
 

 

  
Abstract— Pharmacovigilance (PhV) is an important clinical 

activity with strong implications for population health and 
conducting clinical research. The overarching goal of PhV is the 
timely detection of adverse drug events (ADEs) that are novel in their 
clinical nature, severity, and/or frequency. Until recently, the core of 
PhV is based on the systematic collection of valid safety data through 
spontaneous reporting systems (SRSs) that can be rigorously 
analyzed, interpreted, and acted upon as part of patient care. Data 
mining algorithms have been developed for the quantitative signal 
detection of ADEs from such databases. Drug-drug interactions 
(DDIs) constitute an important problem in the development of new 
drugs and postmarketing PhV which contribute to 6 - 30% of all 
ADEs. This article, therefore, reviews studies in which novel mining 
approaches and/or nontraditional data sources have been proposed 
for signaling DDIs. The authors provide a focused review of recent 
methodological innovations and alternative data sources used to 
support DDIs detection in the postmarketing  period. We do not aim 
to elaborately examine all relevant work. Instead, we presented a 
synopsis of basic concepts, then following by the involved data-
mining algorithms (DMAs) covering the computation of their 
statistical models, contributions, and major findings from published 
literature with respect to DDIs. Regarding data mining 
methodologies, the review is organized according to data source axis. 
Finally, the authors presented some of the challenges related to the 
currently used mining algorithms and suggestions for further research 
for drug interactions (DIs) surveillance are offered. 
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INTRODUCTION 

The application domain: pharmacovigilance 

Pharmacovigilance (PhV), also known as drug safety 
surveillance, it has been defined by the World Health 
Organization (WHO) as “the science and activities relating to 
the detection, assessment, understanding and prevention of 
drug-related problems” [1] PhV can be divided into two 
stages: (1) premarketing surveillance – information regarding 
adverse drug reactions (ADRs) is collected from pre-clinical 
screening and phases I to III clinical trials; [2] and (2) 
postmarketing surveillance – data accumulated in the 
postapproval stage and throughout a drug’s market life. 
Although the premarketing controlled randomized clinical 
trials (RCTs) are considered a hallmark of demonstrating the 
efficacy of a drug, they may not detect all safety issues related 
to a particular drug before its use in clinical practice. As they 
have well recognized limitations, represented in the limited 
number of study subjects included in the trials (compared with 
the size of patient populations that may be exposed to the drug 
once on the market), the limited duration of exposure to the 
drug per study subject (particularly in case of a drug intended 
for long-term use), limited or no data for potentially higher 
risk patient sub-populations that are often excluded from RCTs  
(e.g., patients with organ impairment, pediatric and geriatric 
patients, and women of childbearing age who may be treated 
during pregnancy and lactation), ethnicity restrictions in RCTs 
of chemotherapeutics [3]. Moreover, premarketing RCTs are 
not powered to detect rare (incidence of 1 in 10,000) or long-
term (latency of > 6 months) adverse drug events [4]. In other 
means, the efficacy data of a drug is generally more robust and 
well-established based on premarketing RCTs, while less is 
known concerning safety profiles [4]. These limitations make it 
necessary that the marketing authorization holder of a drug and 
regularity authority continue to collect, analyze, and interpret 
data relevant to patient safety that become available after the 
drug is introduced to market.  

Interaction between drug substances is a major cause of 
morbidity worldwide and a leading source of treatment 
inefficacy. Drug-drug interactions (DDIs) may account for up 
to 30% of unexpected adverse drug events [5]. However, 
premarketing clinical trials focus on establishing the safety and 
efficacy of single drugs, and don’t typically investigate DDIs 
[6]. In premarketing trials, patients with multiple drug use are 
usually excluded. Even when DDIs are suspected DDIs are 
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suspected, sample sizes and cohort biases limit the ability to 
discover rare adverse effects [7]. Unfortunately, the 
interactions between drugs are difficult to study, and there are 
few predictive methods for discovery novel DDIs. Adverse 
drug reactions (ADRs) may occur when drug combinations 
target shared metabolical and pharmacological pathways 
altering the efficacy and safety profile of the drugs. In other 
means, the co-administration may alter significantly the safety 
and efficacy profile of a drug. Drugs may also interact with 
proteins that are not their primary therapeutic target.  
Unpredictable adverse events, due to DDIs, can be identified 
only through postmarketing surveillance and signal detection 
[8]. Depending on the seriousness of the DDI, different 
measures are carried out ranging from the introduction of 
warnings in drug labels to the withdrawal of drugs from the 
market. As an example, mibefradil, a calcium channel blocker 
approved by the FDA [9] in June 1997, was shortly withdrawn 
from the market due to dangerous and even fatal interactions 
with at least 25 other drugs, including common antibiotics, 
antihistamines, and cancer drugs, that prolong the QT interval 
[10]. In contrast, US FDA issued a warning in August 2008 
about the possibility of developing major hemorrhagic events 
through the treatment combination of agrylin with aspirin [11]. 
In recognition of the challenge of postmarketing surveillance 
of interaction profiles between different drugs [5]  and 
involvement in patient safety, research into application of data 
mining approaches on heterogeneous data sources, for DDIs 
discovery and prediction,   have been adopted in recent years.   

Data sources of PhV in support of signal detection 

Several unique data sources are available for postmarketing 
PhV. Spontaneous reporting systems (SRSs) have served as 
the core data collection system for post-marketing drug safety 
surveillance since 1960s. These are passive systems composed 
of reports of suspected ADEs collected from health-care 
professionals, consumers, and pharmaceutical companies, and 
maintained largely by regulatory and health agencies. Among 
the prominent SRSs are; the FDA adverse events reporting 
System (FAERS) [12], the VigiBase co-managed by the World 
Health Organization (WHO) and the Uppsala Monitoring 
Centre, Uppsala (UMC), Sweden, which maintains the WHO 
Global Individual Case Safety Report Database, VigiBase 
[13], and EudraVigilance managed by the European medicines 
evaluation agency (EMEA) which involving adverse event 
(AE) reports for medicinal products authorized in the 
European Economic Area (EEA) EMEA [14]. In addition, 
there are other databases associated with spontaneous 
reporting such as, the vaccine adverse event reporting systems 
(VAERS) that is a US program for vaccine safety, co-managed 
by the Centers for Disease Control and Prevention (CDC) and 
the Food and Drug Administration (FDA) [15]. These 
databases are designed to support post-marketing safety 
surveillance program for drug and therapeutic biologic 
products. SRSs’ structures adhere to the international safety 
reporting guidance issued by the International Conference on 
Harmonisation, ICH E2B [16]. Moreover, company safety 
databases that may allow for earlier detection of safety signals 
particularly for new products, as they are not subjected to the 

delays associated with the public databases SRSs capture 
information on the drug(s) suspected to cause the adverse drug 
event (ADE). SRSs provide information on concomitant drugs, 
indications, suspected events, and limited demographic 
information in a structured format directly amenable to data 
mining. 

 Although the SRSs play a vital role in supporting regulatory 
decisions for a long list of marketed drugs [17], those passive 
systems have well recognized limitations, such as missing or 
incomplete or unspecified data overreporting (adverse events 
known to be linked to certain drugs are more likely to be 
reported than other adverse events), duplication of reporting, 
limited demographic information (age and sex), date of report, 
fail to provide information about a denominator (i.e., the 
number of individuals consuming a particular drug) due to 
SRSs only contain reports of adverse effects,  and 
misattribution causal ADEs links due to unmeasured 
confounding factors (e.g., disease-related AE, interacting 
drug(s)).  

 Other type of data sources for supporting post-marketing 
surveillance are pharmacoepidemiology databases such as: 
prescription event monitoring (PEM) in New Zealand [18], the 
medicine monitoring unit (Memo), general practice research 
databases (GPRD) in the UK [19] and PHARMO record 
linkage system in Netherlands. Pharmacoepidemiology is 
defined by WHO as: “the study of the use and effects/side-
effects of drugs in large numbers of people with the purpose of 
supporting the rational and cost-effective use of drugs in the 
population thereby improving health outcomes” [20].  

 These databases have strengths including; 1) Large numbers 
of patients could provide sufficient power for the analysis; 2) 
The population could be linked to the corresponding medical, 
pharmacy and demographic information for a more complete 
analysis. 3) The detailed information could be followed for a 
long periods of time. The information in these databases 
includes demographics, medical diagnosis, treatment, 
hospitalizations etc., along with date and location of events. 
There are also options of free text, referral to hospital, all 
prescriptions (including date, formulation strength, quantity, 
indication for treatment for new drugs etc.). These databases 
have enabled researchers to investigate a wide range of 
hypotheses including PhV [21]. Their creation provides a great 
opportunity for active surveillance. The active surveillance has 
the potential to monitor safety signals prospectively when a 
new drug is marketed for detecting new AEs [22]. Limitations 
of using these databases in PhV include the following; first, 
although the availability of  a substantial amount of 
comprehensive information in both structured and unstructured 
form, only a very small amount of structured data can be 
accessed by pharmacovigilance applications; Second, data 
integration from disparate clinical settings is extremely 
challenging, and the quality of integration can profoundly 
affects the outcome of pharmacovigilance research; third, real 
time surveillance is difficult due to the fact that the integration 
process usually lags behind [23].  
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 For that said; the researchers recently have begun to focus on 
data sources that have not traditionally been used for PhV. 
Each of these sources offers promising prospects that may 
augment existing PhV approaches. Here we discuss some of 
these information sources. 

 Text mining of electronic health records (EHRs) could be 
very useful for detection of safety signal by applying natural 
language processing (NLP) systems such as MedLEE, 
BioMedLEE, SemRep, and MetaMap to identify, extract and 
encode information within EHR systems [24]-[27]. 
Information from these EHRs is often derived from a defined 
population with comprehensive, non-specific, capture of 
clinical important events, these data sources. An EHR is a type 
of longitudinal observational database (LOD) providing 
electronic record of patient health information generated by 
one or more encounters in any care delivery setting. This 
record includes both structured data, such as laboratory test 
results, and unstructured data such as narrative reports. As an 
example, the interaction of beta-blockers and warfarin could 
affect the risk of hemorrhage in CHF patients was found by 
using prescription and lab test data in the EHR [28]. The 
biggest advantage of using EHR systems for 
pharmacovigilance is the ability to perform active and real 
time surveillance. However, the majority of the records consist 
of unstructured narratives, such as discharge summaries, 
progress reports, or nursing notes which representing the main 
limitation to be accessed directly by pharmacovigilance 
applications.  

 Publically available chemical and biological knowledge bases 
such as STITCH (search tool for interactions of chemicals), 
and DDI DrugBank database [29], [30] provide the researchers 
the chance to create predictive models for potential DDIs. 
Such databases contain information on molecular structure, 
protein binding sites, biological pathways of drug action and 
metabolism, chemical structural similarities between drugs, 
and linkages between chemical substructures and specific 
toxicities. Leveraging this type of knowledge provide merits 
such as possibility to predict toxicological effects in the 
preclinical drug design stage in aim of decreasing late-stage 
attrition of new drugs due to toxicity [31]. Additionally, better 
predictive models can be created by linking chemical and 
biological knowledge with knowledge on post-marketed drug 
interaction adverse effects (DIAEs) or enriching subsets of 
drug interactions generated by other sources likely to be 
interested for further clinical studies [32].  

 Although screening the medical/ scientific literature by 
pharmaceutical companies on adverse reactions related to 
drugs they commercialize has become mandatory in European 
countries according to council regulation (EEC 2309/93) 
volume 9 of Eudralex (i.e., literature research is one of the 
required steps for standard management procedure in PhV 
centres), few studies have been conducted by drug safety 
researchers on mining biomedical literature for extracting new 
discoveries from the large amounts of biomedical knowledge 
available [33], [34]. Data mining algorithms (DMAs) in PhV 
have focused on coded and structured data and therefore miss 
important clinical data that is relevant to PhV. The biomedical 

literature contains ADE-related information based on 
observations (e.g., case reports) and clinical studies. Analysis 
of biomedical literature for safety signal detection is 
challenging and labor intensive due to unstructured nature. 
Therefore, natural-language processing (NLP) techniques 
recently developed for extracting ADE-related information or 
direct/indirect drug interactions have gained large 
popularity[35]- [37].  

The concept of “signal detection” in PharmacoVigilance 

In pharmacovigilance, these methods are dedicated to 
hypothesis generation”, also called “signal 
detection/generation”, where signal being defined by WHO 
Uppsala Monitoring Centre (UMC) as: “reported information 
on a possible causal relationship between an adverse event 
(AE) and a drug, of which the relationship is unknown or 
incompletely documented previously” [1]. The term “signal” is 
primarily used to refer to marketed products.  The signal may 
be a new issue never before seen with a drug, or it may be the 
worsening or changing of a known AE or problem (e.g., a 
previously unaffected patient group is experiencing this 
problem or it is now fatal in those it attacks, whereas before it 
was not or the incidence  has increased, etc.). 
 The major aim of PhV is the timely detection of either new 
adverse drug reactions (ADRs) or a change of the frequency 
and/ or severity of ADRs that are already known to be 
associated with the drugs involved (i.e., signal detection). The 
whole process of risk/benefit evaluation depends on effective 
detection of signals. Signals may be “qualitative” (based on 
case by case analysis of observations by clinicians, case 
reports in the literature) or “quantitative” (based on data 
mining of observational databases, assessment of 
epidemiologic data, or clinical trials data). The detection of 
signals requires clinical assessment assisted by 
epidemiological and statistical analyses.  

 Despite its inherent limitations, analysis of spontaneous 
reporting systems (SRSs) for suspected ADRs is a valuable 
tool in the detection of previously unknown ADRs [38].   
Hypothesis generation of new possible adverse effects from 
such data is referred to as signal detection. The aims of data 
mining for quantitative signal detection are: to flag potential 
new signals that might be missed; to earlier identify AEs and 
decrease person- time expended per AE; to confirm signals 
that had been clinically first identified; to prioritise resources 
for signal detection when combined with more traditional 
methods; to probably distinguish a specific adverse drug effect 
of  a molecule, not shared by its whole therapeutic family; to 
focus clinical review on the most likely candidates; to detect 
more complex associations in the data, which are hard to 
detect by manual review, in particular, drug– drug interactions 
and to aid prioritisation of potential signals. Safety data mining 
algorithms (DMAs) have shown high potentialities in the 
quantitative analysis of the very large PhV spontaneous 
reporting databases [39] - [43]. Data mining has become a 
powerful tool for knowledge discovery in biomedical 
informatics, and particularly useful for hypothesis generation 
in PhV.  
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Methodologies for signal detection within spontaneous 
reporting systems: basic concepts 

Disproportionality analysis (DPA) methods for post-marketing 
drug safety surveillance, which are detailed in several 
publications, comprise the most widely used analytic methods 
for signal detection in SRSs [44], [45]. Also, DPAs are the 
most often data mining methods been described in PhV 
literature. They are based on measures of disproportionality 
that require comparisons of observed to expected proportions 
of drug-adverse event combinations (DECs). 
Disproportionality analysis (DPA) methodologies are 
generally be classified into two categories: frequentist and 
Bayesian. Both approaches use the entries of  
contingency table (see Table ) to derive a statistical 
association / disproportionality measure. 2×2 contingency 
table is usually computed for each drug–event pair in the SRS. 
At the first level, each report generates n “D × AE 
associations”, n being the number of drugs notifying one AE. 
At the aggregated level (the whole database being taken into 
account), the observed number of cases of each DEC is 
compared with the estimation of the expected number of cases. 
As the expected number of cases is calculated using data from 
the database only, these methods are also named “numerator 
dependent”. A safety signal is to be generated when there is a 
discrepancy between the observed number of a DEC within the 
database and the expected number of cases. In other words, 
these methods are using the “background noise” summarized 
in the marginal counts of  contingency table. Several 
methods are proposed to estimate the magnitude of the 
disproportion measure and its confidence interval. DPAs 
include Proportional Reporting Ratio (PRR) [46], [47] , 
Reporting Odds Ratio (ROR) [45], Information Component 
(IC) [48], [49], and Multi-item Gamma Poisson Shrinker (GPS 
or MGPS) [50] are widely used, and currently employed by the 
Medicines and Healthcare products Regulatory Agency 
(MHRA), UK, the Netherlands Pharmacovigilance Centre 
Lareb, the World Health Organization (WHO), and the US 
FDA, respectively. Although the methodology of the 
aforementioned algorithms differs, they all share to what 
extent the number of observed cases differs from the number 
of expected cases. All of these algorithms calculate signal 
scores, i.e., the values for PRR, ROR, IC, and EBGM, to 
assess whether a drug is significantly associated with an 
adverse event or not. 

Classical or frequentist approaches 

Frequentist approaches of DPAs involve ROR and PRR. The 
common feature of these approaches is that they rely solely on 
information contained in the  table (table І) 
corresponding to the drug-event combination (DEC) of interest 
[51]. A limitation in such a binary approach (i.e. dividing 
ADRs into two classes: exposed versus non-exposed, as 
discussed in further detail below) is that with very small 
observed counts, if the expected count is small, the statistics 
will fail to screen out such associations, some of which may be 
false positives [51].  

Table 1: Formal 2×2 contingency table 

 Suspected 
event 

All other events Total 

Suspected drug a b a + b 
All other drugs c d c + d 
Total a + c b + d a + b + c + d 

The ROR has been described in the PhV literature as an 
approach for disproportionality analysis of spontaneous data 
[52], [53]. The ROR was first established in the Netherlands 
Pharmacovigilance Foundation Lareb [45]. The ROR like 
traditional odds ratio; it is an estimate of incidence rate ratio, 
calculating the odds of the AE in those exposed to particular 
drug divided by the odds of the AE occurring in those not 
exposed to that drug [54]. The computation of the ROR is 
based upon the 2×2 table (see Table І).In practice, 

   with  
are often used as the criteria to identify signals [55]. 

The ROR with 95% confidence interval (CI) is computed 
through the following formulae [56];  

               (1) 

    (2) 

The PRR, as another metric of frequentist DPAs, was first 
used by Evans et al. in 2000 to demonstrate the risk of uveitis 
associated with the use of rifabutin [47], [57]  The PRR 
measures the strength of association between the suspected 
ADRs and the suspected drugs, behaving in a similar way to 
the relative risk (RR) [58].  The higher the value of the PRR is, 
the stronger the strength of the signal appears to be. The PhV 
literature suggests two common signal generation criteria for 
PRR method. The first one is a composite criterion requiring 
that the number of co-occurrences/observed cases  is at 
least equal to 3, PRR measure  is at least  equal to 2 ,and chi-
squared measure (corresponding to a ) 
for this association is at least equal to 4 respectively:  
and  and [59]. The second is that the lower 
bound of its 95% confidence interval has to exceed one: 

[60]. The computation of PRR is same as the 
RR estimated in epidemiology and can be calculated using the 
2 × 2 contingency table. PRR with 95% confidence interval 
(CI) can be calculated through the following formulae [61].  

         (3) 

      (4) 

These approaches are easy to understand and more 
computationally efficient than Bayesian based approaches. 
However they show limitations involving; some have argued 
that, for small counts of a specific DEC, frequentist 
approaches are more liable to extreme values and therefore 
generating more false positives and also this type of approach 
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does not adjust the counts for exposure to the various drug 
combinations and thus does not provide an appropriate 
statistical context for studying drug interaction [61].  

Bayesian approaches 

There are currently two major Bayesian techniques used for 
data mining in pharmacovigilance, the Information Component 
(IC) [48] and the multi-item Gamma-Poisson shrinker (GPS/ 
MGPS) [50]. Bayesian approaches, based on  table, 
calculate an observed to expected ratio in which a database of 
adverse event reports is mined for the occurrence of 
significantly unexpected itemsets for relevant drug-AE or 
drug–drug-AE combination and/or syndromes. Both 
approaches calculate a Bayesian version of the relative 
reporting ratio (RRR) or , along with a range of plausible 
values. For each itemset in the database, a RRR is defined as 
the observed count  for that itemset divided by the expected 
count  (for drug  and event ) as in the following formula 
[62];  

 (5) 
The expected frequency would be the frequency expected 
under fully independent model, in which the likelihood of a 
given AE in a report is independent of drug(s) appear in the 
report. Bayesian approaches are based on Bayes’ law to 
estimate the probability (posterior probability) that the AE 
occurs given the use of suspect drug by “shrinking” the 
measure toward the baseline of no association. This shrinkage 
to the null results in a reduction in spurious associations that 
have insufficient data to support them. Hence, Bayesian 
approaches show superiority to frequentist approaches when 
the available information is extremely limited.  

 Among the Bayesian approaches is BCPNN that was first 
adapted to drug safety signal detection by the WHO 
collaborative centre on pharmacovigilance (WHO-UMC) for 
International Drug Monitoring, Sweden [48]. Since 1998, 
WHO has implemented the IC using a Bayesian confidence 
propagation neural network (BCPNN) for screening 
international pharmacovigilance database (VigiBase) as part of 
the routine signal detection process [48], [49], [63], [64]. The 
BCPNN constructs a null table for each AE in the 
database to achieve a desired null   . A measure of 
disproportionality, called the Information Component (IC), 
and its credibility/ confidence interval is calculated for each 
drug-adverse reaction combination in the dataset. The IC is 
defined for a specific drug adverse reaction combination as 
[49], [65];  

    (6) 
A signal for drug-ADR pair is detected if the lower limit of the 
95% confidence interval  exceeds zero. Positive values 
for  are highlighted for clinical review. 

 Another Bayesian approach is the multi-item gamma Poisson 
shrinker (MGPS) and its predecessor GPS which described by 
DuMouchel, also named “Dumouchel method” [42], [50].  
MGPS is the DMA currently used by some drug regularity 

authorities such as US FDA to interrogate signals of drug-AE 
associations in its SRS database, named as MedWatch [66]. 
Bayes computes a measure known as the empirical Bayes 
geometric mean (EBGM). EBGM, which is based on the 
whole database, is defined as a centrality measure of the 
posterior distribution of the true RRR in the population; also it 
is computed by the exponential of expectation value of 
logarithm of RRR under the posterior probability distributions 
for a true RRR, which can represented as following [50], [67];  

    (7) 
MGPS computes an adjusted value of the observed-to-
expected reporting ratio (RRR), corrected for temporal trends 
and for confounding by a particular stratum (e.g. age, sex) 
[68]. The posterior probability distribution supports the 
calculation of lower and upper 95% confidence limits (EB05, 
EB95) for the RRR. The EB05 metric, a lower one-sided 95% 
confidence limit of the EBGM, is used for signal detection 
when the EB05 is greater than or equal to the threshold value 
2.0 [69]. Typically, the EB05 measure corresponds to the 
lower 5th percentile of the posterior distribution of RRR; 
meaning that there is a 95% probability that the true RRR 
exceeds the EB05.  

Performance evaluation of DPAs most used in PhV 

Although the comparative performance of DPAs, which are 
DMAs widely used in routine PhV, is beyond the objectives of 
this article, the authors believed that it is useful to be touched. 
Table ІІ shows a comparison among the most frequently used 
disproportionality algorithms in PhV. Although several studies 
have been compared DPAs that are routinely applied to the 
SRSs, those studies mainly have focused on sensitivity. 
Shortcomings of these studies may be represented in; some 
have been conducted on a gold standard of limited size, most 
have focused on fixed thresholds for signal detection, some 
covered a limited time interval of study, and some examine a 
narrow spectrum of drug- AE combinations [70]- [72]. Also 
there are a paucity of studies comparing DPAs’ performance in 
the context of trade-off between sensitivity and specificity 
[68]. The comparative performance of these methods can be 
summarized as follows: 

• In general, frequentist forms of DPAs (e.g., ROR, 
PRR) seem to be more sensitive via highlighting a 
greater number of DECs than Bayesian forms of 
DPAs (e.g., IC, (M)GPS), while MGPS method has 
been shown to be the most conservative among 
DPAs [73]; 

• Bayesian approaches have showed superiority to 
frequentist approaches when the available 
information is extremely limited [45], [74]; 

• Some of the DECs obtained with frequentist DPAs may 
be false positives that can be attributed to 
confounding ,thus requiring additional triage criteria 
for practical implementation, or further investigation 
by other methods [43];   
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• For DECs which are highlighted by both frequentist 
and Bayesian DPAs, frequentist DPAs tend to do so 
earlier [75];  

• ROR measure performs better than other DPAs from 
the standpoint of early and timely signal detection 
[76];  

• Both ROR and PRR disproportionality metrics show 
near equivalence of performance and no obvious 
advantage of using the ROR over the PRR, in 
addition; LR-based approaches outperform DPA-
based approaches across all levels of 
sensitivity/specificity [43], [77], [78]. 

In summary, no single method seems superior as this is highly
situation-dependent due to heterogeneity in implementation 
choices, such as threshold election /titration and the triage 
logic for signals investigation. 

Need for multivariate association approaches  

While bivariate/two dimensional (2D) disproportionality 
analyses (DPA) represent the bulk of daily routine of PhV, 
higher dimensional associations are important for patient well-
being. Although bivariate associations have shown to be 
adjunct for many of safety analyses, the reduction of ADE 
analysis to 2D dimensionality may result in missing clinically 
crucial information. Some studies showed that DDIs may 
account for up to 30% of all adverse drug events (ADEs) [5] 
and close to 50% in hospital patients [79]. Multivariate 
associations may involve detection of DDIs (e.g. drug1- drug2 
– adverse event/(s)) or drug- induced syndromes in which a 
constellation of signs and symptoms (e.g. drug-event1 –event2 
–event3) exists.  

 Among the information may be hidden in table is 
confounding factors, also known as covariates or effect 
modifiers. The term “confounding” refers to a situation when 
one finds a spurious association or misses a true association 
between an exposure (i.e. drug) variable and an outcome 
variable (i.e. disease or adverse event) as a result of a third 
factor or group of factors referred to as confounding 
variable(s)” [80].  In other means, confounding may lead to 
safety signals of spurious associations, if not accounted for. 
Confounding may be addressed either through design stage of 
the experiment before data collection (e.g. randomization, 
matching) or in the analysis stage when the data already been 
collected (as in case of SRSs).Confounders may be the key to 
realize potential risk factors or high risk subgroups even in 
simple 2D associations between a drug and AE. There are 
several types of confounders, a simpler type, such as 
confounding by age, gender, and year, have been effectively 
handled by stratification and Mantel – Haenszel type 
adjustments where the overall expected count is the sum of the 
expected counts for each stratum, and is compared to the 
observed count [81], [82]. However adjustment of 
confounding by a large number of potential confounders can 
lead to the missing of signals in the application of data mining 
[83], [84]. Another limitation, stratification according to age, 
sex or other variables is not yet relevant; as the number of 
cases per associations is already low and thus many DECs may 

be unable to reach statistical significance. Additionally; there 
are other types of confounding involving DDIs, and 
confounding by co-reporting pairs of drugs, known as 
“innocent bystander” in which the reported event is associated 
with the indication for treatment. Adjustments of such 
confounding types by Mantel – Haenszel methods are not 
effective [82]. Multiple logistic- regression (LR) is more 
appropriate approach for such types where large numbers of 
covariates present.  The LR may allow the estimation of a 
drug– event association by adjusting for the presence of 
potential confounders; hence it can be applied in the domain of 
PhV [84].  

Methodologies to interrogate drug interactions (DIs) signals 
in spontaneous reporting databases  

Newer approaches have been designed to facilitate 
identification of higher-order or multivariate associations that 
represent more complex safety phenomena such as drug–drug 
interactions (DDIs. In general, the detection of potential DDIs 
is based on the concept: when a suspected AE is reported more 
frequently in the combination of two drugs compared with the 
situation when reported in the absence of other, the drugs 
combination may indicate the existence of DDI. The currently 
proposed approaches for quantitative signal detection of DDIs 
in SRSs include frequentist, Bayesian, and regression 
approaches as discussed later in further detail. 

DPA extensions 
DPA extensions to search for mostly three-dimensional 
associations corresponding to DDIs have been proposed both 
in , and  measures in which observed-to-expected 
ratios are calculated in a similar manner but based on three 
elements ( ) [85], [86]. As an example, 
MGPS has been investigated by Almenoff et al. for AE 
profiles of combinations between the calcium channel blocker 
verapamil and three classes of cardiovascular drugs with well-
established safety profiles [85]. The authors have identified 
significant drug associations based on EBGM values for the 
two drugs and their lower limit of 90% CI being greater than 
the upper limit of the 90% CI estimate for each of the two 
drugs. The results suggest that MGPS as a disproportionality 
analysis is a promising tool for predicting safety profiles of 
potential drug interactions and safety problems in polytherapy 
situations. 

Multivariate logistic regression (LR)  

The LR is a type of predictive modeling that is used to relate a 
dependent variable with a set of independent variables which 
has been proposed by Van Puijenbroek [67], [87], [88].  This 
approach can be used to assess the effect of age, sex and co-  
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Table ІІ characteristics of most commonly used signal detection 
algorithms 
 Frequentist methods Bayesian methods 

Algorithms 
Proportional Reporting 
Ratio (PRR), Reporting 
Odds Ratio (ROR) 

Information Component 
(IC) , Multi-item 
Gamma Poisson 
Shrinker (GPS or 
MGPS) 

Description 

ROR: a method to 
compute a measure similar 
to odds ratio to quantify 
the strength of association 
between a drug and event 

IC: a method to compute 
logarithmic measure of 
relative reporting ratio 
(RRR). 

PRR: a method to 
compute a measure 
similar to relative risk to 
quantify the strength of 
association between a 
drug and event 

MGPS: a method to 
compute an adjusted 
value of the Observed-
to-expected reporting 
ratio called empirical 
Bayes geometric mean 
(EBGM) 

Published 
signal 
score 
thresholds 

   
with    

 ,  , 
 and 

 
 

Regularity 
users 

Netherlands 
Pharmacovigilance 
Foundation Lareb 

WHO-UMC 
collaborative centre for 
International Drug 
Monitoring, Sweden - 
VigiBase 

European Medicinal 
Agency (EMA) - 
EudraVigilance 

US Food and Drug 
Administration (FDA) - 
FAERS 

Advantages 

More sensitive 
Easy to understand 
Easily applicable 
Adjustments for temporal 
trends and covariates  in 
logistic regression 
analyses 
Earlier signal detection 

More specific 
Configured for detecting 
higher-order 
associations (e.g. drug 
interactions, medical 
syndromes) 

Limitations 

Lower specificity leading 
to false positive signals 
that may require 
additional triage criteria 

Lower sensitivity 
leading to false negative 
associations 
Showing superiority to 
be more conservative 

 
morbidity on signal generation. In other mean, LR provides the 
appropriate statistical context for studying multiple covariates 
including drug interactions. The LR requires the predictors 
(drugs and other covariates such as sex and age) first to be 
selected in advance to be included in the regression model. 
It computes RORs by dividing all records in the database into 
cases and non-cases according to different AEs, all records in 
cases defined as patients who reported ADRs of interest, while 
‘noncases’ consisted of all other reports. 
There have been two publications applying LR for the 
retrospective detection of DDIs using a SRS database [89], 
[90]. The first publication by Van Puijenbroek et al. 
demonstrated potential association between delay of 

withdrawal bleeding during concomitant use of oral 
contraceptives (OCs) and antifungal itraconazole (I) using the 
Netherlands PhV foundation Lareb which maintains SRS in 
Netherlands [89]. This interaction had previously only been 
suggested by case reports after receiving 19 reports of delayed 
withdrawal bleeding in women receiving OCs; in 10 of these 
reports OCs and itraconazole (I) were used concomitantly. The 
analysis of this interaction is based on the concept that  target 
ADR is reported more often on the combination of two drugs 
compared with the situation where either of these drugs has 
been used in the absence of the other one. RORs were adjusted 
for source of reporting (physician or pharmacist), year of 
reporting, and age. In constructing the logistic model, drug 
OC, drug (I) as well as the concomitant use of OC and (I) were 
coded, respectively, by the system according to AE of delay of 
withdrawal bleeding and the model would then look like: 

     (8)  
Where A= age, S= source, Y = reporting year, I = 
itraconazole, OC = oral contraceptive,  = the 
concomitant use of both drugs. 
The second publication by the same authors assessed the 
statistical interaction between the use of diuretics and 
nonsteroidal anti-inflammatory drugs (NSAID), and showed 
significantly higher use in combination, suggesting decreasing 
in the efficacy of diuretics resulting in worsening of congestive 
heart failure (CHF) associated with their combination [90]. 
The authors calculated RORs and examined the effects of pairs 
of NSAIDs and diuretics using a logistic regression model 
with AE case reports of Netherlands PhV foundation LAREB 
(as in the following formula); 

 (9) 
Where N = NSAIDs, D = diuretics, = different 
covariates, i.e. age, source, and reporting year. The analysis 
showed that the use of diuretics or NSAIDs itself was not 
statistically significantly associated with an increased risk for 
onset or worsening of symptoms of CHF. However, the odds 
ratio of the statistical interaction term NSAIDs × diuretics, was 
statistically significantly elevated (adjusted ROR 2.0; 95% CI 
1.1 to 3.7). 
Mining SRS databases by LR approach show some key 
limitations such as; building predictive model for a single AE 
and ignoring dependencies/ associations between AEs (like in 
syndromes), performing regression analyses to very- large-
dimensions of predictors (> 10,000 drugs in SRSs), i.e. 
confounding by comedication by using all drugs in an SRS as 
regression predictors for an event, represent computational as 
well a theoretical barrier. However, new extension of logistic 
regression to very-large-dimensional data, known as Bayesian 
logistic regression (BLR), can carry out regression analyses 
with millions of predictors [91].    Caster et al. conducted a 
study  on  the WHO SRS (VigiBase) using the  BLR algorithm  
to address confounding caused by co-medication and “masking 
effect” in which an increase in background reporting of a 
specific event can attenuate disproportionately values of true 
association to values of no association [92]. The authors 
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showed that BLR corrected several real examples of false-
positive DECs due to confounding by comedication and also 
true DECs that were masked by media focus on the withdrawal 
of a drug causing rhabdomyolysis. In brief, LR/BLR 
approaches show distinct merits over methods that analyze 
bivariate associations related to drug safety such as; guarding 
against masking effects and false signals due to confounding 
by concomitant drugs, etc. 

The   Shrinkage measure 

The   Shrinkage measure was first described by Norén et al. 

[93] to screen drug interactions (DIs) in SRSs. The authors 
criticized the logistic regression method in missing some 
reporting patterns [93] strongly suggestive of potential DIs and 
they show that the Ω shrinkage measure is a more 
sophisticated method after conducting a confirmatory study 
using the WHO database [94]- [96]. The   Shrinkage measure 
calculates an observed-to-expected ratio as a measure of 
disproportionality and can be calculated according to equation; 
 
                (10) 
 
Where  is the expected value of the incidence of disease 
suspected to be derived from DI, and a is a tuning parameter, 
which is set at 0.5 [93] The logarithm of this equation for  = 
0.025 is a two-sided 95% lower confidence/credibility interval 
limit which acts as the threshold for generating DI signal when 
lower bound of its 95% confidence interval exceed zero: 

  [93]. 

 Qian Yifeng et al. [97] have developed a computerized system 
aiming to facilitate automated data acquisition, data 
arrangement and detection of potential DDIs. ADR reports was 
acquired automatically from the Shanghai ADR SRS which 
was developed by National Adverse Drug Reaction 
Monitoring Centre of China. The authors carried out a 
database-wide screen with three different methods the additive 
model and multiplicative model, the logistic regression 
method, and the Ω shrinkage measure method for the detection 
of possible drug interactions. The three methods were 
compared according to the detected suspicious DDIs during 
the database-wide screen. According to results; combinations 
detected, by at least two methods in average, may reflect the 
fact that the three methods are highly correlated. The 
performance of the described system was qualitatively 
validated by case studies in clinical practice for some of drug 
interactions detected. After its application in the Shanghai 
ADR SRS, the authors showed that their system could be a 
useful tool in detecting and analyzing potential drug 
interactions for routine surveillance. 

 

Additive and Multiplicative model  

The theory of multiplicative and additive models in the context 
of DDIs signal detection in SRSs has been elaborated by 
Thakrar et al. by which the detected drug interaction signals 
could be further identified by statistical test [98]. Referring to 

their work, the formulations of the models are based on 
estimating measure of interaction (coefficient ) by which the 
risk associated with drug combination is greater than that 
predicted for two drugs separately. Risk denote the risk (e.g. 
incidence rate, odds of developing the event, or percentage of 
subjects developing a particular event) of an adverse reaction 
associated with particular drug(s). The formal statistical testing 
of multiplicative model for interaction coefficient   is done 
within the framework of log-linear regression as following: 

 (11) 
; Where the measure of interaction, the coefficient δ is the PRR 
associated with the drug combination. 
Whilst the formal statistical testing of interaction coefficient of 
additive model is achieved as follows: 

 (12) 
; Where the measure of interaction, the coefficient is the PRR 
difference associated with drug combination, A and B.  The 
multiplicative model assumed the risk associated with a drug 
multiplies with the background risk, whilst the additive model 
assumed the risk associated with a drug adds to the 
background risk. For multiplicative model, under the 
assumption that null hypothesis is true (i.e., no interaction), the 
proportion of an event associated with the drug combination is 
the same as the product of the proportional risks of individual 
drugs in the absence of the other ( ) 
(13). Similarly for the additive model, there is no interaction 
when the proportion of an event associated with the drug 
combination is the same as the add of proportional risks of 
individual drugs ( ) (14).DDI signal 
generated when and 

  for multiplicative and additive 
models respectively and also corresponding . 

 Thakrar et al.’s retrospective study [98] aimed to compare a 
multiplicative model and an additive model using known 
interactions of drugs using AE case reports from FDA’s 
AERS. Both models were fitted to four known interactions and 
to four known non-DDI. The results showed that the additive 
model has better sensitivity in detecting DI signals and the 
multiplicative model may further help qualify the strength of 
the signal detected by the additive model.  

Association rule mining 

Unsupervised learning techniques have been used as 
exploratory data analysis to draw inferences of hidden patterns 
from a dataset. One of these techniques is association rule 
mining (ARM) [99] which is a well established data-mining 
technique for discovering interesting relationships hidden in 
large databases. The technique has been developed in 
computer science for over a decade and has been used in a 
variety of fields [100] - [102]. Recently, ARM has been 
applied in PhV for identification of complex or higher-
dimensional drug safety patterns [103].    

 Apriori algorithm is a type of ARM that partially mitigates the 
challenge of hard computation of association rules [99]. Its 
principle is based on considering an item set frequent if its 
support exceeds the support threshold. An association rule is 
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an implication expression of the form   where  is an 
item set,  is an item set and  and  are disjoint. In the case 
of pharmacovigilance,  denotes a set of drugs and  denotes 
a set of AEs. To account for directionality, the general Apriori 
algorithm works in two steps. The first step searches for item 
sets that exceed the minimum support, while in the second 
step, association rules are generated and filtered by selecting 
“confident” item sets (based on a threshold) from those found 
in the first step. In other means, an association rule is 
considered significant if it achieves both minimum support and 
confidence. The support of an itemset  is the number of 
records containing . The support of an association rule 

 is equal to . Low support may indicate that 
a rule has simply occurred by chance. The confidence of a rule 

 is equal to   (15). Confidence 
determines how often items in  appear in records that 
contain . Confidence provides an estimate of  
(16) the conditional probability of   given . Although 
association rules can be filtered by given minimum support and 
confidence, a variety of measures of ‘‘interestingness” have 
been proposed which can be used to filter these association 
rules [104]. Multi-item ADE associations are rarely reported in 
biomedical literature to identify plausible drug-drug 
interactions.  

 In a recent study, Harpaz et al. [105] applied an optimized and 
tailored implementation of the Apriori algorithm to mine a 
sample of AERS (full set of year 2008) reports with rules at 
least two drugs and one AE for drug interaction adverse effects 
(DIAEs) detection. Due to the inappropriateness of standard 
Apriori scores for PhV applications, the authors used the RRR 
score instead, with the additional constraint that each rule must 
have an RRR larger than any of its subsets. The latter 
constraint was used to exclude spurious associations [106]. 
The authors showed that ~35% of the DIAE rules 
corresponded to known associations, thereby demonstrating 
the potential value of their tailored Apriori algorithm for 
identifying statistically significant DDIs in SRSs for further 
investigation. 

Methodologies for signaling DDIs using nonstandard data 
sources or linked multiple data sources  

 By integrating information from the FDA AERS and several 
EHRs sources, Tatonetti et al. [107] discovered a potentially 
new drug interaction between two widely used drugs—the 
antidepressant paroxetine and the cholesterol-lowering 
medication pravastatin—that can lead to unexpected increases 
in blood glucose levels. The finding that motivated their data-
mining approach was the observation that side effects are not 
independent of each other and latent evidence for an 
(unreported) adverse event can be found by examining other 
(reported) side effects. By scanning the AERS for pairs of 
drugs that have matching side-effect profiles when taken 
together but not when taken individually, the authors created a 
candidate set of drug–drug interactions. The list of candidates 
was then narrowed down to the paroxetine–pravastatin 
interaction by conducting retrospective studies using EHRs 
from Stanford University Hospital, Vanderbilt University 
Hospital, and Partners Healthcare. The interaction was 

confirmed by a prospective study in an insulin-resistant mouse 
model. 

 By linking information from DrugBank database and Human 
Protein Reference Database (HPRD), Huang J et al. [108] 
proposed a prediction model of pharmacodynamic DDIs (PD 
DDIs) using information from heterogeneous data sources 
which providing information such as drug targets, protein-
protein interaction (PPI) network, and side effect similarity. 
They have predicted 9.626 potential PD DDIs at the accuracy 
of 82% and the recall of 62%. The proposed model provides 
opportunities for better understanding the potential molecular 
mechanisms and physiological effects underlying DDIs. For 
validation, the authors adopted two independent gold standard 
positives (GSPs) databases including DrugBank and STITCH 
[109]. The proposed approach may provide the necessary 
scientific evidence for the drugs during clinical trials, lead to 
relabeling drug interaction warning for marketed drugs, and 
avoiding harmful DDIs or enhancing beneficial drug 
combination in poly-medication prescriptions. 

Villar et al. [110] proposed a model for DDIs based on 
molecular structure similarity. The authors compiled, from 
DrugBank database and the Interax Interaction Search engine 
on the DrugBank website [30], a reference set of drugs and 
mapped them to two-dimensional molecular fingerprints that 
represent the presence/ absence of specific structural features. 
Then, potential drug interactions were generated by screening 
drug candidates, the 50 most frequently sold drugs in 2009, via 
comparing their structural fingerprints with the reference set of 
fingerprints. Highly similar candidates were then retained as 
the final set of drug candidates. Using this approach, the 
authors achieved 68% sensitivity and 96% specificity using 
DrugBank database and Micromedex/Drugdex database as a 
gold standard reference databases [30]. Moreover, a database 
of 58 403 new predicted DDIs with structural evidence has 
been generated which could be useful for further study of 
possible candidates. This approach can be exploited by 
regularity authorities in detecting new DDIs that should be 
contraindicated. 

 By the same, Villar et al. [111] proposed a predictive method 
for DDIs on the basis of drug interaction profiles. This method 
is based on following the concept, if two drugs have similar 
interaction profile, the drugs with the non intersecting 
interactions will be DDIs candidates. The authors compiled, 
from DrugBank database, [112] a reference set of drugs (9.454 
well-established DDIs) and mapped them to two-dimensional 
interaction fingerprints. The model could provide potential 
17,230 DDI candidates comparing the interaction profiles of 
pairs of drugs either in the same or other pharmacological 
class. For instance, the model detected possible increased 
effect of antidiabetic Pioglitazone due to its interaction with 
macrolide antibiotic Clarithromycin.  

 A recent notable study of the successful detection of novel 
DDIs through mining of the FDA’s adverse event reporting 
system (AERS) has been conducted. By linking information 
from multiple sources (FDA AERS reports through April 2009 
and clinical EMR data from Stanford hospital), Nicholas P 
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Tatonetti et al. [113] proposed a model to predict DDIs in 
adverse event reports. The authors first constructed profiles to 
8 clinically severe adverse event (SAE) classes represented in 
cholesterol related events, renal impairment, diabetes, liver 
dysfunction, hepatotoxicity, depression, hypertension, and 
suicide which were defined through manual expert curation. 
To construct a predictive model, the authors divided AERS 
data into two independent sets: reports that listed exactly one 
drug and reports that listed exactly two drugs. They used the 
first for training SAE classes computationally and the second 
for validation. By performing a feature selection and fitting a 
logistic regression model, the authors identified 171 putative 
DDIs (for eight adverse event categories). The predictive 
performance of the model was validated by a hospital’s EMR. 
Through EMR systems, the authors were also able to predict 
the positive association of paroxetine and pravastatin with 
increased blood glucose (22.6 mg/dl). The authors claimed 
that their algorithm may identify hundreds of novel 
interactions for further study, nevertheless the issue of 
underreporting in spontaneous reporting systems.  

 Jon D. Duke et al. [114] describe a novel approach for 
screening potential drug interactions that increase the risk of 
myopathy. Myopathy comprises a set of musculoskeletal 
conditions including muscle pain, weakness, and tissue 
breakdown (rhabdomyolysis). The authors used biomedical 
literature mining based on mechanistic properties to predict 
new DDI signals. Then they validated the resulted drug 
interactions, which are clinically significant, using a large 
electronic medical record database (EMR). The authors show 
that this approach predict five new DDI pairs associated with 
increased myopathy risk and their associated CYP- mediated 
metabolism enzymes. 

 Chung Am Choi et al. [115] examined the potential of using 
HIRA database as drug interactions (DIs) surveillance 
database. HIRA is a Korean national health insurance system, 
consisting of the health information of millions of Korean 
population including drugs and suspected adverse events 
(AEs), expressed as diagnoses. ICD-10 codes are used to code 
all kinds of occurring diagnoses. The authors apply 

shrinkage measure in HIRA data to the well- known 
interaction between NSAID and diuretics. A significant 
disproportionate, correspond to an actual interaction between 
the two drugs, could be identified with shrinkage measure 
(0.245) and its 95% lower credibility limit was above zero 
(  ). This result showed the potential feasibility of 
HIRA database for DI research. 

Closing Remarks, Future Perspectives, and Challenges 

In this review, we have shown a portfolio of data-mining 
approaches and data sources proposed for the analysis and 
detection of postapproval DDIs. Each approach may renew 
interest to advance the science of DI surveillance by offering 
diverse prospects. To our knowledge, this article is the first 
review of published studies related to screening/detecting 
signals of DDIs in postmarketing drug safety surveillance 
programs.     

 Unfortunately, the interactions between drugs are difficult to 
study, and there are few predictive methods for discovery 
novel DDIs. These interactions are not necessarily adverse; 
sildenafil (Viagra) was developed to treat angina but is now 
used to treat erectile dysfunction. Some computational 
algorithms take advantage of these pleiotropic interactions of 
drugs for predicting off target effects and discovering novel 
protein targets. Nonetheless, discovering the off target 
interactions of drugs remains an active area of research.  

 Potential DDIs are evaluated for experimental drugs pre-
clinically during development and then monitored by drug 
safety surveillance programs after they enter the marketplace. 
The development of predictive tools, to help study possible 
DDIs, is of great interest to pharmaceutical companies and 
regulatory authorities, such as the United States Food and 
Drug Administration (FDA) [11]. These organizations are 
interested in better methods to detect and assess drug 
interactions [116]. It is believed that integration of drug 
phenotypic, therapeutic, structural, and genomic similarities is 
promising for disclosing DDIs in drug development and 
postmarketing surveillance [117]- [119].  
 New opportunities have emerged to exploit diverse data 
sources that have not traditionally been used in postmarketing 
PhV, allowing for active paradigms of DI surveillance and 
detecting unknown DIs by performing pooled analyses. The 
purpose of DIs surveillance is to investigate the excess 
reporting of an event of interest on a combination of two drugs 
together which is more than reported by each individual drug. 
Although PhV research is now shifting away from the use of 
SRSs originating from the relative rarity of reporting DDIs to 
SRSs, this will not lessen the important value of data mining of 
SRSs; as SRSs represent the largest collection of population- 
based clinical data on DIs [120], [121]. The detection of DDIs 
is much more complicated than the detection of drug–event 
combinations because of the relatively lower incidence rates 
and background reporting rates in SRS and in addition, there 
are still no studies in literature suggesting that any of the 
proposed DDI detection methods (aforementioned in this 
article) have been implemented for routine PhV surveillance. 
Consequently, much effort is needed for developing, 
implementing and evaluating algorithms for discovering DDIs 
across disparate data sources for early DDI warnings and 
routinely DI surveillance.  

 A central challenge in DI surveillance research is the absence 
of established guidelines for evaluating the performance of 
DMAs for DDIs signal detection. Mainly, it is because of 
absence of   gold standard for all possible DI safety profiles 
for marketed drugs. Consequently, more research is needed to 
conduct methodological research to evaluate the performance 
of various analytical methods and to gain better understanding 
of signaling characteristics of multivariate association 
measures. We believe that will help in identifying optimal 
signal-qualifying thresholds in purpose of titrating the 
threshold of the measure toward a desired level of sensitivity 
and specificity , and also avoiding costs associated with false-
positive and false-negative signals. 
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 In recognition of drug toxicity is a major cause of late-stage 
product attrition of drug discovery process, early identification 
about the DI safety profiles of new medicines remains 
challenging. In Traditional drug discovery, hundreds of new 
drug molecules are evaluated before a small number of 
candidates, which mostly relies on scientists’ prior knowledge 
of the therapeutic area, are selected for subsequent laboratory 
safety testing in cells and animals. In summary, conventional 
drug development involves the hand-off of drug candidates 
from medicinal chemists into preclinical testing; followed by a 
transition to clinical study. Unforeseen DIs can have serious 
health consequences for patients that probably resulting in   
serious negative impacts on the whole drug development 
process. Consequently, there is a need for proposing data 
mining approaches to explore clinical safety knowledge and 
derive DIs of new drug candidates in early drug discovery via 
linking across multiple disciplines; encompassing preclinical, 
chemical structures, toxicology, drug metabolism, in vitro 
pharmacology and clinical safety information [122]  We think 
adopting this strategy in the drug discovery process will add 
values via providing a way to link clinical safety information 
to the experimental platforms used in early drug discovery, and 
enabling the analysis of potential safety issues of drug 
molecules in the early phases of the drug discovery process 
resulting in efficient triage of new drug candidates for further 
testing and elaboration [123].  

 Last but not least, Data mining does not provide sufficient 
evidence on causality and they are just adjunctive tool to 
formulate or strengthen or refine novel hypotheses. In other 
mean, well-organized clinical reviews remain crucial for 
further investigation and close surveillance of such safety 
signals, and data mining approaches should be incorporated 
into an overall signaling strategy as a first step in a more 
comprehensive process.  
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