

Abstract—This paper describes the architecture of a real-time

Web application, which is being developed for the new monitoring
system in the Laguna Verde Nuclear Power Plant. We describe
technologies and methodologies that were applied to achieve a
correct implementation. We also describe the main technological
challenges that were faced in order to develop a Web-based real-time
application. The application was developed using Java and
JavaScript, making use of LiveConnect technology to achieve
interoperability between both languages. HTML5, CSS3 and SVG
were used to create graphic user interface of the application.

Keywords—Real-Time, Nuclear Power Plant, Web Application,
Process Information.

I. INTRODUCTION
RAPHIC displays present relevant information regarding
operating conditions in power plants. This information is

of vital importance to operators, because it aids in decision-
making and is needed for power plant operation. Therefore,
graphic displays need to be highly reliable and information
must be presented clearly and concisely. In the particular case
of nuclear power plants, graphic displays are often subject to a
series of regulations that have to do with how information is
presented to operators.

 This paper describes the architecture and design of a Web
application that will replace the current graphic display system
in the Laguna Verde Nuclear Power Plant. One of the main
requirements for this application is that it needs to be
integrated to an existing real-time data acquisition system
(DAS). In addition, the application must meet strict
performance and reliability criteria since it is a mission-critical
system that must be able to operate for extended periods of
time with no interruptions. Furthermore, information presented
to operators must be highly precise and reliable. Another
important requirement is to ensure that the application can be
supported for at least 15 years. For this reason, the application
must be built using well-established languages and standards.
Since the power plant is under constant renovation and
maintenance, graphic displays should be easy to update in a
reliable manner. Finally, processing should be distributed to
client workstations in order to minimize the load in DAS
servers.

 Taking into consideration the application requirements
stated above, we decided to develop the new graphic display
system as a Web-based application. Currently, Web-based
applications are becoming increasingly popular and
technologies used to develop them are open and well-
established; thus, software lifespan for this type of applications
can be expected to be considerable. These technologies also
offer a higher ease of use with respect to other programming
languages. Contrary to what might be expected, we show that
it is possible to develop a mission-critical, Web-based
application that works in real-time.
 This paper first gives a brief overview of the data
acquisition system to which we will integrate our graphic
display system and that will be the main data source for our
graphic displays. We then present the proposed architecture,
explain its modules and describe how we tackled several
technological challenges to achieve a high degree of
performance and reliability. Finally, we explain our graphic
user interface implementation.

II. BACKGROUND
The Laguna Verde Nuclear Power Plant relies on an

information system known as SIIP, to monitor its processes.
The system consists of servers which acquire store and process
data in real time. It also consists of workstations with graphic
displays, which present real-time information on key processes
and systems. The SIIP system is mission-critical and is
integrated with a data acquisition system (DAS) known as
NSAD [1], which was developed by the Electrical Research
Institute of Mexico. The NSAD system can acquire data from
different sources such as RTP [2], NUMAC (Nuclear
Measurement Analysis and Control) and DEHC [3] (Digital
Electro-Hydraulic Control) modules, among others. This
system also features software modules capable of generating
composed data points, which are complex data points that
calculate important parameters through specialized algorithms.
Such calculations include operational limits, balance of plant,
security parameters, etc. The NSAD system is also capable of
generating long duration historical archives known as SCAN
[4], which are used to analyze transients or important events as
well as to generate tabular or graphic trend reports

A Real-Time Web-based Graphic Display
System using Java™ LiveConnect Technology

for the Laguna Verde Nuclear Power Plant
Efren Ruben Coronel Flores, Ilse Leal Aulenbacher

G

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 217

III. ARCHITECTURE
Based on the requirements, we analyzed and evaluated two

different possible architectures: desktop and Web-based
applications. Each option has its advantages and
disadvantages. For instance, desktop applications are robust
and can be developed in a variety of programming languages.
However, these applications may become dependent on the
platform in which they were developed. Regarding the
development of visual displays with complex drawings,
desktop applications require higher development efforts due to
the lack of an easy-to-use drawing standard. Therefore, in most
cases, it is necessary to resort to third-party applications.

 Web applications have their disadvantages as well, which
are mostly related to communication or reliability in the
context of mission-critical real-time systems. However, these
applications have many advantages. For instance, Web
applications are widely used and thus, extensive support in the
future is expected. This is mainly because they are based on
easy-to-use, open and well-established standards. Another
advantage is platform independence; to deploy these
applications, a Web browser with support for the required
technologies is all that is needed.

Fig. 1 illustrates the proposed architecture, which highlights
and defines three main modules: communication, processing
and presentation. Each module makes use of different
technologies. Therefore, our application requires a Web
browser that supports Java, JavaScript, HTML5 [6], CSS3 [7]
and SVG [8]. The latter is used for vectorial drawings in
graphic displays.

Fig. 1 General Architecture

 When a Web browser loads the application, it creates a

Java applet which in turn launches the Java execution
environment, which is better known as the Java Virtual
Machine (JVM). It is in the JVM where Java objects for both
processing and communication modules are created. The JVM

allows creating multiple execution threads that run
asynchronously in relation to the main browser thread. From
within these threads, it is possible to use sockets to establish
communication with the DAS server to exchange information.
Multi-threading also allows the application to perform
advanced processing tasks, which require greater processing
time and resources. Such complex tasks would cause
performance problems if they were assigned to the main
browser thread.

 Finally, within the presentation module, JavaScript is
used to manipulate and interact in real-time with the browser
visualization environment. This is done through LiveConnect
technology [9], which enables interoperability between the
JavaScript engine and Java applets; which in turn, allow
obtaining information stored in the JVM execution threads.
LiveConnect technology is implemented in every Web browser
and allows Java applets to communicate with the JavaScript
engine and vice versa. Furthermore, it is in the presentation
module where open standards dedicated to the visual part of
the application converge: HTML5 is used to define elements
such as texts, tables, labels, buttons, etc. and SVG is used to
draw complex elements such as the representation of a turbine,
a condenser, or a nuclear reactor vase.

IV. COMMUNICATION
Communication is the main building block in real-time

applications, since a high degree of performance and reliability
is required. Hence, it is one of the most important
requirements in our Web-based graphic display system. To
meet such requirements, the main challenge was to determine
which technology would be more adequate. One important
consideration is that to obtain a high level of performance, the
application needs to have dedicated point-to-point
communication; this is achieved by using socket libraries over
a well-defined protocol. Most programming languages
designed for traditional desktop applications, implement
sockets and their use is relatively simple. However, it is in
Web environments where the use of sockets becomes more
complicated.

Recently, new technologies have emerged in order to solve
this problem; one of them is the Websockets standard [5],
which is expected to bring real-time or close-to-real-time
communication capabilities to Web environments. Websockets
provide full-duplex communication over a TCP connection.
There are libraries that already make use of Websockets
technology, which offer developers transparent use of sockets
in their applications. Nevertheless, the main disadvantage of
this technology is that it is very recent and has not yet been
thoroughly tested. Furthermore, it works on top of the
JavaScript browser engine and thus, is part of the single thread
that the browser provides. Therefore, it does not support
multiple threads. This can cause serious problems, because the
application could become blocked while waiting for a socket
response. In a system like ours, this problem should be
avoided at all costs.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 218

Due to the issues explained above, we decided to explore
the option of using the Java language to communicate with the
DAS server by using applets; this allows creating traditional
Java applications that can run in a browser. With this option, it
is possible to take advantage of all of the features that Java
provides, which include the use of sockets and multiple threads
within an execution layer in the browser. This enabled us to
implement communication and data acquisition through
TCP/IP sockets over Ethernet, based on the client/server
paradigm. With this, we were able to guarantee the
performance level we need for acquiring real-time data from
the DAS server.

The communication protocol is proprietary and was
designed specifically for communication with the DAS. The
protocol features well-structured messages that are used to
perform each of the different possible actions in the system,
such as user authentication, real-time data requests, alarm
information, historical data retrieval, etc. One of the
advantages of having a proprietary protocol specifically
designed for our system is that it offers good performance, as
well as a good level of security.

In our implementation, communication sockets are declared
within a Java object that can be accessed through the applet,
which is instantiated in the Web Application (Fig. 2). Sockets
can be used from JavaScript by using Java’s LiveConnect
technology, which enables interaction from JavaScript with
calls to objects instantiated within the JVM by the applet itself.
For example, this allows the application to perform the user
authentication process by requesting a username and password
to the user and then passing such parameters to the
corresponding method in the Java object; this object in turn
establishes the connection using sockets to send the
authentication message.

Fig. 2 Communication mechanism

The DAS can also operate in redundant mode. This means
that there is a server operating as the main data server and
there can be other servers working in backup mode. If the main
server is down, the backup server can replace it automatically,
thus avoiding any loss of information. Therefore, the
communication module also has the necessary functionality to
guarantee that the Web application will always be connected to
one of the DAS servers. This is determined by performing
periodic verifications each second, to determine which server
is operating as the main data server; if the main server is down,
it establishes a connection to a working server.

V. MEMORY MANAGEMENT
Memory management in real-time, Web-based applications

tends to be complex, especially because most object-oriented
languages contain mechanisms that dynamically create or
destroy objects in memory, based on algorithms that determine
when objects are no longer being used or referenced. This, in
the context of real-time systems, can be problematic.
Therefore, special mechanisms must be designed to properly
manage objects in memory, so that application performance is
not undermined. To address this problem, objects from the
most important modules in our system are instantiated only
once; this is done when the applet is loaded and the JVM
created. In addition, these objects are static and are
instantiated in a static class, which can be accessed by every
object, either from Java or JavaScript. To access these objects
from JavaScript, specific applet methods are invoked; these
methods expose static objects stored in the JVM (Fig. 3).

Fig. 3 Memory Objects

One issue in the interaction between JavaScript and Java is

how data types are translated between both languages, when
methods that return values are invoked. Native data types such
as String, int, float, etc., do not cause problems. However,
implementation of complex objects that include arrays can be
different among browsers. To solve this problem, we use
JSON objects for data exchange between JavaScript and Java.
This allows us to manipulate information in a format that is
common to both languages.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 219

Another benefit that comes from implementing correct
memory management mechanisms is having greater control
over Garbage Collection (GC) in Java and JavaScript. Since
GC cannot be disabled, different techniques can be used to
delay Garbage Collection indefinitely. One of these techniques
is object pooling, which consists in re-using objects instead of
constantly creating and discarding new objects. This is
especially important for large or complex objects.

VI. PROCESSING
Submission By definition, the execution of a Web

application is always single threaded. This means that there is
only one execution thread in which all actions, such as
rendering visual components, handling events or user input,
managing timers, etc., are performed. This paradigm can be
problematic, especially for real-time Web applications, which
have very specific requirements. One of such requirements is
reliability, which means that the application must be robust
enough so that it can operate without interruptions during
extended periods of time. Another important requirement is
performance, which enables an application to react in a timely
manner under different operating conditions. This aids in
avoiding deadlocks or anomalies that can result in users
experiencing long waiting periods or frozen screens.

The use of Java from a Web application, allows performing
several operations through multiple threads that run in parallel
to the main Web browser thread, thus achieving a high level of
performance and reliability. Fig. 4 shows a block diagram
which illustrates the threads we implemented for our
application.

Fig. 4 Multi-Threading

A. Authentication Thread, which is created and run only

once when a user first launches our application. It allows to
establish a connection to the server and to send an
authentication message. This thread prevents the application
from becoming blocked during the authentication process.
This thread also obtains certain initialization parameters, such
as data point information, alarm information and server

information.

B. Real-Time Acquisition Thread, which is created and run

once a user has successfully authenticated and established a
connection to the server. This thread operates permanently
during a user session and acquires real-time data for around
8500 data points. Acquisition is performed in two cycles per
second (500ms). Each cycle, data regarding software and
hardware alarms, status of processes, status of acquisition
subsystems and server state are obtained.

C. On-demand Data Thread, which is created and run once a

user has successfully authenticated and established a
connection to the server. This thread operates permanently
during a user session and uses its own communication socket,
which is independent from the Real-Time Acquisition Thread.
The purpose of this thread is to manage user requests that
involve longer processing periods, such as requests for
historical data, which are often used to generate tabular or
graph trend reports. These requests can take several seconds to
complete due to the required data flow. If such requests were
performed using the Real-Time Acquisition Thread, graphic
displays would experience delays and would not be able to
present the most recent information in a timely manner.

D. Reconnection Thread, which is run once, only when there

is a connection problem to the server involving real-time or
on-demand acquisition sockets. It also verifies that a
connection is established to a server operating as the main data
server. If there is no main data server online, connections are
established to backup servers. Once connections have been
successfully re-established, this thread exits.

E. Service Threads. These threads are created to handle

requests from certain system modules that require longer
processing times and that could otherwise block the execution
of our Web application. For example, a request to perform an
analysis on historical data for a group of data points could take
several seconds or even minutes, depending on its complexity.
By using a thread that is exclusively dedicated to such request,
the Web browser main thread can continue to run normally,
without interruption. The browser main thread would only
need to monitor the corresponding service thread in order to
determine when it has finished its processing, so that results
can be presented to the user.

All of these threads are run asynchronously in relation to the

main Web browser thread in the Java Virtual Machine, thus
avoiding delays or interruptions to the browser main thread.
Data which are acquired or processed by threads are stored in
persistent objects in the JVM. In fact, each application module
has a dedicated persistent object. These objects are accessed
by JavaScript through LiveConnect calls to the Java applet, in
order to obtain data which is then shown in graphic displays.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 220

VII. GRAPHIC USER INTERFACE
Our Graphic User Interface (GUI) was designed as a single

HTML5 application. With this approach, Web-based
applications do not need to refresh a whole page as the user
interacts with it, similar to traditional desktop applications. To
achieve this, JavaScript provides power and flexibility by
enabling developers to create or modify components by
accessing and manipulating the DOM (Document Object
Model) in a Web page. Additionally, AJAX technology
provides the capacity to obtain dynamic data from Web
servers without the need to update an entire page. Fig. 5 shows
a block diagram which illustrates how our Web application
works.

Fig. 5 User Interface block diagram

a) Our Web application consists of a single HTML index

file (index.html), which includes a reference to a CSS file and
a JavaScript file, which is used to load the site. Our Web
application is stored in an Apache Web server, which can be
accessed from any Web browser.

b) Once our Web application is loaded, a JavaScript process

loads via AJAX other resources that constitute our application.
These elements are: an applet which serves as an interface to
Java, CSS files and JavaScript files from different modules
that make up our application. The obtained resources are then
inserted into the document DOM so that they become active in
browser memory.

c) Once our application is loaded, an authentication screen

allows users to connect to the DAS server. At this point,
connection mechanisms are used to establish communication
with DAS servers. It is important to note that DAS servers are
different from the Web server where our Web application is
hosted.

d) Once a user has authenticated successfully, the
application main menu is shown. From this menu, users can
open any of the graphic displays in our system. These graphic
displays are implemented as HTML5 pages and can contain
graphic elements based on SVG or Canvas. Graphic displays
can also contain special tags which indicate whether an
element has a dynamic behavior associated with it, such as
showing real-time data, rendering a graph or showing
information about data points or alarms. These special tags are
extracted and substituted with dynamic content by the
application engine, which loads the corresponding graphic
display and inserts it into the DOM. It is in this post-
processing phase, where graphic displays are analyzed to
determine which components are to be modified dynamically.

e) The application engine is run indefinitely at a rate of four

cycles per second (every 250 milliseconds). Each cycle, it
obtains real-time and historical data from JVM persistent
memory, for each of the data points being shown in a graphic
display. These data requests are performed though
LiveConnect technology by accessing applet methods, which
in turn expose the requested information to the application
engine via JavaScript. Additionally, the application engine
dynamically modifies the content of dynamic HTML elements
by manipulating the DOM and applies certain styles based on
CSS files in memory. These operations are performed based
on the behavior that was specified for the graphic display
being shown. It is important to remember that, at this point,
once a connection has been established, processing threads
inside the JVM are active and acquire information from the
DAS server asynchronously in relation to the main browser
thread.

VIII. CONCLUSION

When we think about Web applications, several examples
come to mind. In particular, we can think of sites that we use
on a daily basis. Some of these sites are quite popular and
combine some of the technologies described in this paper.
However, there are very few Web-based applications that can
be considered mission-critical, which operate in real-time with
the level of performance and reliability required in a nuclear
power plant. While designing and developing our system, we
faced several major challenges, which were not easy to tackle.
Despite the fact that these technologies are well-documented
and widely used, it was always necessary to go one step further
and discover new ways to use and integrate them. We consider
that the main challenge was to achieve a correct Java applet
implementation. We can say that the Java applet is the most
important element in our application because it enabled us to
achieve real-time communication and to implement several
processing threads. The main problem with applets is also its
greatest virtue: security. While the possibility of creating
communication sockets, accessing disk files or accessing
computer resources is very powerful, it also generates
problems; therefore, it is clear that applet implementation is

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 221

not simple by any means. The use of LiveConnect technology
opens a wide range of possibilities for this type of
applications. Inter-communication between JavaScript and
Java greatly enhances processing and performance capabilities
in Web applications. Currently, our application is in the final
phase of development and testing. Tests have been successful
since our application complies with all requirements described
in this paper.

REFERENCES
[1] I. Leal, J. Suarez, E. Coronel, “A Real-Time Data Acquisition System

for the Laguna Verde Nuclear Power Plant”, WSEAS, July 2010, ISSN:
1109-2750.

[2] E. Coronel, “Desarrollo de un subsistema de adquisición de datos de
equipos RTP, para su uso en el nuevo sistema de adquisición de datos
en tiempo real de la Central Nucleoeléctrica Laguna Verde”, CIINDET,
pp. 4 - 5, México, Octubre 2008.

[3] E. Coronel, C. Chairez, “Subsystem of Data Acquisition Using the
ModBus Protocol in Real Time of the Digital Electro-Hydraulic Control
and Its Integration with the Integral System of Process Information of
Laguna Verde Nuclear Power Plant”, CERMA, November 2012, pp.
153 - 156, ISBN: 978-1-4673-5096-9.

[4] I. Leal, J. Suarez, “Registros históricos de tipo SCAN en memoria para
un sistema de adquisición de datos en tiempo real para la Central
Nucleoeléctrica de Laguna Verde”, CIINDET, México, Octubre 2008.

[5] I. Fette, A. Melnikov, “The WebSocket Protocol”, IETF, December
2011, ISSN: 2070-1721.

[6] HTML5 A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium (W3C), Editor Draft’s,
http://www.w3.org/html/wg/drafts/html/CR/.

[7] Håkon Wium Lie & Bert Bos: Cascading Style Sheets – designing for
the Web “written by the creators of CSS” (3rd edition, Addison-Wesley,
2005, ISBN 0321193121.

[8] Scalable Vector Graphics (SVG) 1.1 (Second Edition), World Wide
Web Consortium (W3C), August 2011.
http://www.w3.org/TR/SVG/

[9] D. GoodMan, “JavaScript Bible 3rd Edition”, Chapter 38, ISBN:
0764531883

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 222

http://www.w3.org/html/wg/drafts/html/CR/
http://www.w3.org/TR/SVG/

