Recent Advances in Biomedical & Chemical Engineering and Materials Science

Proceedings of the 2014 International Conference on Chemical Engineering and Materials Science (CEMS '14)

Proceedings of the 2014 International Conference on Biology and Biomedical Engineering (BBE '14)

Venice, Italy, March 15-17, 2014

Edited by
Manijeh Razeghi
Jun Zhang
Samuel Lofland
Emanuel E. Strehler
George Perry
John Gordon Lindsay
Photios A. Anninos

ISBN: 978-1-61804-223-1
RECENT ADVANCES in BIOMEDICAL & CHEMICAL ENGINEERING and MATERIALS SCIENCE

Proceedings of the 2014 International Conference on Chemical Engineering and Materials Science (CEMS '14)

Proceedings of the 2014 International Conference on Biology and Biomedical Engineering (BBE '14)

Venice, Italy
March 15-17, 2014
RECENT ADVANCES in BIOMEDICAL & CHEMICAL ENGINEERING and MATERIALS SCIENCE

Proceedings of the 2014 International Conference on Chemical Engineering and Materials Science (CEMS '14)
Proceedings of the 2014 International Conference on Biology and Biomedical Engineering (BBE '14)

Venice, Italy
March 15-17, 2014

Copyright © 2014, by the editors

All the copyright of the present book belongs to the editors. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the editors.

All papers of the present volume were peer reviewed by no less than two independent reviewers. Acceptance was granted when both reviewers’ recommendations were positive.

ISBN: 978-1-61804-223-1
RECENT ADVANCES in BIOMEDICAL & CHEMICAL ENGINEERING and MATERIALS SCIENCE

Proceedings of the 2014 International Conference on Chemical Engineering and Materials Science (CEMS '14)

Proceedings of the 2014 International Conference on Biology and Biomedical Engineering (BBE '14)

Venice, Italy
March 15-17, 2014
Organizing Committee

General Chairs (EDITORS)

- Prof. Manijeh Razeghi
 Walter P. Murphy Professor
 Director, Center for Quantum Devices
 Department of Electrical Engineering and Computer Science
- Prof. Jun Zhang, Deputy Director
 College of Chemistry and Chemical Engineering
 Inner Mongolia University, Hohhot 010021, P. R. China
- Prof. Samuel Lofland, Rowan University,
 Glassboro, New Jersey, USA
- Prof. Emanuel E. Strehler, Ph.D.
 Professor of Biochemistry and Molecular Biology
 Mayo Clinic College of Medicine
 Rochester, MN 55905, USA
- Prof. George Perry, Ph.D.
 Dean and Professor
 Semmes Foundation Endowed Chair in Neurobiology
 College of Sciences
 The University of Texas at San Antonio
- Prof. John Gordon Lindsay,
 (Professor of Medical Biochemistry)
 University of Glasgow,
 Glasgow, UK
- Prof. Photios A. Anninos
 Professor Emeritus
 Democritus University of Thrace.
 Alexandroupolis, Greece

Senior Program Chair

- Prof. Ashutosh Tiwari
 Biosensors and Bioelectronics Centre
 IFM-Linköpings Universitet
 581 83 Linköping, Sweden
- Dr Sukhvinder Badwal, FTSE, FAIE
 Chief Research Scientist
 CSIRO Energy Technology
 Private Bag 33, Clayton South 3169
 Victoria, Australia
- Prof. Peter Dieter,
 Faculty of Medicine
 'Carl Gustav Carus',
 Dresden, Germany
Program Chairs

- Prof. Paul H. Holloway
 Distinguished Professor Emeritus
 Dept. of Materials Science and Engineering,
 Gale Lemerand Drive
 University of Florida Gainesville FL, USA
- Prof. Vesselin Dimitrov
 Department of Silicate Technology
 University of Chemical Technology and Metallurgy,
 8 Kl. Ohridski Blvd., Sofia 1756, Bulgaria
- Dr. Stefano Bellucci,
 Frascati National Laboratory (LNF)
 National Institute of Nuclear Physics (INFN)
 Via Enrico Fermi, 40 - 00044 Frascati (RM), Italy
- Prof. Andrei Korobeinikov,
 Centre de Recerca Matematica,
 Barcelona, Spain
- Prof. Florin Gorunescu,
 University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Prof. Ivana Horova, Masaryk University, Czech Republic

Tutorials Chair

- Prof. Takeshi Fukuda
 Saitama University
 Sakura-ku, Saitama 338-8570, Japan
- Prof. Charles A. Long
 Professor Emeritus
 University of Wisconsin
 Stevens Point, Wisconsin, USA

Special Session Chair

- Prof. Byron Gates
 Canada Research Chair in Surface Chemistry
 Department of Chemistry
 Simon Fraser University
 8888 University Drive
 Burnaby, B.C. V5A 1S6
 Canada
- Prof. Seong Ihl Woo,
 Korea Advanced Institute of Science and Technology,
 Korea
- Prof. Wolfgang Wenzel,
 Institute for Nanotechnology,
 Germany
Workshops Chair
- Prof. David N. Seidman
 Walter P. Murphy Professor
 Northwestern University
 Evanston, IL 60208-3108, USA
- Prof. Anita H. Corbett,
 Emory University School of Medicine,
 Atlanta, GA, USA

Local Organizing Chair
- Assistant Prof. Klimis Ntalianis,
 Tech. Educ. Inst. of Athens (TEI), Athens, Greece
- Prof. Photios A. Anninos
 Professor Emeritus
 Democritus University of Thrace.
 Alexandroupolis, Greece

Publication Chair
- Prof. Jim P. Zheng
 Florida A&M University and
 Florida State University
 Aero-Propulsion,
 Mechatronics and Energy (AME) Center
 Center for Advanced Power Systems (CAPS)
 Florida State University, USA
- Prof. Tuan Pham,
 James Cook University,
 Townsville, Australia

Publicity Committee
- Prof. Victor Mosquera Tallon
 Universidade de Santiago de Compostela
 Santiago de Compostela, Galicia,
 Spain
- Prof. Myriam Lazard
 Institut Superieur d' Ingenierie de la Conception
 Saint Die, France
- Prof. Gertz I. Likhtenshtein,
 Ben-Gurion University of the Negev, Israel
International Liaisons

- Prof. Marie-Paule Pileni
 Distinguish Professor University P&M Curie, UPMC.
 Member of Institut Universitaire de France
 France
- Prof. Tadaaki Nagao
 Group Leader, National Institute for Materials Science
 Tsukuba, Ibaraki, Japan
- Prof. Vincenzo Niola
 Departement of Mechanical Engineering for Energetics
 University of Naples "Federico II"
 Naples, Italy
- Prof. Eduardo Mario Dias
 Electrical Energy and Automation Engineering Department
 Escola Politecnica da Universidade de Sao Paulo
 Brazil
- Prof. Ka-Lok Ng
 Department of Bioinformatics
 Asia University
 Taichung, Taiwan
- Prof. Olga Martin
 Applied Sciences Faculty
 Politehnica University of Bucharest
 Romania

Steering Committee

- Prof. Aida Bulucea, University of Craiova, Romania
- Prof. Zoran Bojkovic, Univ. of Belgrade, Serbia
- Prof. Metin Demiralp, Istanbul Technical University, Turkey
- Prof. Imre Rudas, Obuda University, Budapest, Hungary

Program Committee

Prof. Gang-Yu Liu, University of California, Davis Campus, CA, USA
Prof. Zhibing Zhang, University of Birmingham, Birmingham, UK
Prof. Jean-Francois Gohy, Université catholique de Louvain, Belgium
Prof. Waler Caseri, ETH, Zurich, Switzerland
Prof. Jacques Desbrieres, Universite De Pau Et Des Pays De L'Adour, France
Prof. Adrian Schumpe, Technical University of Braunschweig, Germany
Prof. Chris Bowen, University of Bath, Bath, UK
Prof. Jerzy Baldyga, Technical Univeristy Warszawska, Poland
Prof. Alirio Rodrigues, University of Porto, Portugal
Prof. Mostafa Barigou, University of Birmingham, Birmingham, UK
Prof. Jaime Wisniak, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Prof. Sohail Murad, University of Illinois at Chicago, USA
Prof. Konstantinos E. Kakosimos, Texas A&M University at Qatar, Doha, Qatar
Prof. Raghunath V. Chaudhari, University of Kansas, USA
Prof. Xijun Hu, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
Prof. Deepak Kunzru, Indian Institute of Technology, Kanpur, India
Prof. Amit Bandyopadhyay, AAAS Fellow, ASM International Fellow, AIMBE Fellow and ACerS Fellow, Washington State University, Pullman, State of Washington, USA
Prof. Yong Ding, Georgia Institute of Technology, Atlanta, GA, USA
Prof. Yulin Deng, Georgia Institute of Technology, Atlanta, GA, USA
Prof. Paul H. Holloway, Distinguished Prof., University of Florida, Gainesville FL, USA
Prof. Saad Khan, North Carolina State University, Raleigh, North Carolina, USA
Prof. Manijeh Razeghi, Northwestern University, Evanston, IL, USA
Prof. Igor Sevostianov, New Mexico State University, Las Cruces, New Mexico, USA
Prof. Mohindar S. Seehra, West Virginia University, Morgantown, West Virginia, USA
Prof. Tao Liu, Florida State University, Tallahassee, Florida, USA
Prof. Daniel Guay, Institut National de la Recherche Scientifique (INRS), Universite du Quebec, Quebec, Canada
Prof. Tian Tang, University of Alberta, Edmonton, Alberta, Canada
Prof. Roland Frankenberg, University of Marburg, Marburg, Germany
Prof. Mohamadally Kurmoo, Universite de Strasbourg, Strasbourg, France
Prof. C. C. Sorrell, University of New South Wales, Sydney, NSW, Australia
Prof. Concepcion Lopez, Universitat de Barcelona, Barcelona, Spain
Prof. Alan Dalton, University of Surrey, Guildford, Surrey, UK
Prof. Kourosh Kalantar-Zadeh, RMIT University, Melbourne, Australia
Prof. Constantinos Tsitsilianis, University of Patras, Patras, Greece
Prof. Tetsu Yonezawa, Hokkaido University, Kita Ward, Sapporo, Hokkaido Prefecture, Japan
Prof. Paolun Chen, Ryerson University, Toronto, Ontario, Canada
Prof. Mohamed M. Chehimi, Universite Paris Diderot, Paris, France
Prof. Vincenzo Fiorentini, Universita degli studi di Cagliari, Cagliari, Italy
Prof. Tamas Ungar, Eotvos Lorand University (ELTE), Budapest, Hungary
Prof. Anthony W. Coleman, Universite Claude Bernard Lyon 1, Lyon, France
Prof. Albert Chin, IEEE Fellow, OSA Fellow, National Chiao Tung University, Hsinchu, Taiwan
Prof. Artur Cavaco-Paulo, Universidade do Minho, Braga, Portugal
Prof. Yoshihiro Tomita, Kobe University, Kobe, Japan
Prof. Jian Wang, Los Alamos National Laboratory, Los Alamos, NM, USA
Prof. Byung K. Kim, Pusan National University, Busan, South Korea
Prof. John T. Sheridan, University College Dublin, Belfield, Dublin, Ireland
Prof. Chi-Wai Chow, National Chiao Tung University, Hsinchu, Taiwan
Prof. Christian M. Julien, Universite Paris-6, Paris, France
Prof. Chun-Hway Hsueh, National Taiwan University, Taipei, Taiwan
Prof. Hyung-Ho Park, Yonsei University, Seodaemun-gu, Seoul, Korea
Prof. Victor M. Castano, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
Prof. Peter Chang, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Prof. Dean-Mo Liu, National Chiao Tung University, HsinChu, Taiwan
Prof. Rui Vilar, Instituto Superior Tecnico, Lisboa, Portugal
Prof. Hugh J. Byrne, Dublin Institute of Technology, Dublin, Ireland
Prof. Won-Chun Oh, Hanseo University, Seosan-si, Chungcheongnam-do, South Korea
Prof. Yuanchua Lin, Tsinghua University, Haidian, Beijing, China
Prof. S.C. Tjong, City University of Hong Kong, Sham Shui Po District, New Kowloon, Hong Kong
Prof. Huan-Tsing Chang, National Taiwan University, Taipei City, Taiwan
Prof. Yoshitake Masuda, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
Prof. Jing Zhang, Donghua University, Shanghai, China
Prof. Veronica Cortes de Zea Bermudez, Universidade de Tras-os-Montes e Alto Douro, Vila Real, Portugal
Prof. Jun Zhang, Inner Mongolia University, Hohhot, Inner Mongolia, China
Prof. Israel Felner, Hebrew University of Jerusalem, Jerusalem, Israel
Prof. Sukhinder Badwal, CSIRO Energy Technology, Australia
Prof. Te-Hua Fang, National Kaohsiung University of Applied Sciences (KUAS), Kaohsiung, Taiwan
Prof. Belkheir Hammoudi, Mohammed Premier University, Oujda, Morocco
Additional Reviewers

Angel F. Tenorio
Unidadad Pablo de Olavide, Spain

Ole Christian Boe
Norwegian Military Academy, Norway

Abelha Antonio
Universidade do Minho, Portugal

Xiang Bai
Huazhong University of Science and Technology, China

Genqi Xu
Tianjin University, China

Moran Wang
Tsinghua University, China

Minhui Yan
Shanghai Maritime University, China

Jon Burley
Michigan State University, MI, USA

Shinji Osada
Gifu University School of Medicine, Japan

Bazil Taha Ahmed
Universidad Autonoma de Madrid, Spain

Konstantin Volkov
Kingston University London, UK

Tetsuya Shimamura
Saitama University, Japan

George Barreto
Pontificia Universidad Javeriana, Colombia

Tetsuya Yoshida
Hokkaido University, Japan

Deolinda Rasteiro
Coimbra Institute of Engineering, Portugal

Matthias Buyle
Artesis Hogeschool Antwerpen, Belgium

Dmitrijs Serdjuks
Riga Technical University, Latvia

Kei Eguchi
Fukuoka Institute of Technology, Japan

Imre Rudas
Obuda University, Budapest, Hungary

Francesco Rotondo
Polytechnic of Bari University, Italy

Valeri Mladenov
Technical University of Sofia, Bulgaria

Andre Dmitriev
Russian Academy of Sciences, Russia

James Vance
The University of Virginia's College at Wise, VA, USA

Masaji Tanaka
Okayama University of Science, Japan

Sorinel Oprisan
College of Charleston, CA, USA

Hessam Ghasemnejad
Kingston University London, UK

Santoso Wibowo
CQ University, Australia

M. Javed Khan
Tuskegee University, AL, USA

Manoj K. Jha
Morgan State University in Baltimore, USA

Miguel Carriegos
Universidad de Leon, Spain

Philippe Dondon
Institut polytechnique de Bordeaux, France

Kazuhiko Natori
Toho University, Japan

Jose Flores
The University of South Dakota, SD, USA

Takuya Yamano
Kanagawa University, Japan

Frederic Kuznik
National Institute of Applied Sciences, Lyon, France

Lesley Farmer
California State University Long Beach, CA, USA

João Bastos
Instituto Superior de Engenharia do Porto, Portugal

Zhong-Jie Han
Tianjin University, China

Francesco Zirilli
Sapienza Universita di Roma, Italy

Yamagishi Hiromitsu
Ehime University, Japan

Eleazar Jimenez Serrano
Kyushu University, Japan

Alejandro Fuentes-Penna
Universidad Autónoma del Estado de Hidalgo, Mexico

José Carlos Metrólho
Instituto Politecnico de Castelo Branco, Portugal

Stavros Ponis
National Technical University of Athens, Greece
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keynote Lecture 1: On the Distinguished Role of the Mittag-Leffler and Wright Functions in Fractional Calculus</td>
<td>17</td>
</tr>
<tr>
<td>Francesco Mainardi</td>
<td></td>
</tr>
<tr>
<td>Keynote Lecture 2: Latest Advances in Neuroinformatics and Fuzzy Systems</td>
<td>18</td>
</tr>
<tr>
<td>Yingxu Wang</td>
<td></td>
</tr>
<tr>
<td>Keynote Lecture 3: Recent Advances and Future Trends on Atomic Engineering of III-V Semiconductor for Quantum Devices from Deep UV (200nm) up to THZ (300 microns)</td>
<td>20</td>
</tr>
<tr>
<td>Manijeh Razeghi</td>
<td></td>
</tr>
<tr>
<td>Quasi-Quantum Model of the Nerve Fiber Formation</td>
<td>23</td>
</tr>
<tr>
<td>Marcin Molski</td>
<td></td>
</tr>
<tr>
<td>Density of States and Electrical Resistivity in Epitaxial Graphene at Low Temperatures</td>
<td>27</td>
</tr>
<tr>
<td>N. Melnikova, N. Bobenko, V. Egorushkin, A. Ponomarev</td>
<td></td>
</tr>
<tr>
<td>Optical Response of a Strongly Driven Asymmetric Quantum Dot Molecule</td>
<td>30</td>
</tr>
<tr>
<td>Spyridon G. Kosionis, John Boviatsis, Emmanuel Paspalakis</td>
<td></td>
</tr>
<tr>
<td>Integration of Modified K-Means Clustering and Morphological Operations for Multi-Organ Segmentation in CT Liver-Images</td>
<td>34</td>
</tr>
<tr>
<td>Walita Narkbuakaew, Hiroshi Nagahashi, Kota Aoki, Yoshiki Kubota</td>
<td></td>
</tr>
<tr>
<td>A Theoretical Study of an Electronic Structure of the Infinite and Finite-Length Carbon Nanotubes</td>
<td>40</td>
</tr>
<tr>
<td>A. V. Tuchin, A. A. Ganin, D. A. Zhukalin, L. A. Bityutskaya, E. N. Bormontov</td>
<td></td>
</tr>
<tr>
<td>Design of a Training System for Intrapedicular Screw Positioning in the Lumbar Region</td>
<td>47</td>
</tr>
<tr>
<td>Nataly A. Garcia, Daniel Lorias, Vicente Gonzalez, Fernando Chico</td>
<td></td>
</tr>
<tr>
<td>Dose Profile Variation with Pitch in Head CT Scans Using Gafchromic Films</td>
<td>51</td>
</tr>
<tr>
<td>Mourão A. P., Gonçalves Jr. R. G., Alonso T. C.</td>
<td></td>
</tr>
<tr>
<td>Cell Nuclei Classification in HE-stained Biopsy Images</td>
<td>55</td>
</tr>
<tr>
<td>Intelligent Classification of Middle Cognitive Impairment and Alzheimer's Disease Using Heterogeneous Information Source Features</td>
<td>61</td>
</tr>
<tr>
<td>O. Valenzuela, F. Ortuño, G. Ruiz-García, F. Estrella, I. Rojas</td>
<td></td>
</tr>
<tr>
<td>Testing for Non-Linearity in Spontaneous Pupil Signal of Health Subjects: Preliminary Approach Based on Non-Stationary Surrogate Data Methods</td>
<td>67</td>
</tr>
<tr>
<td>W. Nowak, A. Hachol, M. Misiuk-Hojlo</td>
<td></td>
</tr>
</tbody>
</table>
A New Approach for Selective Optical Fiber Sensors Based on Localized Surface Plasmon Resonance of Gold Nanostars in Molecularly Imprinted Polymer
Maria Pesavento, Nunzio Cennamo, Alice Donà, Piersandro Pallavicini, Girolamo D’Agostino, Luigi Zeni

Structural Determinant for Helicobacter pylori Resistance to Sulfonamides
Anna Roujeinikova

Charge Properties and Fractal Aggregation of Carbon Nanotubes
Dmitry A. Zhukalin, Andrey V. Tuchin, Sviatoslav V. Avilov, Larisa A. Bityutskaya, Evgeniy N. Bormontov

Implementation of Smart Ovulation Detection Device
Hazem M. Eissa, Amr M. Ahmed, Ehab A. Elsehely

Proposal for a Gastrointestinal Simulator System with Anatomical Location and Emulator Mechanism of an Endoscope
Efren Moncisvalles, Daniel Lorias, Arturo Minor, Jesus Villalobos

Electronic Structure of Two Isomers of Fluorine Derivatives of Single-Walled Carbon Nanotubes of C2F Stoichiometry within the Density Functional Theory
Alexander A. Ganin, Larissa A. Bityutskaya, Eugeniy N. Bormontov

Dynamic Behavior of Polymer at High Strain Rate
Khlif M., Bradai C., Masmoudi N.

Binding Sites of the miR-1273 Family, miR-1285-3p and miR-5684 in Human mRNAs
Anatoly T. Ivashchenko, Olga A. Berillo, Anna Y. Pyrkova, Raigul Y. Niyazova

Composite Ceramics Based on Nanostructured Refractory Oxide Whiskers

Metal Mixed Oxides and Zeolites in Oxidation of Ethanol and Isopropanol
Jana Gaálová, květuše Jiráňlová, Jan Klempa, Olga Šolcová, Irene Maupin, Jérôme Mijoin, Patrick Maginoux, Jacques Barbier Jr.

A Vibrational Strark Effect In The Fullerene C60
Andrey V. Tuchin, Larisa A. Bityutskaya, Eugene N. Bormontov

A Bench Scale Study on the Enrichment of Saudi Phosphate Rock Used for H3PO4 Production
Yasir Arafat, T. F. Al-Fariss, Muhammad Awais Naeem
Assessment of Orthopedic Device Associated with Cavrbonated Hydroxyapatite on the Metabolic Response in Liver Tissue
Samira Jebahi, Hassane Oudadesse, Zoubeir Ellouz, Tarek Rebai, Hafedh El Feki, Hassib Keskes, Abdelfatteh Elfeki

The Performance of SnO2/CdS/CdTe Type Solar Cell under Influence of CdS Buffer Layer Thickness and Series Resistance RS
H. Tassoult, A. Bouloufa

Fabrication, Sealing and Hydrophilic Modification of Microchannels by Hot Embossing on PMMA Substrate
Alireza Shamsi, Saeed Delaram, Mehrnaz Esfandiari, Hasan Hajghassem

The Arrangements of the Locations of miR-619, miR-5095, miR-5096 and miR-5585 Binding Sites in the Human mRNAs
Anatoly T. Ivashchenko, Olga A. Berillo, Anna Y. Pyrkova, Raigul Y. Niyazova, Shara A. Atambayeva

Process Hazard Management System (PROHAMS) Based on PSM
A. M. Shariff, H. A. Aziz, K. H. Yew

Predicted Formation and Deposition of Slag from Lignite Combustion on Pulverized Coal Boilers
Pakamon Pintana, Nakorn Tippayawong

Real Time IVUS Segmentation and Plaque Characterization by Combining Morphological Snakes and Contourlet Transform
Mohamed Ali Hamdi, Karim Saheb Ettabaa, Mohamed Lamine Harabi

Preliminary Proteomic Analysis and Biological Characterization of the Crude Venom of Montivipera bornmuelleri; A Viper from Lebanon
Accary C., Hraoui-Bloquet S., Hamze M., Sadek R., Hleihel W, Desfontis J.-C., Fajloun Z.

A Computational Model of the Modulation of Basal Ganglia Function by Dopamine Receptors
Mohammad Reza Mohagheghi-Nejad, Fariba Bahrami, Mahyar Janahmadi

GSM Based Artificial Pacemaker Monitoring System
Santhosh Ganesh, Lavanya Jagannathan, Sasikala Thirugnanasambandam, Mahesh Veezhinathan

Effect of Genetic Lines and Season on Body Weights of Chicks
Hani N. Hermiz, Kamarn A. Abas, Aram M. Ahmed, Tahir R. Al-Khatib, Shayma M. Amin, Dastan A. Hamad

On the Optimization of Non-Dense Metabolic Networks in Non-Equilibrium State Utilizing 2D-Lattice Simulation
Erfan Khaji
Antibacterial Study of Copper Oxide Nanoparticles synthesized by Microemulsion Technique
Harish Kumar, Renu Rani

Authors Index
Keynote Lecture 1

On the Distinguished Role of the Mittag-Leffler and Wright Functions in Fractional Calculus

Professor Francesco Mainardi
Department of Physics, University of Bologna, and INFN
Via Irnerio 46, I-40126 Bologna, Italy
E-mail: francesco.mainardi@bo.infn.it

Abstract: Fractional calculus, in allowing integrals and derivatives of any positive real order (the term "fractional" is kept only for historical reasons), can be considered a branch of mathematical analysis which deals with integro-differential equations where the integrals are of convolution type and exhibit (weakly singular) kernels of power-law type. As a matter of fact fractional calculus can be considered a laboratory for special functions and integral transforms. Indeed many problems dealt with fractional calculus can be solved by using Laplace and Fourier transforms and lead to analytical solutions expressed in terms of transcendental functions of Mittag-Leffler and Wright type. In this plenary lecture we discuss some interesting problems in order to single out the role of these functions. The problems include anomalous relaxation and diffusion and also intermediate phenomena.

Brief Biography of the Speaker: For a full biography, list of references on author's papers and books see:
and http://scholar.google.com/citations?user=UYxWyEAAAAJ&hl=en&oi=ao
Abstract: Investigations into the neurophysiological foundations of neural networks in neuroinformatics [Wang, 2013] have led to a set of rigorous mathematical models of neurons and neural networks in the brain using contemporary denotational mathematics [Wang, 2008, 2012]. A theory of neuroinformatics is recently developed for explaining the roles of neurons in internal information representation, transmission, and manipulation [Wang & Fariello, 2012]. The formal neural models reveal the differences of structures and functions of the association, sensory and motor neurons. The pulse frequency modulation (PFM) theory of neural networks [Wang & Fariello, 2012] is established for rigorously analyzing the neurosignal systems in complex neural networks. It is noteworthy that the Hopfield model of artificial neural networks [Hopfield, 1982] is merely a prototype closer to the sensory neurons, though the majority of human neurons are association neurons that function significantly different as the sensory neurons. It is found that neural networks can be formally modeled and manipulated by the neural circuit theory [Wang, 2013]. Based on it, the basic structures of neural networks such as the serial, convergence, divergence, parallel, feedback circuits can be rigorously analyzed. Complex neural clusters for memory and internal knowledge representation can be deduced by compositions of the basic structures.

Fuzzy inferences and fuzzy semantics for human and machine reasoning in fuzzy systems [Zadeh, 1965, 2008], cognitive computers [Wang, 2009, 2012], and cognitive robots [Wang, 2010] are a frontier of cognitive informatics and computational intelligence. Fuzzy inference is rigorously modeled in inference algebra [Wang, 2011], which recognizes that humans and fuzzy cognitive systems are not reasoning on the basis of probability of causations rather than formal algebraic rules. Therefore, a set of fundamental fuzzy operators, such as those of fuzzy causality as well as fuzzy deductive, inductive, abductive, and analogy rules, is formally elicited. Fuzzy semantics is quantitatively modeled in semantic algebra [Wang, 2013], which formalizes the qualitative semantics of natural languages in the categories of nouns, verbs, and modifiers (adjectives and adverbs). Fuzzy semantics formalizes nouns by concept algebra [Wang, 2010],
verbs by behavioral process algebra [Wang, 2002, 2007], and modifiers by fuzzy semantic algebra [Wang, 2013]. A wide range of applications of fuzzy inference, fuzzy semantics, neuroinformatics, and denotational mathematics have been implemented in cognitive computing, computational intelligence, fuzzy systems, cognitive robotics, neural networks, neurocomputing, cognitive learning systems, and artificial intelligence.

Brief Biography of the Speaker: Yingxu Wang is professor of cognitive informatics and denotational mathematics, President of International Institute of Cognitive Informatics and Cognitive Computing (ICIC, http://www.ucalgary.ca/icic/) at the University of Calgary. He is a Fellow of ICIC, a Fellow of WIF (UK), a P.Eng of Canada, and a Senior Member of IEEE and ACM. He received a PhD in software engineering from the Nottingham Trent University, UK, and a BSc in Electrical Engineering from Shanghai Tiedao University. He was a visiting professor on sabbatical leaves at Oxford University (1995), Stanford University (2008), University of California, Berkeley (2008), and MIT (2012), respectively. He is the founder and steering committee chair of the annual IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC) since 2002. He is founding Editor-in-Chief of International Journal of Cognitive Informatics and Natural Intelligence (IJCIINI), founding Editor-in-Chief of International Journal of Software Science and Computational Intelligence (IJSSCI), Associate Editor of IEEE Trans. on SMC (Systems), and Editor-in-Chief of Journal of Advanced Mathematics and Applications (JAMA). Dr. Wang is the initiator of a few cutting-edge research fields or subject areas such as denotational mathematics, cognitive informatics, abstract intelligence (αI), cognitive computing, software science, and basic studies in cognitive linguistics. He has published over 160 peer reviewed journal papers, 230+ peer reviewed conference papers, and 25 books in denotational mathematics, cognitive informatics, cognitive computing, software science, and computational intelligence. He is the recipient of dozens international awards on academic leadership, outstanding contributions, best papers, and teaching in the last three decades.

http://www.ucalgary.ca/icic/
http://scholar.google.ca/citations?user=gRVQjskAAAAJ&hl=en

Editor-in-Chief, International Journal of Cognitive Informatics and Natural Intelligence
Editor-in-Chief, International Journal of Software Science and Computational Intelligence
Associate Editor, IEEE Transactions on System, Man, and Cybernetics - Systems
Editor-in-Chief, Journal of Advanced Mathematics and Applications
Chair, The Steering Committee of IEEE ICCI*CC Conference Series
Abstract: Nature offers us different kinds of atoms, but it takes human intelligence to put them together in an elegant way in order to realize functional structures not found in nature. The so-called III-V semiconductors are made of atoms from columns III (B, Al, Ga, In, Tl) and columns V (N, As, P, Sb, Bi) of the periodic table, and constitute a particularly rich variety of compounds with many useful optical and electronic properties. Guided by highly accurate simulations of the electronic structure, modern semiconductor optoelectronic devices are literally made atom by atom using advanced growth technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD). Recent breakthroughs have brought quantum engineering to an unprecedented level, creating light detectors and emitters over an extremely wide spectral range from 0.2 mm to 300 mm. Nitrogen serves as the best column V element for the short wavelength side of the electromagnetic spectrum, where we have demonstrated III-nitride light emitting diodes and photo detectors in the deep ultraviolet to visible wavelengths. In the infrared, III-V compounds using phosphorus, arsenic and antimony from column V, and indium, gallium, aluminum, and thallium from column III elements can create interband and intrasubband lasers and detectors based on quantum-dot (QD) or type-II superlattice (T2SL). These are fast becoming the choice of technology in crucial applications such as environmental monitoring and space exploration. Last but not the least, on the far-infrared end of the electromagnetic spectrum, also known as the terahertz (THz) region, III-V semiconductors offer a unique solution of generating THz waves in a compact device at room temperature. Continued effort is being devoted to all of the above mentioned areas with the intention to develop smart technologies that meet the current challenges in environment, health, security, and energy. This talk will highlight my contributions to the world of III-V semiconductor Nano scale optoelectronics. Devices from deep UV-to THz.

Brief Biography of the Speaker: Manijeh Razeghi received the Doctorat d’État es Sciences Physiques from the Université de Paris, France, in 1980. After heading the Exploratory Materials Lab at Thomson-CSF (France), she joined Northwestern University, Evanston, IL, as a Walter P. Murphy Professor and Director of the Center for...
Quantum Devices in Fall 1991, where she created the undergraduate and graduate program in solid-state engineering. She is one of the leading scientists in the field of semiconductor science and technology, pioneering in the development and implementation of major modern epitaxial techniques such as MOCVD, VPE, gas MBE, and MOMBE for the growth of entire compositional ranges of III-V compound semiconductors. She is on the editorial board of many journals such as Journal of Nanotechnology, and Journal of Nanoscience and Nanotechnology, an Associate Editor of Opto-Electronics Review. She is on the International Advisory Board for the Polish Committee of Science, and is an Adjunct Professor at the College of Optical Sciences of the University of Arizona, Tucson, AZ. She has authored or co-authored more than 1000 papers, more than 30 book chapters, and fifteen books, including the textbooks Technology of Quantum Devices (Springer Science+Business Media, Inc., New York, NY U.S.A. 2010) and Fundamentals of Solid State Engineering, 3rd Edition (Springer Science+Business Media, Inc., New York, NY U.S.A. 2009). Two of her books, MOCVD Challenge Vol. 1 (IOP Publishing Ltd., Bristol, U.K., 1989) and MOCVD Challenge Vol. 2 (IOP Publishing Ltd., Bristol, U.K., 1995), discuss some of her pioneering work in InP-GaInAsP and GaAs-GaInAsP based systems. The MOCVD Challenge, 2nd Edition (Taylor & Francis/CRC Press, 2010) represents the combined updated version of Volumes 1 and 2. She holds 50 U.S. patents and has given more than 1000 invited and plenary talks. Her current research interest is in nanoscale optoelectronic quantum devices.

Dr. Razeghi is a Fellow of MRS, IOP, IEEE, APS, SPIE, OSA, Fellow and Life Member of Society of Women Engineers (SWE), Fellow of the International Engineering Consortium (IEC), and a member of the Electrochemical Society, ACS, AAAS, and the French Academy of Sciences and Technology. She received the IBM Europe Science and Technology Prize in 1987, the Achievement Award from the SWE in 1995, the R.F. Bunshah Award in 2004, and many best paper awards.