Advances in Information Science and Applications - Volume I

Energy-Efficient Computation of L1 and L2 Norms
on a FPGA SIMD Accelerator, with Applications to
Visual Search

Calin Bira*, Radu Hobincu*, Lucian Petrica*, Valeriu Codreanu’, and Sorin Cotofanat
*Politehnica University of Bucharest
{calin.bira, radu.hobincu, lucian.petrica} @arh.pub.ro
TEindhoven University of Technology
v.codreanu @tue.nl
IDelft University of Technology
s.d.cotofana@ewi.tudelft.nl

Abstract—This paper presents a novel accelerator architecture
which is SIMD in nature and fully programmable. It provides support
in an energy effective manner to a wide range of vector computations,
including scalar products and similarity metrics like sum of absolute
differences and sum of squared differences. We have evaluated an
implementation of the proposed architecture on the Xilinx Zyng-
7000 EPP featuring the ARM Cortex-A9 processor, running a SIFT
descriptor matching benchmark. Our results indicate that the pro-
cessor can offload the most intensive computational kernels of the
benchmark to the accelerator, thus delivering 4-6x better matching
throughput than the ARM processor alone. Moreover, the execution of
the SIFT matching benchmark on the accelerated platform consumes
3x less energy than on the ARM Cortex-A9, at a similar power
consumption. Our results also suggest that the accelerated ARM
system is 40% more energy effective than Intel Core i7 2600K and
Nvidia GTX680 when executing the SIFT matching benchmark.

I. INTRODUCTION

Object recognition and classification are currently some of
the hot topics in computer vision, with applications in image
matching [11], robotics [16], and panorama stitching [4].
When matching large databases against each-other, matching
speed is the most important performance metric, but power
and energy efficiency plays a major role in the economy of
the entire process. For robotics and mobile devices in general,
energy efficiency is the most important metric since it relates
directly to battery drain. Previous work has yet to demonstrate
a solution to the image matching problem which is high-speed,
low-power, and low-energy. Our research aims to prove that
these goals are attainable without sacrificing programmability.

In this paper we propose an energy-efficient solution to
the matching problem based on a Single Instruction Multiple
Data (SIMD) accelerator architecture. The proposed archi-
tecture is well suited for execution of multiply-accumulate
operations and for selective execution on large data vectors.
It consists of an array of efficient processing elements which
are fed instructions and data by the host processor, through
the use of Direct Memory Access (DMA) and several FIFO
interfaces. The proposed architecture was implemented and
evaluated on the Xilinx Zyngq-7000 EPP [15] running a SIFT

ISBN: 978-1-61804-237-8

descriptor matching benchmark on a standard image dataset.
Our results indicate that the ARM host processor included
within the Zyng-7000 can efficiently offload computationally
expensive kernels to the accelerator, resulting in 4-6x better
matching throughput than when executing alone. Also, the
SIFT matching benchmark execution consumes 3x less energy
on the proposed platform than on the ARM Cortex-A9 alone,
at similar power consumption. Comparisons with desktop parts
suggest that the accelerated ARM system is 40% more energy
effective than a high-end desktop CPU-GPU system.

This paper is organized as follows. Section II presents
details on image matching metrics and the computational
requirements involved. Section III introduces the proposed
architecture and programming model. In Section IV we present
the implementation of the proposed architecture on an off-
the-shelf programmable chip. In Section V we introduce
the experimental results, with Section VI presenting some
concluding remarks.

II. IMAGE MATCHING

The object recognition process works in several steps. First,
the images are split in two sets: the query and search images.
The search images are the ones in which the objects are to be
detected, while the guery image contains the objects that we
wish to find in the search set. The object recognition system
does not work on the images themselves, but rather on a set of
local features representing interesting characteristics of objects
present in the image [17][13]. Therefore, the next step is to
extract these local features, called keypoints, using algorithms
such as Scale Invariant Feature Transform (SIFT) [12]. The
third and final step is to find matching keypoints, which are
identical or very similar in both the query image and at least
one search image.

The keypoint matching task relies on finding the nearest
neighbour of a given query keypoint, in the database of search
keypoints, according to a certain distance metric. Formally,
the nearest neighbour search problem is finding the element
NN(X) in a finite set Q included in a D-dimensional space

432

Advances in Information Science and Applications - Volume I

minimizing the distance to the input vector X. This is de-
scribed in Equation (1), where argmin d(X,Y) is the tuple
(X,Y) which minimizes function d.

NN(X) = argmin d(X,Y)
Ye@

X eRP,YeQcRP (1)

The distance metric d(X,Y") is the L, norm computed as
in Equation (2). The most usual norma are SAD, i.e, L; and
SSD, i.e, Ly. For a given matching task with () keypoints
in the query set and S keypoints in the search set, we need
a total of @ .S SSD or SAD operations to find the nearest
neighbour from the search set for all query keypoints. A match
is declared between a query keypoint and its nearest neighbour
from the search set if the distance between them is below a
given application dependent threshold.

D
Ly = (Y |1Xi = Yi")» @)
i=1

For SIFT and similar algorithms, keypoints are described by
large, typically 64 to 128 elements, vectors of parameters. The
large size of these vectors increases the computational effort
and memory required for the nearest-neighbor calculation.
The SSD metric is more precise but makes intensive use of
multiplication, which is either slow or requires more hardware
resources, while the SAD metric can be implemented with
only an adder, but requires a conditional execution based on
which of the operands is larger. Both metrics require the
accumulation of entire data vectors, which can be implemented
on a scalar processor in a time proportional to the vector size,
therefore slow for SIFT descriptors.

Research projects, e.g, demoASIFT [14], perform keypoint
matching on general-purpose CPUs and support OpenMP [6]
and vectorization, where available, to increase performance.
There have been several proposals for nearest neighbour search
using specialized hardware, such as GPUs. Garcia et al
and other research groups have implemented GPU nearest-
neighbour search and have achieved as much as 120x speedup
when comparing to a similar algorithm running on the CPU
[10][5]. However, GPU implementations are extremely power-
hungry, even though the high attainable matching speeds make
for good energy efficiency.

With regard to specialized accelerators for similarity match-
ing, Wong et al. demonstrated FPGA-based SAD implemen-
tations [20]. Their analysis indicates that an adder tree is
the most efficient implementation, but while the achieved
throughput is impressive, the accelerator is not programmable,
and therefore is only useful for SAD computation. Flatt et al.
proposed and evaluated a host-coprocessor scheme based on
a RISC CPU coupled to an application-specific FPGA circuit
and demonstrated 70x speedup when compared to RISC-only
execution for the SSD metric [9]. Their approach also makes
use of a fully pipelined adder tree architecture, and while
configurable at block level, it is still not programmable.

The architectural solution proposed in the following section
aims to increase the computational performance of L;/Lq

ISBN: 978-1-61804-237-8

matching algorithms on embedded systems, hence with min-
imal energy consumption, and also without sacrificing pro-
grammability.

III. ACCELERATOR ARCHITECTURE

This section presents the proposed system from a hardware
and programming model perspective. The proposed SIMD
architecture as well as its FPGA implementation are intro-
duced below. The software section describes the programming
environment and the corresponding software stack.

A. Hardware Architecture

The proposed system follows the host-accelerator paradigm
. The accelerator is connected to the same bus as the CPU, the
memory, and the Direct Memory Access (DMA) engine, and
it is mapped to the processor address space. The processor can
transfer data to the accelerator from its internal registers and
memory, or it can instruct the DMA engine to transfer data
directly from the main memory to the accelerator.

The SIMD accelerator, presented in Figure 1, follows the
basic principles of the Connex multimedia processor [18].
The computation core consists of N Processing Elements
(PEs), which are simple processors containing several internal
registers, an Arithmetic Logical Unit (ALU), and instruction
decoding logic. The instruction set follows the RISC principle,
whereby all instructions execute in one clock cycle, operate
on two registers and write the result to a third register. In
order to speed up the computation, each PE benefits from a
Local Storage (LS) similar to the shared memory employed
by modern GPUs. The transfer between this shared memory
and the system bus is done through an Input/Output (IO)
network. The PEs are all fed the same instruction at any given
time, which minimizes the control path overhead present in
traditional architectures. Also, specific PEs can be marked
as inactive based on arithmetic flags such as Carry, Less,
and Equal. This permits the SIMD engine to selectively
execute instructions, which is useful for computing certain
types of matching metrics, e.g., SAD. Apart from the number-
crunching PEs, the SIMD accelerator is composed out of three
separate networks:

e The Input-Output network for controlling I/O data trans-
fers between the main memory and the Local Storage.

o The Distribution network for dispatching the to be ex-
ecuted instructions to the PEs, in the form of a fully
pipelined logarithmic tree.

o The Reduction network for gathering the result of global
operations like sum reduction, in the form of a fully
pipelined adder tree.

Mechanisms, e.g., instruction fetching, branching, and
scalar computation, implemented in hardware in the Con-
nex processor, have been moved into software, in order to
minimize area and power overhead associated with control
functions. A simple loop sequencer is retained to execute loops
with a constant number of iterations.

The structure of the SIMD accelerator closely matches the
requirements of nearest-neighbour search with the L; and Lo

433

Advances in Information Science and Applications - Volume I

10 Read {10 write |
FIFO | i FIFO

10 Data Plane and Control

Local Storage
S S 3

Register PE PE PE PE
fle ALU 0 1 5 [N
i T H

Enable Logic |
3 Reduction and Distribution
Trees

t I -

Instruction Loop { Reduction |
i FIFO Sequencer i FIFO i
Fig. 1. SIMD Engine Architecture.

norms, which relies on two stages: an element-by-element
operation, followed by a reduction operation. The first stage
involves performing the same instruction on multiple chunks
of data, and hence an SIMD architecture can efficiently do
the computation on this level. To speedup the SSD evaluation,
each PE includes a hardware multiplier, while the conditional
execution feature is targeted at efficient SAD computation.
Multiplication is done in two separate instructions: the first
launches the multiplication while the second moves the result
into the destination register, thus keeping with the RISC
principle.

The second computation stage involves the summation of
all results computed during the first stage. In our architecture
this is implemented with a fully pipelined adder tree, which
was found in [20] to be the most efficient way to implement
sum reduction for SAD, and was also utilized for SSD in [9].

B. Programming Model

The software architecture and programming model were
developed for easy integration with the user code. Instruction
fetch as well as most control instructions handled by the
host processor, using our accelerator-specific library called
OPINCAA (Opcode Injection and Control for Accelerator
Architectures).

{ Host Linux

User Application (C++ Code)

OPIMNCAA Library

Just-in-Time Assembly

Accelerator Control

DMA Driver

Fig. 2. Accelerator Software Stack.

The overall software architecture is depicted in Figure 2.
Accelerator code, on the highest level of the hierarchy, is writ-
ten in C++ in a specific syntax and can be mixed with ordinary
C++ code in order to implement loops and branches. For this

ISBN: 978-1-61804-237-8

purpose, OPINCAA provides a vector data type and operators
specific to it, including reduction, cell selection and arithmetic
operations. The vectors used in OPINCAA always have the
same size as the underlying accelerator implementation.

Kernels of accelerator code are compiled on-demand in
a similar fashion to just-in-time (JIT) compilation for Java
code. OPINCAA provides the JIT infrastructure as well as
other accelerator control functions. Data-dependent accelerator
loops are unrolled in software, while loops without data
dependencies, and constant number of iterations, are preserved
and executed in hardware by the loop sequencer. Compiled
kernels are indexed and stored until the user explicitly requests
their execution with a call to executeKernel(index), which is
a function of the accelerator control driver. In OPINCAA,
instruction dispatch is a write to a device file, as are 10
writes. Similarly, reductions and IO data are read through
file interfaces. The control driver also exposes the functions
readReduction(), ioRead(), and ioWrite(), which ensure the
correct usage of the file interfaces. These functions abstract
the operation of the underlying DMA driver from the user. The
DMA driver is implementation-specific, as is the accelerator
hardware.

Algorithm 1 SIMD code example.
for(mt i= 0 i < 10; i+ +){

REPEAT(5)
R[3] = R[3] + R[2];
REDUCE(R[3));
END_REPEAT

Algorithm 1 represents a code snippet to illustrate the syntax
used to program the accelerator. The first two lines load the
contents of the Local Storage at address i into R[1] and
address ¢ + 10 into R[2]. The third line loads the value at
an address stored in a register. The following line computes
the difference between R[1] and R|[2], places the result in R[0]
and sets the appropriate flags. The Carry flag indicates if the
sum of R[1] and R[2] overflows, Less indicates if R[1] is
less than R[2] and Equal indicates if R[1] and R[2] are equal.
The WHERE construct deselects the processing elements
where the indicated flag is not set. Execution continues only in
selected PEs until an implicit instruction is encountered to re-
enable all PEs. In the case of Algorithm 1, the PEs where R[1]
and R[2] are equal load their sum into R[3], while all others
keep the initial value loaded from the Local Storage. Finally,
several summation and reduction operations are launched on
register R[3] through the use of the REPEAT statement,

434

Advances in Information Science and Applications - Volume I

which signals a loop executed in hardware by the loop
sequencer. The outer loop, in plain C++ syntax, is unrolled
during the JIT assembly, before the program is streamed to
the accelerator. Also, any non-vector variable which is used
in vector code is replaced by its value during the JIT assembly,
and treated as a constant thereafter.

IV. IMPLEMENTATION

This section describes an implementation of the proposed
architecture on the Xilinx Zyng-7000 extensible processing
platform [15]. The platform consists of two parts, namely
the Processing System (PS) and the Programmable Logic
(PL). The PS includes a dual-core ARM Cortex-A9 processor
running at 667Mhz with NEON instruction support containing
also several I/O peripherals. The PS includes a DDR SDRAM
memory controller and can boot independently of the pro-
grammable logic. The PL consists of a full-fledged Artix-7
FPGA fabric. The PS is linked to the PL through an AMBA
AXI bus, and hence the FPGA fabric can accommodate digital
circuits that accelerate the computation performed by the ARM
cores. For high-speed data transfer between the PS and PL, the
Zynq architecture includes a Direct Memory Access (DMA)
engine which can be programmed by the ARM processor.

An instance of the architecture was implemented on the
Zynq, with the following parameter values: 128 Processing El-
ements, 16-bit operands, 32 registers, and 2KB Local Storage.
This system instance came out of the need to perform fast and
efficient nearest-neighbour computation in high-dimensional
spaces for SIFT primarily, since it is considered the best-
performing matching algorithm. SIMD sizes of 128 processing
elements effectively permit calculating the distance between
all 128 elements of two SIFT descriptors in one pass. The 16-
bit operand dimension was chosen because it has already been
used in [14]. Moreover the work in [19] indicates that using
a shorter integer representation (short int in our case) instead
of full integers or float operands does not result in significant
loss of matching accuracy.

The size of the Local Storage was chosen as the size of a
Block RAM resource of the Zynq FPGA, while the number
of registers allows for an efficient register file in Distributed
RAM. Hardware multipliers were implemented in DSP48E1
slices. The resulting accelerator design occupies 90% of the
Zynq FPGA and can be clocked at 125Mhz. In our experiment,
a 100Mhz frequency was utilized in order to match the AXI
bus frequency.

Figure 3 illustrates how the Zyng-7000 is utilized within
our approach. The PS connects to the PL through a Xillybus
interface core [1], which makes use of the DMA engine to
transfer data from the main memory to several FPGA FIFOs.
The SIMD accelerator connects to these FIFOs, consuming
and producing data from and to the FIFOs as instructed by
the PS. On the Zynq, OPINCAA makes use of the Xillybus
DMA driver, which abstracts transfers over AXI and exposes
the required file interfaces.

ISBN: 978-1-61804-237-8

ARM Xillybus Interface Core

CPU

DMA [»
Engine

Program| Reduce |10 Write | 10 Read
¢ ¢ FIFO FIFO FIFO FIFO

! i + T

SIMD Accelerator

DDR3 Main Memory

PROGRAMMABLE S5YSTEM

PROGRAMMAELE LOGIC

Fig. 3. Zyng-7000 Accelerator.

V. EXPERIMENTAL RESULTS

In order to compare our approach with other matching
hardware, we integrated our keypoint matching functions
within the demoASIFT project [14]. The evaluation results
are obtained from a Zedboard [2] development board housing
the Xilinx Zyng-7000 EPP, as presented in Section IV. The
benchmark was compiled with gcc version 4.6, which is
provided with the Xillinux operating system.

To accurately benchmark our proposal, we made us of
images from the standard dataset proposed by Mikolajczyk et
al. to evaluate feature extractors [13]. The feature extraction
was done on the Zynq PS, while the matching was executed
either on the PS or on the SIMD accelerator configured on
the Zynq PL. We measure the execution time, as well as the
energy consumption required to perform image matching for
two systems:(i) the baseline ARM system and (ii) the SIMD
accelerated system where computation is split between the
ARM and the accelerator. Energy consumption for Intel Core
17 2600K quad-core desktop CPU, NVidia GTX680 GPU, and
NVidia 8800 Ultra GPU are also presented for the purpose of
comparison.

The benchmark code in [14] allows vectorization with Intel
SSE [8] by default. We have modified the benchmark in order
to make automatic vectorization possible on ARM with NEON
[7] instructions, thereby extracting the maximum speed out of
the Zynq PS. OpenMP was also used to split the matching
workload on all the available processor cores.

A. SIMD Matching Algorithms

By using the previously described SIMD accelerator, we
can code the SIFT matching application using Algorithm 2
for SSD or Algorithm 3 for SAD. As discussed in Section II,
we need to do Q*S SSD/SAD operations to match a query set
of @ keypoints to a search set of S keypoints. For efficient use
of the LS and registers, the search and query keypoint sets are
broken up into tiles of 308 and 364 keypoints, respectively, in
order for one query tile and two search tiles to fit inside the
LS simultaneously. One tile from the query set is loaded into
the LS and tiles from the search set are sequentially loaded
and matched against it. Processing is done on sub-tiles of 28
keypoints from the search set, which allows the register file
to be fully used. While processing occurs on one search tile,
a second tile is loaded into the LS, thus masking most of the
IO time behind the computation.

435

Advances in Information Science and Applications - Volume I

Algorithm 2 SSD Matching Kernel.

Require: keypoints to be transferred to LS
BEGIN_KERNEL();
R29 = 1;
for(int i =0; i < 11; i+ +){
for(int j =0; j<28; j++){
R[j] = LS[364+1s_of f*(28+11) +i%28+j];
}

R30 = 0;
REPEAT(364)
R[28] = LS[R30);

R30 = R30 + R29;

for(int 7 =0; 7 <28 j++){
R31 = R[28] — R[j];
R31 = R31 % R31;
REDUCE(R31);

}
END_REPEAT

}
END_KERNEL():;

The actual SSD computation is contained within the inner-
most loop of Algorithm 2. A search keypoint is loaded from
the LS, is subtracted from the currently selected query key-
point, and the difference is squared before being launched in
the reduction network, which does the summation. Algorithm
3 presents the innermost loop of the SAD accelerator kernel,
which uses conditional execution. In this case R29 is zero and
is used to test whether the result of the difference needs to be
negated. This code hides some of the instructions actually in
use, which re-enable the PEs after the conditional execution.
The extra instructions make SAD computation slower than
SSD on our accelerator, despite the fact that multiplication
takes two cycles to complete.

Algorithm 3 SAD Computation.
for(int 5 =0; j <28 j+ +){
R30 = R[28] — R[j];
R31 = R30 < R29;
WHERE_LT(
R30 = R[j] — R[28];

REDUCE(R31);

B. Performance

Table I presents the performance results in terms of millions
of keypoint matches per second (MM/s), where a keypoint
match is an SAD or SSD operation on a pair of SIFT
keypoints. The SIMD accelerated implementation provides a
speedup of 3.94 and 6.35 for SAD and SSD, respectively,
over the baseline implementation. We note inhere that during
the baseline ARM-only execution, both Cortex cores are fully

ISBN: 978-1-61804-237-8

TABLE I
SSD AND SAD MATCHING.

[Platform [ARM Cortex A9 | SIMD Accelerator |
Frequency [MHz]| 667 100
SSD Rate [MM/s] 2.11 13.40
SSD Speedup 1 6.35
SAD Rate [MMJs] 2.34 9.22
SAD Speedup 1 3.94

utilized, while when executing with the use of the SIMD
accelerator, a single core is utilized at around 65%. Also,
the NEON resources on the Cortex cores are idle during the
accelerator enhanced execution.

The SIMD accelerator performs significantly better on the
SSD metric, as it does not require conditional execution.
Setting up and disabling conditional execution requires extra
clock cycles to be used when computing the SAD metric. On
the ARM, however, the nature of NEON vector instructions
causes SSD execution to be about 10% slower than that of
SAD, which is the opposite of what we observe on the acceler-
ator. This happens because of the built-in support for the VABA
(Vector Absolute Difference and Accumulate) instruction.

B ARM M Accelerator

50000

45000

40000

35000

30000

25000

20000

15000

Execution Time (ms)

10000

5000

Baseline Accelerated | Baseline Accelerated

Fig. 4. Profiling of Execution Time.

Figure 4 presents an execution time break-down correspond-
ing to the baseline and accelerated matching. We can observe
that even during accelerated matching, a significant proportion
of the execution time is occupied by tasks executed on the
ARM processor. These are mainly tasks related to decisions
on the rejection of matching pairs of keypoints in some
circumstances. Further speedup could be attained by moving
these decision processes to a separate thread and performing
them while matching data are received from the accelerator.

C. Energy

The dual-core ARM CPU consumes, according to Zedboard
documentation, a maximum of 1.25 Watts, yielding on average

436

Advances in Information Science and Applications - Volume I

TABLE II
ENERGY CONSUMPTION PER 100 MMATCHES.

Platform

| TDP[W] | SAD energy [J] | SSD energy [J] |

Core 17 2600K 95 83.77 76.98
NVidia GTX680 195 24.23 24.37
NVidia 8800 Ultra 175 — 286.88
ARM Cortex A9 1.25 53.41 59.24
SIMD accelerator 1.2 13.01 8.95

2.23 MMY/s. The SIMD accelerator consumes 600 mW accord-
ing to Xilinx power estimation tools. To this we must add the
power consumed by the programmable system to control the
accelerator. In total, the accelerator consumes approximately
1.2 Watts. To evaluate the implications of our proposal in terms
of energy consumption, we calculate and present in Table II
the energy per 100 MM for our scheme and equivalent state of
the art implementations. This is by no means a comprehensive
energy evaluation, but it gives an estimate of the energy-
efficiency of the proposed solution.

The Intel CPU results are measured from demoASIFT,
with automatic vectorization on SSE and OpenMP used for
parallelization. The GPU results for the NVidia 8800 Ultra
on SSD matching were extracted from previous work [5]. We
have used the cv::gpu::BruteForceMatcher class from OpenCV
2.4 [3] to measure the performance of the GTX680. It must be
noted that for the GPU cases, only the device Thermal Design
Power (TDP) was taken into account, while the power required
by the host for control functions was ignored. In this case we
feel that the use of TDP instead of measured power is justified
since the chips are fully utilized, including vector resources
for the CPU parts, while running the matching benchmarks.
Table II suggests that the most energy efficient platform is the
accelerated Zynq system, followed by the GTX680, and the
baseline Zynq system. The GTX680 performs well because it
can exploit the large amount of parallelism in the matching
application and delivers 800 MM/s on both metrics, thereby
compensating for its high power consumption. The baseline
Zynq system is competitive with regard to energy because
it consumes very little power. The 8800 Ultra GPU is an
older generation chip and its performance is much less than
the GTX680, resulting in higher energy consumption. The
proposed accelerated system is at least two times more energy
efficient than the other platforms.

VI. CONCLUSIONS

We have presented a hardware SIMD accelerator architec-
ture specifically tailored for similarity matching in computer
vision algorithms. The accelerator is designed to work in con-
junction with an embedded processor and enable high match-
ing throughput for mobile applications energy-constrained
applications like robotics. We have implemented this archi-
tecture in the Zyng-7000 system-on-chip on the Zedboard
development platform, using a Xillybus core for data transfer
between the ARM processor and the accelerator. Evaluation
has revealed that the SIMD accelerator is able to achieve 4-
6x better SIFT descriptor matching throughput than a Cortex

ISBN: 978-1-61804-237-8

A9 processor, despite the FPGA implementation and 100MHz
operating frequency. This performance is delivered at roughly
3x less energy consumption and similar power consumption.
The accelerated system is 40% more energy effective even than
Intel Core 17 2600K and Nvidia GTX680 when executing the
SIFT matching benchmark.

ACKNOWLEDGEMENT

Part of this work was carried out with funding and support
from POSDRU/159/1.5/132397 ExcelDoc program.

[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

437

REFERENCES

Xillybus. “http://xillybus.com”.

Zedboard. http://www.zedboard.org/”.

Gary Bradski. The OpenCV library. Doctor Dobbs Journal, 25(11):120-
126, 2000.

M. Brown and D.G. Lowe. Recognising panoramas. In Proceedings of
the Ninth IEEE International Conference on Computer Vision, volume 2,
page 5, 2003.

A. Chariot and R. Keriven. GPU-boosted online image matching. In
19th International Conference on Pattern Recognition, pages 1-4, 2008.
Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard
API for shared-memory programming. Computational Science & Engi-
neering, IEEE, 5(1):46-55, 1998.

Pierre Esterie, Mathias Gaunard, Joel Falcou, et al. Exploiting multi-
media extensions in C++: A portable approach. Computing in Science
& Engineering, 14(5):72-77, 2012.

Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong
Kuo. Intel AVX: New frontiers in performance improvements and energy
efficiency. Intel White paper, 2008.

Holger Flatt, Sebastian Hesselbarth, Sebastian Fliigel, and Peter Pirsch.
A modular coprocessor architecture for embedded real-time image and
video signal processing. Embedded Computer Systems: Architectures,
Modeling, and Simulation, pages 241-250, 2007.

Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest
neighbor search using GPU. In Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on,
pages 1-6. IEEE, 2008.

MC Kus, M. Gokmen, and S. Etaner-Uyar. Traffic sign recognition
using Scale Invariant Feature Transform and color classification. In
23rd International Symposium on Computer and Information Sciences,
ISCIS’08, pages 1-6. IEEE, 2008.

D.G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110, 2004.
Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew
Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor Kadir, and L Van
Gool. A comparison of affine region detectors. International journal of
computer vision, 65(1):43-72, 2005.

J.M. Morel and G. Yu. ASIFT: A new framework for fully affine
invariant image comparison. SIAM Journal on Imaging Sciences,
2(2):438-469, 2009.

Mike Santarini. Zyng-7000 EPP sets stage for new era of innovations.
Xcell journal, 75:8-13, 2011.

S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization
and mapping using scale-invariant features. In IEEE International
Conference on Robotics and Automation, Proceedings 2001 ICRA,
volume 2, pages 2051-2058. IEEE, 2001.

Linda Shapiro and George C Stockman. Computer Vision. 2001. Prentice
Hall, 2001.

Gheorghe Stefan. The CA1024: A massively parallel processor for cost-
effective HDTV. In Spring Processor Forum: Power-Efficient Design,
pages 15-17, 2006.

Tinne Tuytelaars and Cordelia Schmid. Vector quantizing feature space
with a regular lattice. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1-8. IEEE, 2007.

Stephan Wong, Bastiaan Stougie, and Sorin Cotofana. Alternatives in
fpga-based sad implementations. In Proceedings of the IEEE Interna-
tional Conference on Field-Programmable Technology, pages 449—452,
2002.

