lower bound depending on how sparse the image is. Hence, X can
be recovered from measurements of size M where M ≥ K logN� N.
Eq.(1) shows the mathematical representation of X

X = ΨS (1)

S contains the sparse coefficients of X of size (N × N), si =<
X, ψT

i >= ψTX, S = ΨTX. The image is represented with fewer
samples from X instead of all pixels by computing the inner product
between X and Φ, namely through incoherent measurements Y in
Eq.(2), where Φ is a random measurement matrix of size (M × N)
where K << M << N. Fig.1 shows the CS measurement process
[21].
y1 =< x,φ1 >, y2 =< x, φ2 >,· · · ,ym =< x, φm >.

Y = ΦX = ΦΨS = ΘS (2)

Since M < N, recovery of the image X from the measurements

Y is undetermined, However, if S is K-sparse, and M ≥ K logN
it has been shown in [17] that X can be reconstructed by `1 norm
minimization with high probability through the use of special convex
optimization techniques without having any knowledge about the
number of nonzero coefficients of X, their locations, neither their
amplitudes which are assumed to be completely unknown a priori
[20], [19], [22]

min‖X̂‖`1 subject to ΦX̂ = Y (3)

Convex optimization problem can be reduced to linear programming
known as Orthogonal Matching Pursuit (OMP) which was proposed
in [23] to handle the signal recovery problem. It is an attractive al-
ternative to Basis Persuit (BP) [24] for signal recovery problems.The
major advantages of this algorithm are its speed and its ease of
implementation. As seen, the CS is a very simple process as it enables
simple computations at the encoder side (sensor nodes) and all the
complex computations for recovery of frames are left at the decoder
side or BS.

III. SYSTEM MODEL

This work proposes a compressive sensing model which is ex-
pected to reduce space requirements and communication overhead
with low processing complexity while preserving detection and
tracking accuracy.

Consider for a surveillance application a WVSN model composed
of V visual sensor nodes and one or more BS. Each sensor node i
is required to capture images from a video sequence and detect the
presence of objects. At the time where a sensor node enters a ’wake-
up’ state, the time reference for the frame count is assumed to be
t = 0. Hence, a single snapshot at t = 0 is expected to be stored
within the memory allocated at the sensor node; that is assumed
to be the background for the intended target tracking; denoted as
Xb. The following frames are the subsequent captured frames Xt

with t > 0. Hence, Xb and Xt are the background and test images
respectively of size (N×N) each. Let us assume most features of the
targets are known to the monitoring center. However, the existence
and the location of targets are required for monitoring. The receiver
or BS also has prior explicit information of the background. To
achieve higher compression rates, the foreground target is extracted
first by background subtraction resulting in the difference frame.
Hence, assuring sparsity as the difference frame is always sparse
regardless the sparsity nature of real frames. Within the image frame,
The extraction of foreground target Xd is achieved at each sensor
node where CS is then applied for transmission through the wireless
channel. At the BS side, the receiver decompresses the received
compressed data obtaining X̂t to predicts the intended target’s next
location for tracking. The system model for the proposed WVSN is
shown in Fig. 2

Fig. 2. The proposed model for WVSN-based surveillance application

IV. PROPOSED CS-BASED TRACKING ALGORITHM

A. Compressive Sensing
At each sensor node, after each image frame is being captured,

some preprocessing might be required. In our case, to assure sparsity
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Fig. 3. First row shows test frames and background subtraction results in second row, the background subtracted frames are then compressed and used as a
references to test detected location using CS. Left set of frames for scheme”1” (outdoor scheme) Right set of frames for scheme”2” (indoor scheme)

within the image frame, the foreground target is extracted first by
background subtraction by subtracting Xt from Xb resulting in the
difference frame Xd. Hence, instead of producing the compressed
measurements for Xb and Xt separately, the compressed measure-
ments are produced directly for Xd, as the difference frame is always
sparse regardless of the sparsity nature of real frames. CS process
is then applied to Xd by multiplying it by a random projection
sensing matrix Φ producing the compressed measurements Yd. At
the BS side, the received compressed data is decompressed for the
reconstruction of the estimated data X̂d. As mentioned, Xb is known
to the BS, making it possible to reconstruct the original test frame
X̂t by adding Xb to X̂d. Below are the steps undertaken during the
entire process

• Step 1: Xd = |Xt − Xb| > Th, where th is a given threshold to
extract the foreground target

• Step 2: Φ is a randomly chosen sensing matrix of size M×N,
where M� N

• Step 3: produce the compressed measurements Yd = ΦXd

• Step 4: sensor nodes transmits Yd through the wireless channel
• Step 5: at the receiver side, Φ must be known for the de-

compression of Yd. X̂d is reconstructed from the compressed
measurements Yd, resulting in a frame with only the foreground
target present.

• Step 6: the real frame X̂t is then obtained by adding X̂d to
the background frame Xb which is also has to be known to the
receiver side apriori.

• Step 7: the targets locations are obtained after reconstructing
the real frame producing a trajectory for the complete path of
each moving target

B. Least Mean Square (LMS) tracking
The LMS algorithm, is referred to as adaptive filtering algorithm

since the statistics are estimated continuously, hence it can adapt to
changes. LMS incorporates an iterative procedure during the training
phase where it estimates the required coefficients to minimize the
mean square error (MSE). This is accomplished through successive
corrections to the expected set of coefficients which eventually leads
to the minimum MSE. The LMS implementation process has been
illustrated in Fig.(4).

As shown in Fig.4 the outputs are linearly combined after being
scaled using corresponding weights. The weights are computed using
LMS algorithm based on MSE criterion. Therefore the spatial filtering
problem involves estimation of a signal from the received signal,
by minimizing the error between the reference signal, which closely
matches or has some extent of correlation with the desired signal
estimate and the output. The LMS algorithm is initiated with an
arbitrary value w(0) for the weight vector at n = 0. The successive
corrections of the weight vector eventually leads to the minimum
value of the mean squared error. The weight update can be given by

Fig. 4. An N-tap LMS adaptive filter

the following equation

w(n + 1) = w(n) + µx(n)e(n) (4)

where, x(n) is the input signal, µ is the step size parameter, e(n) is
the MSE between the predicted output y(n) and the reference signal
d(n) which is given by

e(n) = (d(n)− y(n))2 (5)

the output y(n) is calculated as follows

y(n) = x(n)w(n) (6)

µ is selected by the autocorrelation matrix of the filter inputs.

V. SIMULATIONS AND RESULTS

Based on the system model proposed, simulations and experiments
are conducted to evaluate the performance of the CS-based target
detection and tracking algorithm. Simulations are performed for the
WVSN-based surveillance application in both outdoor and indoor
scenes for single and multi-target tracking. Background and target’s
appearance are assumed to be static to investigate the effect of CS on
the detection and tracking algorithms, hence schemes are chosen to
reflect this assumption. Moreover, to illustrate the relation between
the number of measurements required for CS to guarantee recon-
struction and how sparse the image is. Simulations are performed on
2 different schemes with different sparsity levels; ”outdoor scheme”
is chosen to resemble an outdoor scenes for multi target tracking
captured by [25]. While ”indoor scheme” filmed for the EC funded
CAVIAR project found in [26] for indoor scenes tracking a single
target.

Mean square error (MSE) and peak signal to noise ratio (PSNR)
are used as performance indicators to test the reliability of CS. MSE
and PSNR are compared for different number of CS measurements M,
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where the MSE is the reconstruction error measured between real and
reconstructed frames and PSNR is measured after frames recovery to
reflect the quality of image reconstruction which will later on reflects
the ability of reliable tracking. The background frame and Φ are
known to the receiver node. Two candidate sensing matrices have
been compared; normally distributed random numbers using Matlab
function ”randn” and a walsh-hadamard. Although the measurements
are defined by a matrix multiplication, the operation of matrix-by-
vector multiplication is seldom used in practice, because it has a
complexity of O(MN) which may be too expensive for real time
applications. When a randomly permutated Walsh-Hadamard matrix
is used as the sensing matrix, the measurements may be computed
by using a fast transform which has complexity of O(K log(N)) [27].
The Hadamard matrix, is an (N×N) square matrix whose entries are
either +1 or -1 and whose rows are mutually orthogonal, the matrix
is first randomly reordered then, M samples are randomly chosen to
construct the (M× N) random sensing matrix Φ.
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Fig. 5. Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for ”outdoor scheme”

As stated earlier, the ability of reliable tracking depends on
acceptable recovery of images. In other words, if CS fails in im-
age reconstruction the targets location can not be detected. Hence,
choosing the right value of M is critical in image reconstruction
and afterwards tracking. It is clear from the results in Fig.5 and 6
for outdoor and indoor schemes respectively that for different sparsity
levels different values of M and compression rates are required. When
reaching optimum value of M least MSE while preserving a 33dB
PSNR. For illustration, MSE decreases as M increases till reaching
the optimum value, it has been shown that the lower bound on M is
depending on how sparse the difference frame Xd is or in other words
proportional to the ratio between the number of non-zero coefficients
and the total number of pixels in a frame. For ”outdoor scheme”,
CS sets M to 90 in Fig.5(a) to achieve satisfactory results. While
for ”indoor scheme”, it is obvious from Fig.6(a) that for single-target
tracking (where there is lower number of non-zero coefficients), better
MSE is achieved with lower M, reduced to 50 for ”indoor scheme”
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Fig. 6. Comparing reconstruction MSE and PSNR using randn and walsh
sensing matrices for ”indoor scheme”
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Fig. 7. Relation between the percentage ratio of target size:frame size vs.
M

compared to multi-target tracking while maintaining least MSE and
33dB PSNR as in Fig.6.

As for MSE, Fig.5(b), 6(b) show the effect of M on PSNR for the
different schemes. For each scheme, according to the sparsity nature
of each scheme, the number of measurements M required will differ
to obtain guaranteed reconstruction which is defined here in terms
of PSNR. For low values of M it is hard to achieve a good PSNR,
to reach the acceptable value, M should increase till reaching its
optimum value as discussed earlier. To illustrate this for the ”indoor
scheme”, to achieve a PSNR of ≈ 33dB M reached 50, while for
the ”outdoor scheme” if the same M is used, we could not attain a
PSNR higher than 25dB.

The above simulation were carried out using two different sensing
matrices, Randn and walsh-Hadamard. They are compared with
respect to MSE and PSNR as in Fig.5 and 6. It is clear from the
results that when reaching the optimum value of M both sensing
matrices perform nearly the same except in some cases in Fig.6 shows
that Randn gives slightly a better performance than Hadamard. But
this can be negligible when compared to the reduction in complexity
gained by using Hadamard matrix which helps in accomplishing the
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Fig. 8. Relation between the percentage ratio of target size:frame size and
(a) reconstruction MSE, (b) average PSNR

main objective to save sensor nodes power and as a result maximizes
their lifetime.

Fig.7 and 8 summarize and demonstrate the effect of the target
size ratio on the number of measurements M needed in terms of
reconstruction MSE and PSNR (the target size ratio is expressed as
a ratio between non-zero pixels representing the target and the total
size of the image frame, which reveals how much space the target
acquires and how sparse the image is). It is clear from Fig.7 that for
smaller target sizes, lower values of M are used while at the same
time achieving the least MSE and PSNR of ≈ 33dB as in Fig.8(a)
and 8(b), respectively. While for larger target sizes, a higher M is
required to achieve the same performance achieved for frames with
smaller targets. Experiments were carried out using the same M set to
50 for the 2 schemes (different sparsity levels). For example, frames
with small size targets gave better reconstruction results in terms of
least MSE and a 33dB PSNR as in Fig.8(a) and 8(b). Whereas, if
the targets size grew bigger such as acquiring 60% space of the total
frame size, with M set constant reconstruction results in high MSE
and only 18dB PSNR. In that case M should be set to 90 or higher
based on the sparsity nature to reach a low MSE and a PSNR of
≈ 30dB that was attained by lower M (M = 50) when compressing
frames with targets of size < 10% of the frame size. These results
reflect the constraint of the lower bound of M discussed in sec.II and
give a key to the problem when M is required to be kept as small
as possible. Where in that case the size of targets is controlled by
zooming or changing the location of sensor nodes while bearing in
mind to keep the scene of interest in the camera’s field of view. By
taking snapshots from a further location the total space acquired by
the target is hence reduced and as a result M can be reduced, and
the goal of reducing the size of transmitted data is met .

Another performance indicator is the correlation coefficient. After
reconstructing the compressed measurements, the correlation coeffi-
cient indicates how likely the reconstructed frame correlates with the
original one. Fig.9 shows by increasing M till reaching its optimum
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Fig. 9. Correlation coefficient for different M

values the correlation coefficients is nearly 100%, this implies that CS
has not affected the image quality after recovery, whereas less number
of measurements were required reducing the size of transmitted data.

30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Number of CS measurements M

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)

Detection probability vs. different M

Fig. 10. Probability of detection vs different values of M

Fig.10 shows the probability of detection for different values of
measurements M , it is clear from the graph that for lower values
of M the target is misdetected. This reflects the fact that the
reconstruction can not be guaranteed with lower values of M . The
probability of detection increases till reaching 100% as M increases
to its optimum value selected during the CS process.

CS states that when enough measurements are used for com-
pression, the reconstruction is done with high accuracy depending
on a lower bound of M . Trajectory tracking of moving targets is
considered to reflects the degree of reconstruction accuracy. Tracking
reliability is tested by comparing the moving target’s real and
predicted trajectories using LMS. Fig.11 and 12 show the (x,y)
position plots of the path tracked for the targets in the camera’s
scene. Fig.11(a) and 11(b) show that (for ”outdoor scheme”) for
lower values of M < optimum value (40 and 70 respectively), frames
can not be reconstructed properly and as a result the targets tracks
are not matching their real trajectories, whereas for optimum values
of M reaching 90, LMS accurately predicted the target’s locations
and the results are closely matching the real target trajectory before
compression. Fig.12 illustrates the same for ”indoor scheme”.

VI. CONCLUSION

Experiments were carried out to evaluate the performance of CS
and its effect on target detection and tracking. Simulations have
shown that CS is a strong candidate to reduce the size of images
as WVSNs are resource constrained (Limited storage, channel band-
width). Results have shown that using CS up to 31% measurements of
data are required to be transmitted, while preserving the reconstruc-
tion quality which is measured in terms of MSE and PSNR. The
reconstruction MSE decreases till reaching the lower bound on the
number of compressed measurements while preserving the acceptable
PSNR. In addition, for different schemes where the sparsity nature
of each image differs, CS chooses the compression rates accordingly.
Moreover, surveillance application within WVSNs is one of the
important applications that requires high detection reliability and
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(a) M=40
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(b) M=70
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(c) M=90

Fig. 11. Comparing predicted trajectory of multi-targets using LMS for
”outdoor scheme” (using different M for CS)

robust tracking. Hence, CS should not affect the performance of
target tracking. After image reconstruction, the impact of CS on
target tracking is investigated using LMS to predict target’s next
location. Target’s trajectory tracking has been used as a performance
indicator for the LMS algorithm. Results have demonstrated that the
predicted path closely matches the target’s real path which illustrates
the accuracy of LMS and that CS has not affected the performance
of target detection and tracking.
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