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Abstract—Spatial stability analysis is used in the present paper in 

order to investigate the effect of variable friction on spatial growth 
rates of an unsteady perturbation. The flow is assumed to be slightly 
curved in the longitudinal direction. Numerical scheme is developed 
for the solution of the spatial stability problem. Numerical results 
show that growth rate of a perturbation decreases in the presence of 
regions of non-uniform friction. In addition, small curvature 
stabilizes the flow.  
 

I. INTRODUCTION 
TABILITY of shallow mixing layers is investigated in 
several papers [1]-[4]. Rigid-lid assumption is used in [1] 

to analyze linear stability of mixing layers and wakes in 
shallow water. The role of Froude number on the stability 
boundary is studied in [2] where it is shown that rigid-lid 
assumption works well (taking into account linear stability 
characteristics of the flow) for small Froude numbers. 
Gravitational and shear instabilities in compound and 
composite channels are analyzed in [3]. Linear stability 
analysis is one of the widely used methods for the analysis of 
shallow flows. Other methods include experimental 
investigation and numerical simulations [4].   

Shallow mixing layers are also analyzed experimentally in 
[5]-[7]. It is shown in [5]-[7] that limited water depth in 
shallow flows has a stabilizing influence on the flow. Mixing 
layer width also decreases downstream in contrast to the case 
of unbounded mixing layers.  

Recently an important practical problem is investigated 
experimentally in a series of papers [7]-[11] published by MIT 
group. The authors analyzed shallow mixing layers in the 
presence of a porous layer which can be formed, for example, 
by aquatic vegetation. Such flows can occur during floods. In 
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this case friction coefficient of the flow is not constant (as it is 
assumed, for example, in [1]-[4]), but varies in the transverse 
direction of the flow. Linear stability analysis of shallow 
mixing layer under the assumption that the friction coefficient 
is represented by a step function is performed in [7]. Later 
(see, for example, [12]) linear stability of shallow mixing 
layers is investigated for the case where the friction coefficient 
varies continuously with respect to the transverse coordinate 
from zero to some fixed constant.  

In the present paper we analyze spatial stability of shallow 
mixing layers in compound channels for the case where two 
additional factors are considered: (a) the flow is assumed to be 
slightly curved in the longitudinal direction and (b) the friction 
coefficient of the flow varies continuously with respect to the 
transverse direction. The hyperbolic tangent function is used to 
model bottom friction. In addition, the friction coefficient 
approaches non-zero constant values (smaller value in the 
main channel and larger value in the floodplain). Numerical 
results are presented for different values of the parameters of 
the problem.   

II. MATHEMATICAL FORMULATION OF THE PROBLEM 
We consider the system of shallow water equations under 

the rigid-lid assumptions of the form 
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where u and v are the velocity components, )(yc f is the 

friction coefficient, p is the pressure, h is water depth and 

R is the dimensionless radius of curvature ( 1>>R ).  
Introducing the stream function ),,( tyxψ by the relations 
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and eliminating the pressure from (2) and (3) we obtain 
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where )(')(
0

ycyc ffy γ= is the derivative of the function 

)(yc f with respect to y . It is assumed here that the 

dependence of the friction coefficient on the transverse 
coordinate y is given by the formula 

),()(
0

ycyc ff γ=                                                              (6) 

where )(yγ is sufficiently smooth “shape” function. 
Using the method of small perturbations we represent the 
solution ),,( tyxψ in the form 

...),,()(),,( 10 ++= tyxytyx εψψψ                           (7) 

where )(0 yψ is the stream function of the base flow 

)(yU such that )()( 0 yyU yψ= . The function )(yU is 

usually assumed to be of the form a hyperbolic tangent 
function. In this study, we assume that 

).tanh1(
2
1)( yyU +=                                                    (8) 

Substituting (6) into (5) and linearizing the resulting equation 
in the neighborhood of the base flow (7) we obtain 
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In accordance with the method of normal modes a small 
unsteady perturbation of the stream function is assumed to be 
of the form 

)(
1 )(),,( txieytyx βαϕψ −= ,                                              (10) 

where α and β , in general, are complex. Substituting (10) 
into (9) we obtain 
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where 
h

bc
S f0= is the bed friction number (see [1]) and b is 

a characteristic length scale of the problem (for example, 
mixing layer half-width).  
The boundary conditions are  

.0)( =±∞ϕ                                                                        (12) 
There are two basic approaches to the solution of (11), (12). 

The first (known as temporal stability analysis) is used under 
the assumption that α is real and ir iβββ += is complex. 
Thus, from a temporal stability point of view the base flow is 
unstable with respect to the perturbation with wave number α  
if 0>iβ . The set of all values of the parameter S for which 

0=iβ in the −),( Sα plane gives the neutral stability curve.  
The second approach (known as spatial stability analysis) is 
based on the assumption that ir iααα += is complex and 

β is real. Flow (8) is said to be spatially unstable if at least 

one .0<iα  
    From a computational point of view temporal stability 
analysis is simpler since one has to solve a linear generalized 
eigenvalue problem while in order to analyze spatial stability a 
polynomial generalized eigenvalue problem has to be solved. 
However, many experimental observations for shallow mixing 
layers deal with spatial variation of the characteristics of the 
flow. Hence, spatial stability analysis is used in practice more 
often.  
    In the present paper eigenvalue problem (11), (12) is solved 
as a spatial stability problem.  

III. NUMERICAL METHOD 
Problem (11), (12) is solved by means of a collocation 

method. First, the interval +∞<<∞− y is mapped onto the 

interval 11 ≤≤− ξ by means of the transformation 

yarctan2
π

ξ = . The solution to (11) is sought in the form  
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where ξξ arccoscos)( kTk = is the Chebyshev polynomial 

of the first kind of order k and ka are unknown coefficients. 

The factor )1( 2ξ− is added in (13) in order to satisfy the 
zero boundary conditions 

.0)1( =±ϕ                                                                        (14) 
The collocation points are 

.1,...,2,1,cos −== Nm
N
m

m
πξ                             (15) 

Substituting (13) into (11) and using (15) we obtain the 
following generalized eigenvalue problem 

,0)( =+ aBA α                                                         (16) 
where A and B are complex-valued nonsingular matrices and 

T
Naaaa )...( 110 −= . 

Problem (16) is solved numerically for different values of the 
parameters of the problem.  

IV. NUMERICAL RESULTS 
The variation of the friction coefficient in the transverse 
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direction is assumed to be of the form 
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)( ff cyc → as −∞→y , 

2
)( ff cyc → as +∞→y . Here 

1f
c and 

2fc are nonzero 

constants. Note that in [12] the friction coefficient varied is 
such a way that 0)( →yc f as −∞→y and 

2
)( ff cyc → as +∞→y . In other words, a frictionless 

flow is assumed in [12] as −∞→y . The parameter µ in 
(17) represents how sharp is the transition from the region of 
larger friction to the region of smaller friction. 

Variability of the friction coefficient given by (17) is 
consistent with the velocity profile (8) since higher velocity is 
expected in the region where friction force is smaller.  

Fig. 1 plots the spatial growth rates for the case 
1,15.0 == µS and ∞=R (no curvature). The case 

1=γ (top curve) corresponds to uniform friction. As can be 
seen from the graph, non-uniform friction of the form (17) has 
a stabilizing influence on the flow: the growth rate for the most 
unstable mode decreases as the parameter γ increases. Note 
that γ represents the degree of non-uniformity of the friction 
force in the transverse direction. Thus, flow with non-uniform 
friction is more stable than flow with uniform friction.  

iα−  

rβ  
 

Fig. 1. Spatial growth rates iα− versus rβ  for three values of 

5.1,1: == γγγ  and 2=γ (from top to bottom).  
 
The role of curvature on the stability characteristics of the flow 
is seen from Fig. 2 where the spatial growth rate for the case 

15.0=S and 5.1=γ is shown for three values of the 

parameter R/1 , namely, 0/1 =R (straight flow with no 
curvature), 0.01 and 0.02.  
 
 
 
 

iα−  

rβ  
 

Fig. 2. Spatial growth rates iα− versus rβ  for three values of 

01.0,0:/1 R  and 02.0 (from bottom to top).  
 
 

The bottom curve in Fig. 2 corresponds to the case of no 
curvature and is the most stable among the three cases 
considered. Thus, increase in curvature has a destabilizing 
effect on the flow.  

The effect of the parameter µ on the spatial growth rates is 

shown in Fig. 3 for the case .0/1,2,15.0 === RS γ  

iα−  

rβ  
Fig. 3. Spatial growth rates iα− versus rβ  for two values of 

1:µ  and 10 (from bottom to top).  
 
It is seen from Fig. 3 that steeper friction gradients result in 
less stable flow.  

V. CONCLUSION AND DIRECTION OF FUTURE WORK 
Spatial linear stability analysis of shallow mixing layers is 

performed in the present paper. The effect of several 
parameters of the stability characteristics of the flow is 
investigated.  In particular, it is shown that non-uniform 
friction coefficient in the transverse direction of the flow has a 
stabilizing influence in comparison with the case of a uniform 
friction. In addition, numerical computations demonstrate that 
slightly curved mixing layers are more stable than layers 
without curvature. Finally, it is shown that steepness of the 
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change of the friction coefficient in the transverse direction has 
a destabilizing influence on the flow.  

Linear stability analysis is performed in the present paper 
under the assumption of a parallel flow. In other words, the 
base flow profile (8) is assumed to be independent on the 
longitudinal coordinate. Experimental data (see, for example, 
[5] and [6]) show that the base flow is slightly changing along 
the longitudinal coordinate. Asymptotic schemes have been 
developing in the past in order to take into account slow 
longitudinal variation of the base flow. The authors are 
currently implementing the asymptotic scheme in order to 
derive the amplitude evolution equation for the most unstable 
mode.   
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