
 

 

  
Abstract—The paper is focused on the description of the 

procedure from the modelling and simulation to the adaptive control 
of model of the water tank as a part of the Process Control Teaching 
system PCT40. First, the mathematical model of the water tank is 
derived with the use of material balance inside and the resulting 
nonlinear ordinary differential equation is solved numerically with 
the use of the mathematical software Matlab. Results from the 
steady-state and dynamic analyses are then used for the choice of the 
optimal working point and the choice of the External Linear Model 
for the control. The adaptive approach here uses polynomial 
approach, recursive identification and pole-placement method with 
spectral factorization. Resulted controller has one tuning parameter – 
position of the root inside the closed loop and the choice of this root 
affects mainly the speed of the control and the overshoots. 

 
Keywords—Water Tank, Adaptive Control, Mathematical 

Model, Pole-placement Method, Recursive Identification.  

I. INTRODUCTION 
HE modelling and simulation is of the first step before the 
choice of the optimal working point and control strategy. 

These days, when computation power and speed of personal 
or industrial computers are very high and the price is low the 
role of the simulation grows. 

The system could be described either mathematically or 
practically [1], [2]. The mathematical description for example 
uses material, heat etc. balances [3] depending on the type of 
the system, whether it is chemical reactor (Russell and Denn 
1972), heat exchanger or electric motor. On the other hand, 
real model is usually small representation of the originally 
nonlinear system and we expect that results of experiments on 
this model are also valid or comparable to those on the real 
system. The big advantage of the mathematical modelling is in 
its safety – experiments on some real systems could be 
sometime hazardous. Nevertheless, experiments on the real or 
abstract model are usually much cheaper than those on the 
original system which is sometimes big and components are 
expensive. 

This goal of this contribution is to describe how the 
simulation could help us with the designing of the controller 
for real model of the water. This real model is represented 
here by the Armfield's Process Control Teaching System 
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PCT40 [4] which has several process control models and one 
of them is the water tank. 

The mathematical model of this water tank system is 
mathematically described by the first order nonlinear Ordinary 
Differential Equation (ODE) [1]. This mathematical model is 
then subtracted to static and dynamic analyses.  

The static analysis means solving of this ODE in the steady-
state, i.e. the derivatives with the respect to time are equal to 
zero [3]. The nonlinear ODE is then reduced to the nonlinear 
algebraic equation which can be solved for example with the 
use of simple iteration methods [5]. The result of the static 
analysis could be optimal operating point or the range where 
the input variable could vary from the practical point of view. 

On the other hand, the dynamic analysis observes the 
behavior of the system after the step change of the input 
quality, in this case the change of the feed volumetric flow 
rate inside the water tank. The dynamic analysis means 
mathematically the use one of numerical methods for solving 
of the ODE. The main groups of numerical methods are one-
step methods for example Euler’s method, Runge-Kutta’s 
method, or multi-step methods Predictor-Corrector etc. [6]. 
The advantage of these methods is that they are easily 
programmable even more they are build-in functions in the 
mathematical software like Matlab [7], Mathematica etc. [8]. 

The adaptive control [9] approach here is based on the 
choice of the External Linear Model (ELM) of the originally 
nonlinear system [10], parameters of which are estimated 
recursively  and the control design employs polynomial 
approach with pole-placement method and spectral 
factorization. These methods satisfies basic control 
requirements such as stability, disturbance attenuation and 
reference signal tracking. 

The ELM here uses so called delta-models [11] which are 
special types of discrete-time models parameters of which are 
related to the sampling period which means that these 
parameters approaches to the continuous ones if the sampling 
period is adequately small. 

The on-line identification was realized by the Recursive 
Least-Squares (RLS) Method which is simple, easily 
programmable method and if we combine this method with 
some kind of forgetting, for example exponential or 
directional, it provides satisfactory results. 

All methods are verified by simulations in the mathematical 
software Matlab, version 7.0.1. 
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II. MODEL OF THE WATER TANK 
The equipment under the consideration is the real model of 

the water tank which is one part of the Multifunctional process 
control teaching system PCT40 from Armfield [4] – see Fig. 
1. The PCT40 includes also other models of processes such as 
Continuous Stirred Tank Reactor (CSTR) or heat exchanger. 
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Fig. 1 Multifunctional process control teaching system PCT40 

 
This system combines both modelling techniques – it is 

small representation of the water tank with the volume of 4-
liter original of which is usually much bigger with huge 
volume. The mathematical model of this system could be also 
easily derived. The schematic representation of the water tank 
can be found in Fig. 2.  
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Fig. 2 Schematic representation of the water tank 

 
The model consists of plastic transparent cylinder with 

inner radius r1 = 0.087 m. There is another plastic transparent 
cylinder inside due to quicker dynamic response of the system 
lower usage of feeding water. The outer radius of this smaller 
cylinder is r2 = 0.057 m and the maximal water level in the 
tank is hmax = 0.3 m. 

In the Fig. 2, q denotes the volumetric flow rate, h is used 
for the water level and r are radiuses of inner and outer 
cylinders. The input variable is the volumetric flow rate of the 
feeding water qin and state variables are water level h in the 
tank and output volumetric flow rate of the water which 
comes from the tank, q.  

The mathematical model comes from the material balance 
inside the tank which is in the word form [3]: 

 

Flow rate 
into the system

Flow rate 
into the system

Flow rate 
out of the system

Flow rate 
out of the system= Rate of 

accumulation 
Rate of 

accumulation +
 

and mathematically: 

in
dVq q
dt

= +  (1) 

where V is a volume of the water inside the tank and t is 
used for the time. 

The volume of the tank is generally 
V F h= ⋅  (2) 

for F as a area of the base due to cylindrical shape of the 
tank. It means, that balance (1) could be rewritten to the form 

in
dhq q F
dt

= + ⋅  (3) 

where F is in this case 
2 2 2 2

1 2 1.36 10F r r mπ π −= ⋅ − ⋅ = ⋅  (4) 
It is also known, that volumetric flow rate through the water 

valve is nonlinear function of the water level, i.e. 
q k h= ⋅  (5) 

where k is a valve constant which is specific for each valve 
and depend on the geometry and type of the valve.  

If we put equation (5) inside (3) the resulting mathematical 
model is: 

inq k hdh
dt F

− ⋅
=  (6) 

There should be introduced one simplification – the height 
of the discharging valve, hv in Fig. 2, is neglected.  

The unknown constant k could be computed for example 
from the steady state (variables with superscript (·)s), where 
qin

s = qs and equation (5) is 
s

s s

s

qq k h k
h

= ⋅ ⇒ =  (7) 

The water tank is fed via Proportioning Solenoid Valve 
(PSV) which could be operated in the range 0 – 100%. This 
range is from the practical point of view limited to the range   
0 – 2.5·10-5 m3.s-1. 

The equation (7) have still one unknown – the constant of 
the outlet valve, k. This constant could be computed from the 
reference measurement where we know the input volumetric 
flow rate, qin, and after some time also the steady-state value 
of the water level, hs.  For example, we made the measurement 
for the step change from 0 to 60% of the volumetric flow rate 
and the results are shown in Fig. 3 – solid line. 
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Fig. 3 Measured and simulated data for qin = 1.5·10-5 m3.s-1 – 

computation without the valve 
 
The volumetric flow rate is in this case qin = 1.5·10-5 m3.s-1 

and the final (steady-state) value of the water level h is  
hs = 0.141 m. It means, that the valve constant k is 

5
51.5 10 4.01 10

0.141
in

s

q
k

h

−
−⋅

= = = ⋅  (8) 

The simulation is very often connected to the verification 
part because it is good to know if the derived mathematical 
model is accurate enough.  

The result of the first simulation analysis for the same input 
volumetric flow rate qin = 1.5·10-5 m3.s-1 is shown in Fig. 3 – 
the dashed line. It is clear, that although simulated and 
measured outputs reaches the same final value, the dynamics 
is much different – the mathematical model has quicker output 
response. This statement means that the mathematical model 
(6) is not accurate and we must neglect some simplifications. 
In this case we did not take into the account the height of the 
valve, hv = 0.076 m, which has also impact to the 
mathematical model of the system. 

If we count with this height, new constant of the valve for 
the same step change as in previous case is 

( )

5
51.5 10 3.22 10

0.141 0.076
in

s

q
k

h

−
−⋅

= = = ⋅
+

 (9) 

The comparison of the measured and simulated data for this 
new constant of the valve is shown in Fig. 4. 
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Fig. 4 Measured and simulated data for qin = 1.5·10-5 m3.s-1 – 

computation with the valve 

 

A. Steady-state Analysis.  
The steady-state analysis means that we solve the 

mathematical model with the condition d(·)/dt = 0, i.e. ODE 
(6) is transferred to the nonlinear algebraic equation: 

( )
2

s in
in

q
h q

k
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (10) 

where the optional variable is the input volumetric flow 
rate, qin. There were done simulation analysis for the range   
qin = <0; 2.5·10-5> m3.s-1 and results are shown in the Fig. 5.  
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Fig. 5 The steady-state analysis of the mathematical model 

 
This analysis shows nonlinear behavior of the system and 

also we can choose the volumetric flow rate in the range  
qin = <8.86·10-6; 1.98·10-5> m3.s-1 because lower value of qin 
means that we did not get enough water in the tank and vice 
versa – the flow rate bigger than qin = 1.98·10-5 m3.s-1 results 
in bigger water level than its maximal value hmax.  Dots in the 
Fig. 5 display results of measured steady-state values. 

 

B. Dynamic Analysis.  
The dynamic analysis solves the ODE with the use of some 

numerical methods. In this case, the Runge-Kutta‘s standard 
method was used because it is easily programmable and even 
more it is build-in function in used mathematical software 
Matlab. The working point was characterized by the input 
volumetric flow rate 5 3 11.5 10s

inq m s− −= ⋅ ⋅ which is in the 
middle of the operating interval defined after the static 
analysis in the Fig. 5. 

The input variable, u(t), is the change of the initial s
inq  in % 

and the output variable is the water level in the tank. The input 
and the output variables are then generally: 

( ) ( ) [ ] ( ) ( ) [ ]100 % ;
s

in in
s
in

q t q
u t y t h t m

q
−

= ⋅ =  (11) 

The simulation time was 3000 s, six step changes of the 
input variable u(t) were done and results are shown in Fig. 6. 
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Fig. 6 The dynamic analysis for various step changes of the 

input volumetric flow rate qin 
 
Output responses show that this output has asymmetric 

responses – the final value is different in sign and also in 
order for positive and negative step changes. Even more, for it 
is inappropriate to choose the input step change of the 
volumetric flow rate lower than approximately -40% and 
bigger than +30% because the resulted water level is lower or 
higher than physical properties of the water tank. 

 

III. ADAPTIVE CONTROL 
The adaptive control was used for control of this system. 

There are several adaptive approaches which can be used. The 
method here uses External Linear Model (ELM) as a linear 
description of the originally nonlinear system. Parameters of 
and the structure of the controller are derived from this ELM 
and its parameters are identified recursively during the 
control. Parameters of the controller are recomputed in each 
time period too which means that this controller adopts its 
parameters according to the actual state and behavior of the 
controlled system. 

In this case, all output responses in Fig. 6 could be 
expressed by the first or the second order transfer functions 
(TF), for example in the continuous-time 

( ) ( )
( )

( ) ( )
( )

0
1

0

1 0
2 2

1 0

b s b
G s

a s s a

b s b s b
G s

a s s a s a

= =
+

+
= =

+ +

 (12) 

A. Control System Synthesis 
The controller is constructed with the use of polynomial 

synthesis and the control structure with 1DOF is shown in Fig. 
7. 
 

v 
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Fig. 7 1DOF control configuration 

 
The block G denotes transfer function (12) of controlled 

plant, w is the reference signal (wanted value), v is 
disturbance, e is used for control error, u is control variable 
and y is a controlled output. The transfer function of the 
feedforward part Q(s) of the controller is designed with the 
use of polynomial synthesis: 

( ) ( )
( )

q s
Q s

s p s
=

⋅
 (13) 

where degrees of polynomials ( )p s and q(s) are computed 
from: 

( ) ( ) ( )
( ) ( )

deg deg deg 1

deg deg 1

q s a s f s

p s a s

= + −

≥ −
 (14) 

and parameters of these polynomials are computed by the 
Method of uncertain coefficients which compares coefficients 
of individual s-powers from the Diophantine equation, e.g. 
[12]: 

( ) ( ) ( ) ( ) ( )a s s p s b s q s d s⋅ ⋅ + ⋅ =  (15) 
and the polynomial d(s) on the right side of (15) is an 

optional stable polynomial. It is obvious, that the degree of 
this polynomial is: 

( ) ( ) ( )deg deg deg 1d s a s p s= + +  (16) 
Roots of this polynomial are called poles of the closed-loop 

and their position affects quality of the control. 
This polynomial could be designed for example with the 

use of Pole-placement method. A choice of roots needs some a 
priory information about the system’s behavior. It is good to 
connect poles with the parameters of the system via spectral 
factorization. The polynomial d(s) can be then rewritten to the 
form 

( ) ( ) ( )deg degd n
id s n s s α −= ⋅ +  (17) 

where αi > 0 is an optional coefficient reflecting closed-
loop poles and stable polynomial n(s) is obtained from the 
spectral factorization of the polynomial a(s) 

( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (18) 
The Diophantine equation (15), as it is, is valid for step 

changes of the reference and disturbance signals which means 
that deg f(s) = 1 in (14). The feedback controller Q(s) ensures 
stability, load disturbance attenuation and asymptotic tracking 
of the reference signal.  

B. External Linear Model (ELM) 
The ELM here comes from the dynamic analysis as it is 

written above. The TF in (12) belongs to the class of 
continuous-time (CT) models. The identification of such 
processes is not very easy.  

One way, how we can overcome this problem is the use of 
so called δ–model. This model belongs to the class of discrete 
models but its parameters are close to the continuous ones for 
very small sampling period as it proofed in [13]. 

The δ–model introduces a new complex variable γ, for 
example  

1

v

z
T

γ −
=  (19) 
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If we choose for simplification first order TF G1 in (12), the 
differential equation will be 

( ) ( ) ( )0 01 1y k b u k a y kδ δ
δ δ δ= − − −  (20) 

where b0
δ and a0

δ are delta parameters different from the 
parameters b0 and a0 in (12) and the individual parts in 
Equation (20) can be written as 

( ) ( ) ( )

( ) ( )
( ) ( )

1
;

1 1
1 1 ;

v

y k y k
y k

T u k u k
y k y k

δ
δ

δ

− −
=

− = −

− = −

 (21) 

The regression vector ϕδ is then 
[ ]( 1) ( 1), ( 1) Tk y k u kδ δ δ− = − − −ϕ   (22) 

and the vector of parameters θδ is generally 

( ) 1 0 1 0, , ,
T

k a a b bδ δ δ δ
δ ⎡ ⎤= ⎣ ⎦θ  (23) 

which is computed from the differential equation 
( ) ( ) ( ) ( )1Ty k k k e kδ δ δ= ⋅ − +θ ϕ  (24)  

where e(k) is a general random immeasurable component.  
As it is written in the previous part, control system 

synthesis is done in continuous time, but recursive 
identification uses discrete time steps. The resulted, so called 
“hybrid”, controller works in the continuous time but 
parameters of the polynomials a(s) and b(s) are identified 
recursively in the sampling period Tv. This assumption results 
in the condition, that the parameters of the δ-model are close 
the continuous ones for the small sampling period. 

IV. SIMULATION RESULTS 
Simulation analyses do the control exercises on the 

mathematical model of the water tank (6) where the reference 
signal (wanted value) is the level of the water in the tank, h, 
which is controlled by the change of the input volumetric flow 
rate qin. 

The sampling period was Tv = 1 s, the simulation time was 
5000 s and 5 different step changes of the reference signal was 
done during this time. The controller could be tuned with the 
choice of the parameter αi. The affect of this parameter are 
shown in following figures.  
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Fig. 8 The course of the reference signal, w(t), and the output 

variable, y(t), for different values of αi 
 
The Fig. 8 clearly shows the effect of the tuning parameter 

αi – increasing value of this parameter results in quicker 
output response with the overshoots. The output response for 
the lowest value, i.e.  αi = 2, produces more smoother course 
of the output variable without the overshoot at the very 
beginning in the first step change. 
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Fig. 9 The course of the input variable, u(t), for different 

values of αi 
 

The course of the input variable on the other side is very 
similar for αi = 5 and 10. The third course for αi = 2 is 
different and smoother on the contrary. 
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Fig. 10 The course of the identified parameter a0

δ for different 
values of αi 
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Fig. 11 The course of the identified parameter b0

δ for different 
values of αi 

 
Last graphs in Fig. 10 and Fig. 11 shows values of the 

estimated parameters a0
δ  and b0

δ. It is clear, that used 
recursive identification has not problem with the on-line 
identification except the very beginning of the control, which 
is caused by the uncertainty of the system which needs some 
time for estimation of the real parameters of the system. This 
is typical feature of this type of adaptive control. 
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V. CONCLUSION 
The goal of this contribution is to show one way how to 

design the controller for the real system. At first, the 
mathematical model with one ordinary differential equation is 
derived. This model was then verified by the simulations of 
the steady-state and dynamics and the results are compared 
with the measurements on the real system. This comparison 
shows disproportion between simulated and measured data 
which is caused by the inaccuracy of the model which does 
not take into the account the height of the outlet valve. If we 
include this height into the computation, the results are much 
more accurate. The control approach here is based on the 
choice of the external linear model of the originally nonlinear 
system, parameters of which are identified recursively. The 
simple controller with one degree-of-freedom is designed with 
the use of polynomial approach with pole-placement method 
and spectral factorization. The resulted controller is stable and 
satisfies basic control requirements. Moreover, it can be tuned 
by the choice of the parameter αi – increasing value of this 
parameter results in quicker output response but possible 
overshoots. Introduced hybrid adaptive controller produces 
good control results although the system has nonlinear 
behavior. The future work is connected with the verification 
of the proposed control strategy on the real model of the water 
tank. 
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