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Abstract— The objective of this study is to analyze static and 

dynamic models predicting the future typical compressive strength of 
Pozzolanic cements.  Both classes of models are based on physical 
and chemical characteristics and on the early strength of this cement 
type. The models performance was investigated and the superiority of 
the dynamic models was proved based on different criteria. Based on 
the dynamic models, the industrial quality control can daily evaluate 
the reactivity of cement compounds and take preventive or corrective 
actions if needed in order to maintain a low variance of typical 
strength. 
 

I. INTRODUCTION 
LENDED cements are largely produced and utilized in 
construction. With these types of cement high 

performance concrete can be obtained as regards strength and 
durability under expected environmental conditions.  On the 
other hand, the composite cements due to their lower 
Clinker/Cement ratio contribute to the reduction of the emitted 
CO2 per ton of produced cement having a very positive 
environmental impact. According to the European Norm EN 
197-1:2011 [1] several components can be used as main 
cement constituents, except the clinker: Limestone, natural or 
artificial pozzolane, fly ash, granulated blast furnace slag and 
silica fume. The most of these compounds are characterized as 
pozzolanic or cementitious materials, contributing effectively 
on the strength development of cement and concrete. 
Consequently concerning strength development, a binary or 
ternary mixture of Portland clinker with these components 
shows a behavior completely different from that of pure 
Portland cement composed only from clinker and gypsum. 

Cement quality is mainly characterized by its stability 
concerning the compressive strength in mortar and concrete. 
The stability of 28 days strength of mortar is thought as 
sufficient indicator of the product quality. In case the cement 
strength is far from the predefined target, the delay of 28 days 
of receiving results is enough long and likely the reasons 
causing strength divergence already have vanished.  A second 
drawback related with this delay is that if the producer does 
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not start any action during this period, a product outside of 
specifications could be manufactured. Therefore the 
construction of models predicting the 28-day strength of 
blended cements is a challenging issue compared to the 
models predicting the Portland cement strength.  

A relatively extended literature exists for models predicting 
the compressive strength of Portland cement [2] –[11]. No 
such large bibliography exists for blended cements especially 
if the constituents contribute drastically in the 28-day strength. 
Douglas et al. [12] performed an experimental design for 
mixtures of three components including Portland cement, 
granulated blast furnace slag and fly ash. Using seven design 
points, a statistical approach was used to find the equations 
describing strength development of the ternary systems at 1, 7, 
28 and 91 days. For the same ternary mixture Wang et al. [13] 
applied a simplex-centroid design to study the compressive 
strengths of mortars at different ages and they found three 
cubic polynomial models. They also designed ternary 
diagrams allowing to predict the compressive strengths from 
the iso-strength contour lines. Kostogloudis et al. [14] 
developed a multiple linear regression model for predicting 
the 28-day compressive strength of Portland cement with 
pozzolana. Except other variables, they utilized the cement 
insoluble residue and the pozzolanic activity factor to describe 
the pozzolane effect on the strength.  Nehdi et al. [15] used 
factorial designs to optimize ternary cementitious mortar 
blends. The ternary mixtures included ordinary Portland 
cement (OPC) -silica fume (SF) - fly ash (FA) and OPC-SF- 
granulated blast furnace slag (GBFS). Response surfaces for 
several properties including compressive strength at 1, 7, 28 
and 56 days were obtained for up to 20%, 40%, and 60% 
replacement levels of OPC by SF, FA and GBFS, respectively. 
Chen et al. [16] applied the method of the simplex-lattice 
design for predicting the strength of ternary cementitious 
systems composed from cement, silica fume and fly ash with 
constant water to binder ratio and a mass fraction of mineral 
admixtures not exceeding 30%. With the aid of the 
optimization theory they optimized the mixture proportioning, 
using compressive strength as a criterion. Khan [17] 
investigated the iso-responses for strength, permeability and 
porosity of high performance mortars composed from cement, 
fly ash and silica fume, with the aim at developing high 
performance-low environmental impact concrete. The same 
author [18] developed analytical models for the strength 
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prediction of high performance concrete composed from 
various binary and ternary combinations of Portland cement, 
fly ash, slag and silica fume. He derived quadratic response 
surfaces correlating the compressive strength at 7, 28, 90, 180 
days with the proportions of fly ash, slag, silica fume and with 
the ratio of water to cement.  Abd-El Aziz et al. [19] studied 
the physico-chemical and mechanical characteristics of 
pozzolanic cement pastes and mortars hydrated at different 
curing temperatures. Their results indicated that, the 
pozzolanic cement mortars give higher strength than the 
Portland cement mortars, especially at curing temperatures 
above 35 °C.  Heikal et al. [20] investigated the characteristics 
of blended cements containing nano-silica (NS). They 
considered as control sample a standard mix of Portland 
(OPC) cement and GBFS. The composite OPC–GBFS–NS 
cements containing 45 % of GBFS and 3–4 % of NS possess 
the highest improvement of mechanical properties, hydration 
kinetics and microstructure of hardened cement pastes and 
mortars. 

The effect of the mentioned pozzolanic or cementitious 
materials on the compressive strength of concrete has been 
also investigated and modeled. Several researchers utilized 
multiple regression models to quantify the impact of the 
referred materials on the strength [21]-[27]. Another category 
of research includes modeling based on artificial neural 
networks (ANN) or fuzzy logic (FL) [28]-[32]. 

The most of these models are used for design purposes and 
are based on laboratory experimental data. The predictions are 
accurate inside their field of application. In case of important 
change of the value of a parameter not contained in the set of 
the independent variables, the predictive model could fail. 
Therefore the most of the models could be called “static”. 
Tsamatsoulis [33] performed a detailed comparison of static 
and dynamic models of Portland cements based on regression 
algorithms. The dynamic models incorporate the uncertainty 
due to the time variability of non involved factors during the 
modeling procedure.   The main aim of this study is to extend 
the comparison between static and dynamic models to the 
class of pozzolanic cements, characterized as CEM IV in EN 
197-1 norm.  The major difficulty in predicting strength of this 
cement type is that except clinker at least one other component 
affecting strength participates. Usually the pozzolanic 
materials are characterized from elevated variability as 
concerns their composition, especially in case they are by-
products from another industrial process. In the current study 
natural pozzolane and calcareous fly ash originating from 
electricity plants are the main constituents of the CEM IV 
cements.  The applicability of such models on the daily quality 
control was examined in detail. This article is structured as 
follows: The experimental methods and the applied standards 
are referred to the first section. Afterwards, the suggested 
predicting models are developed. The implementation of the 
models is analyzed in the last section. 

II. EXPERIMENTAL 
Pozzolanic cements belonging to two strength classes 

according to EN 197-1:2011 were studied: CEM IV/B (P-W) 

32.5 N and CEM IV/B (P-W) 42.5 N. Both cements contain 
natural pozzolane (P) and calcareous fly ash (W) as main 
components. The modeling is based on the results of the daily 
average samples of cement produced in two cement mills 
(CM) of Halyps plant. The analyses made on these samples 
were the following: 

(i) Residue at 40 μm sieve, R40, measured with air sieving. 
(ii) Specific surface, Sb, measured according to EN 196-6. 
(iii) Loss on ignition, LOI, and insoluble residue, Ins_Res,  

of the cement measured according to EN 196-2. 
(iv) Oxides analysis (SO3, CaO, SiO2, Al2O3, Fe2O3) 

measured with X-ray fluorescence. 
(v) Compressive strength at 1, 7 and 28 days. The 

preparation, curing and measurement of the specimens were 
made according to the standard EN 196-1. 

(vi) The cement composition was computed using the 
results of the steps (iii) – (iv) and the average analysis of the 
raw materials, by applying the method presented in [34]. In 
this way the clinker content was calculated. 

III. MATHEMATICAL MODELS PREDICTING STRENGTH  
Exclusively plant data of cement produced in the cement 

mills CM5 and CM6 during height years were utilized. The 
modeling predicting the 28-day strength was based on more 
than 1500 data sets of cement fineness, chemical analyses, 
composition, 1, 7 and 28 days strength. Two categories of 
models were elaborated: (a) the static ones, wherein for a 
given data set, the values of the parameters were calculated 
with multiple linear regression. Afterwards these values were 
utilized to predict the future strengths, each time the input data 
were available and (b) the dynamic models, where the 
parameters were estimated from a moving set of data 
belonging to past time interval of predefined size, e.g. 3 
months, 6 months etc. For all the dynamic models, the latest 
date of the time interval has two characteristics: (i) the 28-day 
strength has been measured; (ii) its distance from the date of 
prediction is the minimum. The dependent and independent 
variables of static and dynamic models are shown in Tables 1 
and 2 respectively. 

 
Table 1. Variables of the static models   

                               Variable 
Model Clink 

  (%) 
Pz 
(%) 

Ash 
(%) 

Sb/104  
(cm2/gr) 

R40 
( %) 

Str_1 
(Mpa) 

Str_7 
(Mpa) 

Str28_1    +  +  +    +   +    +  
Str28_7    +  +  +    +   +    +     + 
 
 
Table 2. Variables of the dynamic models 
    Model CM5   Model CM6 
    Variable Str28_1 Str28_7 Str28_1 Str28_7 
      LOI (%)      +    
  Ins_Res (%)      +      +      +      + 
     CaO (%)       +       + 
       SiO2 (%)      +      +      +      + 
      Al2O3(%)        +  
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Table 2. Cont. Str28_1 Str28_7 Str28_1 Str28_7 
Sb/104 (cm2/gr)      +      +      +      + 
     R40 ( %)      +      +      +      + 
  Str_1 (Mpa)      +      +      +      + 
  Str_7 (Mpa)       +       + 
 
where Clink, Pz, Ash = clinker, pozzolane, fly ash contents 
(%) respectively, CaO, SiO2, Al2O3 = the contents (%) of the 
corresponding oxides, LOI = loss on ignition (%), Ins_Res = 
insoluble residue (%), Sb = cement specific surface (cm2/gr), 
Str_1 and Str_7 = compressive strengths (Mpa) after one and 
seven days curing correspondingly, Str28_1, Str28_7 = 28-day 
strength (Mpa) estimated from the respective model. 

A. Static Models 
The models correlating the 28-day strength with 1-day 

strength (Str28_1) and both 1 and 7 days’ strength (Str28_7) 
were investigated. The models are described by (1): 

 

 

 
where XI, XJ = the independent variables, Y = the dependent 

variable. The coefficients AI, AII, AIJ are determined by 
minimizing the residual error sRes calculated by (2): 

 
where Yact = actual 28 days strength, Ycalc = the calculated 

one from the model, M = number of data sets, k = number of 
independent variables. The full set of data involves all results 
of the two mentioned cement types from 2006 to 2013 for 
CM5 and CM6. For each CM the model parameters were 
determined using the data of 2006-2008 by applying multiple 
linear regressions. With t-test and 95% probability, the non 
significant parameters were excluded. The statistically 
significant coefficients (AI,AII, AIJ) for both models and mills 
are presented in Tables 3 and 4. 

Based on the parameters of the models calculated with data 
of three full years, a further search was performed as regards 
the accuracy of future strength prediction. For each CM, the 
models were applied for the results of 2009 to 2013, using the 
parameters computed with the 2006-2008 data. The residual 
errors are presented in Table 5. The last row shows the sRes for 
the full range of data from 2009 to 2013. 

It is clearly observed from the Table 5 that the accuracy of 
the static models in predicting future strength is deteriorated as 
long as the time distance between the parameters estimation 
and the prediction of strength augments. The most probable 
causes are the changes of the clinker reactivity or other cement 
constituent contributing to strength and of cement particle size 
distribution. If these characteristics are not kept relatively 
stable, then the probability of failure in prediction becomes 
not negligible.   

Table 3. Models Parameters for CM5 
     Variable      Str_28_1      Str_28_7 
    Constant            0            0 
       Clink        0.397        0.316 
        Ash         0.139 
      Sb/104         10.2        1.929 
        R40        -0.105  
       Str_1         3.59         -0.558 
       Str_7         0.900 
    Clink∙Pz         5·10-3        3·10-3 
    Clink∙Ash         8·10-3  
      Pz∙Ash         1·10-3 
     Pz∙ Sb/104         -0.653  
   Ash∙ Sb/104         -0.324        -0.263 
    Clink∙ R40         -4·10-4       -0.012 
    Ash∙ R40         -3·10-4  
   Clink∙ Str_1        -0.039  
    Ash∙ Str_1        -0.022       -0.02 
   Clink∙ Str_7        -3·10-3 
    R40∙ Str_7         0.026 
 Num. of data          454           454 
         sRes        1.811         1.362 

 
Table 4. Models Parameters for CM6 

     Variable      Str_28_1      Str_28_7 
    Constant            0            0 
       Clink        0.248        0.247 
        Ash        -0.416 
      Sb/104         42.6        -30.7 
        R40        1.404    
       Str_1        6.238         0.034 
       Str_7         3.192 
    Clink∙Pz        0.014       -2·10-4 
    Clink∙Ash         5·10-3  
      Pz∙Ash        -3·10-3 
     Pz∙ Sb/104        -2.864  
   Ash∙ Sb/104        -0.403        0.894 
    Clink∙ R40        -0.016        0.026 
    Ash∙ R40        -0.020  
   Clink∙ Str_1        -0.078  
    Ash∙ Str_1         -0.025        1·10-3 
   Clink∙ Str_7        -0.029 
    R40∙ Str_7        -0.056 
 Num. of data          169           169 
         sres        1.572         1.224 

 
Table 5. Residual errors of future application of the models 

         Str28_1         Str28_7 
   CM5   CM6   CM5   CM6 
2006-08   1.811    1.572   1.362  1.224 
  2009   2.529  2.529   1.452   1.604 
  2010   2.195  2.026   1.429  1.426 
  2011   1.982   3.780   1.401  2.245 
  2012   3.994  5.087   2.247  2.669 
  2013   5.979  8.654   3.377  4.545 
2009-13   3.452  4.353   1.966  2.415 
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B. Dynamic Models  
To improve the predictability of the modeling a second 

approach was selected by including dynamical characteristics 
and maintaining the simplicity of implementation. The two 
models referred in Table 2 were implemented by excluding 
with t-test the non-significant variables, by omitting the 
coefficients AII, AIJ and considering movable time horizon as 
concerns the introduced data. Thus, for each date a new 28-
day strength result appears, the models’ coefficients are 
recalculated with the following algorithm: 
   (i) At date t a new 28-day strength result appears. The 
specimen was prepared 28 days ago. The production date is in 
distance t-29 days from the current date t.  

(ii) A time interval of TD days and the samples belonging to 
the period [t-29-TD, t-29] are presumed. The dynamic data set 
consists of this population of samples. 

(iii) Using multiple regression the model parameters AI (I=0 
.. N) and sres are computed. 

(iv) At date t, the chemical and physical results of the 
cement produced in the previous day, the 1 day strength of the 
cement produced 2 days ago and the 7 days strength of cement 
produced 8 days ago have been measured. 

(v) With the set of parameters computed in step (iii) the 28 
days strength of cement produced at t-2 and t-8 days are 
estimated, by applying the models Str28_1 and Str28_7 
respectively.  

(vi) The procedure is repeated for the date t+tN, where t+tN 
is the date a new 28 days result appears. Consequently tN ≥ 1. 

(vii) If tN>1, the future strength of the cement produced in 
the time intervals [t-1, t+tN-2], [t-7,t+tN-8] is computed 
according to the equation of step (v). Otherwise using the 
equation computed in step (vi). 

(viii) As the time span remains TD, when a new result is 
added, the time interval is moved on. Thus the future 28 days 
strengths are calculated using models applied to data sets of 
movable time horizon.  

(ix) Parameter TD shall be optimized with one of the two 
criteria: (a) minimum sRes during modeling and (b) minimum 
error during the future application of the models. A TD interval 
from 90 to 720 days was investigated.  

(x) For each date J a set (AI(J), sRes(J)) is computed from the 
samples belonging to [J-TD, J] time interval. Depending on TD 
value, the number of the consecutive sets (AI(J), sRes(J)) is KTD 
and the number of sets for a date J is NTD(J).  The average 
residual errors, sRes,Aver,  during modeling is calculated by (3): 

 
 

 
 
The average number of data sets per TD, NTD,Av and sRes,Av 

for the results of both cement mills are presented in Tables 6 
and 7. 

 
 

Table 6. sRes during modeling for  CM5 
     TD      NTD   Str28_1   Str28_7 
       sres,Av     sres,Av 
     90       42       1.49       1.06 
    120       55       1.56       1.12 
    180       81       1.64       1.22 
    270      119       1.71       1.30 
    360      156       1.78       1.35 
    450      197       1.80       1.36 
    540      236       1.83       1.52 
    720      310       1.89       1.58  

 
Table 7. sRes during modeling for  CM6 

     TD      NTD   Str28_1   Str28_7 
       sres,Av     sres,Av 
     90       22       1.38       0.94 
    120       29       1.49       1.02 
    180       43       1.58       1.12 
    270       62       1.69       1.20 
    360       83       1.75       1.25 
    450      103       1.81       1.29 
    540      125       1.86       1.31 
    720      165       1.94       1.36  

 
The following comparison of the two kinds of models is 

made based on the results of Tables 3, 4 and 6, 7. Increasing 
NTD, sRes of the dynamic models also increases. Despite the 
dynamic models are much simpler than the static ones, the 
residual errors are comparable for NTD = 450 for CM5 and 
NTD=180 for CM6. 

IV. ANALYSIS OF RESULTS AND DISCUSSION   

A. Prediction of Future Strength with the Dynamic Models 
The worsening of prediction of future strength with the 

static models was presented in Table 5.  The dynamic models 
have the flexibility to include the tuning parameter TD which 
needs optimization. The residual errors in predicting the future 
strength by applying the dynamic Str28_1, Str28_7 models are 
shown in Table 8 from where the following remarks can be 
made: 

 
Table 8. sRes during predicting future strength for  CM5, 

CM6. 
         Str28_1        Str28_7 
Year  TD  CM5  CM6  CM5  CM6 
2008-13   90  2.26   2.57  2.00  1.93 
2008-13  120  2.26   2.21  1.92  1.64 
2008-13  180  2.26   2.12  1.76  1.59 
2008-13  270  2.23   2.10  1.69  1.50 
2008-13  360  2.19   2.16  1.63  1.53 
2008-13  450  2.19   2.21  1.61  1.53 
2008-13  540  2.19   2.24  1.67   1.54  
2008-13  720  2.27   2.42  1.76  1.60 

 
- For CM5 both models show minimum sRes for TD=360-

450 days while for CM6 the minimum is located at TD=270 
days.  
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- The optimum sRes values for both dynamic models are 
lower than the sRes of the static models for the data sets of 
2009-2012 shown in the last row of Table 5. The ratios of 
sRes,Dyn/sRes,Stat are depicted in Fig. 1 for both models and 
cement mills from where it is observed that the dynamic 
models provide a 15-50% lower error than the static ones as 
concerns the prediction of future strength. The improvement is 
greater in the case of Str28_1 model. 

 

 
Fig. 1 Ratio of sRes of Dynamic to Static model 
 
- The optimum residual errors computed during modeling 

and during predicting the future strength were also compared 
for both models and CM. The ratio of average sRes during 
prediction and modeling, sRes,Pred/sRes,Mod, for dynamic and 
static models are shown in Fig. 2, from where it is clear that 
this ratio is much lower in case of dynamic models than this of 
static models. This is an additional proof that the dynamic 
models predict the future strength much better than the static 
ones. 

 
Fig. 2 Ratio  of sRes during prediction of future strength and 

modeling. 
     To investigate the structure of the distribution of sRes 

computed during the future strength prediction the following 
algorithm was chosen.  

(i) For the TD providing an optimum dynamic model, an 
average number of data sets NTD corresponds. 

(ii)  Data sets arrays of size NTD were created, which are of 
movable type: When a next data set is added, the older one is 
subtracted. The number of consecutive arrays is around equal 

to KTD. 
(iii) For each array I, the sRes(I) was calculated and the 

distribution was constructed. 
(iv) The sRes distributions for the dynamic model Str28_1 

for the results of CM5, CM6 are depicted in Figs. 3 and 4 
correspondingly. From these two figures it is observed that all 
the sRes for both CM are lower than the average sRes of static 
models during strength prediction. The above is a very strong 
indication of the superiority of the dynamic models in 
predicting the 28-day strength. 

 
Fig. 3 Distribution of sRes of dynamic Str28_1 model for 

CM5 results 

 
Fig. 4 Distribution of sRes of dynamic Str28_1 model for 

CM6 results 

B. Impact of the chemical, physical cement characteristics 
on the 28-day strength  
The dynamic models predicting the 28-day cement strength 

are very useful because the impact of each variable can be 
investigated as function of time. Continuous information can 
be provided by implementing this model, about the reactivity 
of the raw materials and the impact of the fineness on the 28 
days strength. The traditional Shewhart control charts [35] 
were proved very helpful in monitoring the cement 
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characteristics as it was analyzed in detail by Tsamatsoulis [9].  
For the coefficients AI of the two dynamical models the 

average value XAver, and the standard deviation, σX, were 
calculated. The control charts of the coefficients of variables 
LOI and SiO2 for the results of CM5 obtained from the model 
Str28_1 with TD=360 days are presented in Figs. 5 and 6. The 
average values, XAver and the upper and lower control limits, 
XAver±2σX, are also shown. 

 
Fig. 5 Control chart of coefficient of LOI variable for dynamic 
Str28_1 model and CM5 results. 
 

 
Fig. 6 Control chart of coefficient of SiO2 variable for 
dynamic Str28_1 model and CM5 results.    
 

 
Fig. 7 Control chart of coefficient of Str_1 variable for 
dynamic Str28_1 model and CM5 results. 

The control charts of the coefficients of Str_1 derived from 
the str28_1 model of CM5 and of the Str_7 derived from 
Str28_7 model of CM5 with TD=360 are demonstrated in Figs. 
7 and 8.    

The average values and standard deviations of all the 
independent variables of the three dynamic models for CM5, 
CM6 are presented in Tables 9 and 10 correspondingly. 

 
Table 9. Parameters of the dynamic models for CM5 
                Average Values 
     TD        360      360 
  Coeff.     Str28_1   Str28_7 
Constant        46.0        20.6 
   Sb/104         3.2        -6.2 
     R40       -0.26        -0.11 
     LOI       -1.07         
  Ins_Res       -0.09        -0.03  
     CaO        -0.05 
     SiO2       -0.22       -0.01 
    Str_1        1.11       -0.27 
    Str_7          1.11 
            Standard Deviations 
Constant        12.3        17.0 
   Sb/104         10.7        9.7 
     R40        0.14        0.09 
     LOI        0.48         
  Ins_Res        0.17         0.14  
     CaO         0.21 
     SiO2        0.31        0.27 
    Str_1        0.38        0.27 
    Str_7         0.23 
 
Table 10. Parameters of the dynamic models for CM6 
                Average Values 
     TD        270      270 
  Coeff.     Str28_1   Str28_7 
Constant        47.5        20.2 
   Sb/104        -10.3       -10.7 
     R40       -0.28       -0.13 
     LOI       -0.01        0.12 
  Ins_Res         0.04  
     CaO       -0.43       -0.09 
     SiO2        0.59        
    Str_1        1.14       -0.23 
    Str_7          1.14 
            Standard Deviations 
Constant        17.7        34.0 
   Sb/104         14.7        11.0 
     R40        0.31        0.18 
     LOI        0.32        0.20 
  Ins_Res                0.41  
     CaO        0.54        0.51 
     SiO2        1.36         
    Str_1        0.30        0.49 
    Str_7         0.29 
 

 
 

Latest Trends on Systems - Volume I

ISBN: 978-1-61804-243-9 143



 

 

 
Fig. 8 Control chart of coefficient of Str_7 variable for 
dynamic Str28_7 model and CM5 results. 
 

C. Uncertainty of the Dynamic Models Parameters   
The standard deviations shown in Tables 9, 10 correspond 

to the optimum TD in predicting the future strength. A detailed 
search was made as regards the function between parameters 
uncertainty and time horizon TD. The functions between 
average coefficients, their standard deviation and TD are 
shown in Figs. 9 to 12: In Figs. 9, 10 and 11 the statistics of 
the coefficients of SiO2, R40 and Str_1 computed from the 
Str28_1 model are demonstrated. In Fig. 12 the respecting 
statistics of Str_7 coefficients calculated from the Str28_7 
model is also depicted. 

 
Fig. 9 Average and std. dev. of SiO2 coefficient of Str28_1 

model 

 
Fig. 10 Average and std. dev. of R40 coefficient of Str28_1 
model 

 

 
Fig. 11 Average and std. dev. of Str_1 coefficient of Str28_1 
model 

 
Fig. 12 Average and std. dev. of Str_7 coefficient of Str28_7 
model 
 

A big drop of the standard deviations occurs with TD 
increasing. Therefore the models with a large TD provide a 
more robust estimation of the average value of parameters in 
long-term.  

 

D. Evaluation of the Reactivity of Cement    
The dynamic models constitute a tool to evaluate the 

reactivity of the different cement compounds, including also 
the grinding aid. This assessment is shown by the following 
example. A cement CEM IV B (P-W) 32.5 was selected with 
Sb = 3900 cm2/gr, R40 = 11.3%, LOI = 3.9%, Ins_Res = 
24.8%, SiO2 = 35.7%, Al2O3 = 9%, CaO = 39.9% and Str_1 = 
4.5 Mpa produced in CM5 and CM6. The dynamic model 
Str28_1 for TD=360 days for CM5 and TD=270 days for CM6 
was applied for all the parameters sets in CM5, CM6 and the 
average 28-day strength was calculated. The difference of 
each strength result from this average was computed. The 
results are demonstrated in Figs. 13, 14. 

When the difference is negative, i.e. the strength is lower 
than the average; the current reactivity of cement compounds 
is lower than the long – term mean reactivity. The inverse 
happens in case of positive difference. This analysis is a 
simple example showing the ability of the dynamic models to 
contribute in the daily quality control of cement. 
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Fig. 13 Application of Str28_1 model for constant 
composition and fineness in CM5 
 

 
Fig. 14 Application of Str28_1 model for constant 
composition and fineness in CM6 
 

V. CONCLUSIONS  
The prediction of the 28-day strength of cements where 

more than one component contribute in strength development 
is a challenging issue due to its high importance in the product 
design, in the daily quality control and in the concrete mix 
design. The pozzolanic cements belong to this category, where 
the 28-day compressive strength becomes as a result of the 
interaction of clinker, pozzolane, fly ash and the cement 
fineness as well. Two classes of models were developed: (a) 
the static ones, where based on a predetermined data set, the 
parameters values were calculated and applied to predict the 
future strengths and (b) the dynamic models, where the 
parameters were estimated from a moving set of data 
belonging to a predefined past time interval, TD in days. 
Exclusively industrial data of Halyps cement plant were used. 

The future strength predictions obtained by the static 
models are sufficient only if negligible or small changes to the 
processes or to the materials reactivity occur. The dynamic 
models are able to detect such changes due to the continuous 
calculation of their parameters. The time period TD was 
optimized using as criterion the minimum residual error of the 

future strength prediction. The solutions found were between 
270 and 360 days depending on the model applied and the 
mill. 

Independently of the category of model, static or dynamic, 
two types of models were developed having as independent 
variables the cement chemical analysis, the fineness expressed 
as residue at 40 μm and specific surface, and the early strength 
measured at one and seven days. The static models contain 
linear terms, the squares and the linear combinations of the 
above variables whether they are statistically significant. The 
dynamic models were simplified including only the linear 
terms. Despite their simpler structure, the dynamic models 
predict much better the future strength than the static models. 

Using the dynamic models the effect of the cement 
composition, fineness and early strength on the 28-day 
strength can be investigated as function of time. The 
continuous implementation of these models and the daily 
calculation of the coefficients provide this information. On the 
other hand the uncertainty of the models’ coefficients is a 
monotonic function of TD. The standard deviation of the 
coefficients of the models declines, as TD increases. 
Consequently the application of the models with large TD 
provides a more robust estimation of the average value of 
parameters in long-term. 

The analysis of the two categories of models verified the 
ability and superiority of the dynamic models against the static 
ones in predicting the strength of pozzolanic cement. 
Moreover the implementation of these methods contributes 
noticeably in improving the cement quality by maintaining a 
low variance of typical strength. The further improvement of 
these techniques can follow the next directions.  

- Investigation of non-linear dynamic models and possible 
coupling of the models that include as variables the early 
strengths at one and seven days, to enhance the predictability. 

- Exploitation of the dynamic models to develop robust 
controllers based on Model Predictive Control (MPD) 
techniques or other advanced methods. 
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