Abstract—Many industrial applications require high performance speed sensorless operation and demand new control schemes in order to obtain fast dynamic response. In this paper, we present a speed sensorless sliding mode control (SMC) of induction motor (IM). The sliding mode control is a powerful tool to reject disturbances. However, the chattering phenomenon presents a major drawback for variable structure systems. To decrease this problem, a saturation function is used to limit chattering effects. A Luenberger observer based on fuzzy logic adaptation mechanism is designed for speed estimation. Numerical simulation results of the proposed scheme illustrate the good performance of sensorless induction motor and the robustness against load torque disturbances.

Keywords—Fuzzy logic control, induction motor, Luenberger observer, sliding mode control.

I. INTRODUCTION

The induction motor is one of the most widely used machines in various industrial applications due to its high reliability, relatively low cost, and modest maintenance requirements [1]. Many industrial applications require high dynamic performances and robustness to different perturbations. Thus, the robust control algorithm is desirable in stabilization and tracking trajectories. The variable structure control can offer a good insensitivity to parameter variation, external disturbances rejection and fast dynamics [2]-[3].

The sliding mode control is a type of variable structure system characterized by high simplicity and robustness against insensitivity to parameters variation and disturbances. This approach utilizes discontinuous control laws to drive the system state trajectory onto a sliding or switching surface in the state space. The dynamic of the system while in sliding mode is insensitive to model uncertainties and disturbances [4]. However, the discontinuous control presents a major drawback presented in chattering phenomenon. In order to reduce this phenomenon, a saturation function is used.

In recent years, great efforts have been made to increase the mechanical robustness and reliability of the induction motor, and to reduce costs and hardware complexity. Thus, it is necessary to eliminate the speed sensor. Several methods of speed estimators have been proposed in the literature among them the Luenberger observer. It is able to provide both rotor speed and flux without problems of closed-loop integration. In this paper, the fuzzy logic controller (FLC) replaces the PI controller in the speed adaption mechanism of the Luenberger observer. The main advantages of the FLC introduced by Zadeh [5] that it does not require accurate mathematical model of the system studied. Fuzzy logic is based on the linguistic rules by means of IF-THEN rules with the human language.

II. INDUCTION MOTOR ORIENTED MODEL

In field oriented control, the flux vector is forced to align with d-axis (\(\Phi_r = \Phi_d \) and \(\Phi_q = 0 \)). Thus, the dynamic model of the induction motor in (d, q) reference frame can be expressed in the form of the state equations as shown below:

\[
\begin{align*}
\frac{di_{sd}}{dt} &= -\gamma i_{sd} + \frac{K}{T_r} \Phi_r + \frac{1}{\sigma L_s} V_{sd} \\
\frac{di_{sq}}{dt} &= -\gamma i_{sq} - \frac{K}{T_r} \Phi_q + \frac{1}{\sigma L_q} V_{sq} \\
\frac{d\Phi_{sd}}{dt} &= \frac{L_m}{T_r} i_{sq} - \frac{1}{T_r} \Phi_r \\
\frac{d\Phi_{sq}}{dt} &= \frac{L_m}{T_r} i_{sd} - (\omega_0 - \omega_r) \Phi_r \\
\frac{d\Omega}{dt} &= \frac{P L_m}{J L_r} \Phi_r i_{sd} - \frac{f}{J} \Omega - \frac{T_i}{J}
\end{align*}
\]

Where:

\[
\gamma = \frac{R_s}{\sigma L_s} + 1 \frac{1 - \sigma}{\sigma T_r}; K = \frac{1 - \sigma}{\sigma L_m}, \sigma = \frac{1}{\sigma L_m} T_r = \frac{L_s}{R_s}
\]

The angular frequency \(\omega_0 \) of the rotor flux is obtained as the sum of the slip frequency \(\Omega_0 \) and rotor electrical speed:

\[
\omega_0 = \omega_r + \omega_s
\]
\[\theta_s = \theta + \frac{1}{T_i} i_{ac} \]

\[\dot{S}(x) S(x) < 0 \]

The general equation to determine the sliding surface proposed is as follow [7]:

\[S(x) = \left(\frac{d}{dt} + \lambda \right)^{n-1} e \]

Here, \(e \) is the tracking error vector, \(\lambda \) is a positive coefficient and \(n \) is the system order.

\section*{III. SLIDING MODE CONTROL}

Sliding mode technique is a type of variable structure system (VSS) applied to the non-linear systems. The sliding mode control design is to force the system state trajectories to the sliding surface \(S(x) \) and to stay on it by means a control defined by the following equation [6]:

\[u = u_{eq} + u_n \]

Where \(u_{eq} \) and \(u_n \) represent the equivalent control and the discontinue control respectively.

\[u_n = k \cdot \text{sat} \left(\frac{s}{\xi} \right) \]

Here \(\xi \) defines the thickness of the boundary layer and \(\text{sat} \left(\frac{s}{\xi} \right) \) is a saturation function.

\[\text{sat} \left(\frac{s}{\xi} \right) = \begin{cases} \text{sgn} \left(\frac{s}{\xi} \right) \left| \frac{s}{\xi} \right| & \text{if } \frac{s}{\xi} > 0 \\ \frac{s}{\xi} & \text{if } \frac{s}{\xi} < 0 \end{cases} \]

To attract the trajectory of the system towards the sliding surface in a finite time, \(u_n(x) \) should be chosen such that Lyapunov function, satisfies the Lyapunov stability:

\[\dot{S} \]

\[\dot{S}(x) S(x) < 0 \]

\section*{A. Sliding Mode Speed Controller}

Considering the equation (8) and taken \(n = 1 \), the sliding surface of speed can be defined as:

\[S(\Omega) = \Omega^* - \Omega \]

By derivation of equation (9) and taken the fifth equation of the system (1), we obtain:

\[\dot{S}(\Omega) = \dot{\Omega}^* - \frac{P L_{in}}{J L_r} \phi_{al} i_{sq} - \frac{T_L}{J} - \frac{f}{J} \Omega \]

We take:

\[i_{sq} = i_{aq} + i_{an} \]

During the sliding mode and in permanent regime, \(S(\Omega) = S(\Omega) = 0 \). \(i_{aq} = 0 \). The equivalent control action can be defined as follow:

\[i_{aq} = \frac{JL_r}{PL_{in}} \left(\Omega^* + \frac{T_L}{J} + \frac{f}{J} \Omega \right) \]

During the convergence mode, the condition \(\dot{S}(\Omega) S(\Omega) < 0 \) must be verified. Therefore, the discontinue control action can be given as:

\[i_{an} = k_{i_{aq}} \cdot \text{sat} \left(\frac{S(\Omega)}{\xi_{i_{aq}}} \right) \]

To verify the system stability, coefficient \(k_{i_{aq}} \) must be strictly positive.

\section*{B. Sliding Mode Flux Controller}

Considering the equation (8) and taken \(n = 1 \), the sliding surface of flux can be defined as:

\[S(\phi_{al}) = \phi_{al}^* - \phi_{al} \]
By derivation of equation (14) and taken the third equation of the system (1), we obtain:

\[
\dot{S}(\varphi_{rd}) = \dot{\varphi}_{dr}^* + \frac{1}{L_r} \varphi_{rd} i_{sq} - \frac{I_m}{L_r} i_{rd}
\]

(15)

We take:

\[
i_{rd} = i_{rd}^n + i_{rd}^n
\]

(16)

During the sliding mode and in permanent regime, \(S(\varphi_{rd}) = S(\varphi_{rd}) = 0 \), \(i_{rd}^n = 0\). The equivalent control action can be defined as follow:

\[
i_{rd}^n = \frac{L_r}{L_m} \left(\varphi_{dr}^* + \frac{1}{L_r} \varphi_{rd} \right)
\]

(17)

During the convergence mode, the condition \(S(\varphi_{rd}) S(\varphi_{rd}) < 0\) must be verified. Therefore, the discontinue control action can be given as:

\[
v_{rd}^n = k_{rid} \text{sat} \left(\frac{S(\varphi_{rd})}{\xi_{rid}} \right)
\]

(18)

To verify the system stability, coefficient \(k_{rid}\) must be strictly positive.

C. Sliding Mode Current Controller

Considering the equation (8) and taken \(n = 1\), the sliding surface of stator currents can be defined as:

\[
S(i_{ad}) = i_{ad}^* - i_{ad}
\]

(19)

\[
S(i_{sq}) = i_{sq}^* - i_{sq}
\]

(20)

By derivation of equation (19) and (20) and taken the first and second equation of the system (1) respectively, we obtain:

\[
\dot{S}(i_{ad}) = i_{ad}^* + \gamma i_{ad} - \omega_1 i_{sq} - \frac{K}{T_r} \varphi_r - \frac{1}{\sigma L_s} v_{ad}
\]

(21)

\[
\dot{S}(i_{sq}) = i_{sq}^* + \gamma i_{sq} + \omega_1 i_{ad} + K \varphi_r \omega_2 - \frac{1}{\sigma L_s} v_{sq}
\]

(22)

During the sliding mode, \(S(i_{ad}) = \dot{S}(i_{ad}) = 0\), \(v_{ad}^n = 0\) and \(S(i_{sq}) = \dot{S}(i_{sq}) = 0\), \(v_{sq}^n = 0\). The equivalent control actions can be defined as follow:

\[
v_{sq}^n = \sigma L_s \left(i_{sq}^* + \gamma i_{sq} + \omega_1 i_{ad} + K \varphi_r \right)
\]

(23)

\[
v_{sq}^n = \sigma L_s \left(i_{sq}^* + \gamma i_{sq} + \omega_1 i_{ad} + K \varphi_r \right)
\]

(24)

During the convergence mode, the conditions \(S(i_{ad}) S(i_{ad}) < 0\) and \(S(i_{sq}) S(i_{sq}) < 0\) must be verified. Therefore, the discontinue control action can be given as:

\[
v_{ad}^n = k_{isd} \text{sat} \left(\frac{S(i_{ad})}{\xi_{rid}} \right)
\]

(25)

\[
v_{sq}^n = k_{vsq} \text{sat} \left(\frac{S(i_{sq})}{\xi_{vsq}} \right)
\]

(26)

To verify the system stability, coefficients \(k_{rid}\) and \(k_{vsq}\) must be strictly positive.

IV. Luenberger Observer

The Luenberger observer is a deterministic type of observer based on a deterministic model of the system [8]. In this work, the LO state observer is used to estimate the flux components and rotor speed of induction motor by including an adaptive mechanism based on the Lyapunov theory. In general, the equations of the LO can be expressed as follow:

\[
\dot{\hat{x}} = A \hat{x} + Bu + L(y - \hat{y})
\]

(27)

Where:

\[
e = x - \hat{x}
\]

(29)

\[
\Delta A = A - \hat{A} = \begin{bmatrix}
0 & 0 & 0 & \mu \Delta \omega \nu
0 & 0 & \mu \Delta \omega & 0
0 & 0 & 0 & -\Delta \omega
0 & \Delta \omega & 0 & 0
\end{bmatrix}
\]

(30)

\[
\Delta \omega = \omega_2 - \hat{\omega}_2
\]

(31)

We consider the following Lyapunov function:

\[
V = e^T e + \frac{(\Delta \omega)^2}{\lambda}
\]

(32)
Where λ is a positive coefficient. By derivation equation (32), the adaptation law for the estimation of the rotor speed ω_r can be deduced as:

$$\dot{\omega}_r = \lambda K \left(e_{ia} e_{r} \beta - e_{is} e_{\alpha} \alpha \right) dt \quad (33)$$

The speed is estimated by a PI controller described as:

$$\omega = K_p e - K_i \int e dt \quad (34)$$

With K_p and K_i are positive constants. The feedback gain matrix L is chosen to ensure the fast and robust dynamic performance of the closed loop observer [10]-[11].

$$L = \begin{bmatrix} l_1 & -l_2 \\ l_2 & l_1 \\ l_3 & -l_4 \\ l_4 & l_3 \end{bmatrix} \quad (35)$$

With l_1, l_2, l_3 and l_4 are given by:

$$l_1 = (k_1 - 1) \left(\gamma + \frac{1}{T_r} \right)$$
$$l_2 = - (k_1 - 1) \dot{\omega}_r$$
$$l_3 = \frac{k_2 - 1}{K} \left(\gamma - K L_m + \frac{k_1 - 1}{T_r} \right)$$
$$l_4 = - \frac{k_1 - 1}{K} \dot{\omega}_r$$

Where k_1 is a positive coefficient obtained by pole placement approach [12].

In this paper, we will replace the PI controller in Luenberger observer adaptation mechanism by a fuzzy logic controller.

V. FUZZY LOGIC CONTROL

Fig. 3 shows the block diagram of fuzzy logic controller system where the variables K_p, K_i and B are used to tune the controller.

There are two inputs, the error and the change of error. The FLC consists of four major blocks, Fuzzification, knowledge base, inference engine and defuzzification.

A. Fuzzification

The crisp input variables e and ce are transformed into fuzzy variables referred to as linguistic labels. The membership functions associated to each label have been chosen with triangular shapes. The following fuzzy sets are used, NL (Negative Large), NM (Negative Medium), NS (Negative Small), ZE (Zero), PS (Positive Small), PM (positive Medium), and PL (Positive Large). The universe of discourse is set between -1 and 1. The membership functions of these variables are shown in Fig. 4.

B. Knowledge Base and Inference Engine

The knowledge base consists of the data base and the rule base. The data base provides the information which is used to define the linguistic control rules and the fuzzy data in the fuzzy logic controller. The rule base specifies the control goal actions by means of a set of linguistic control rules [16]. The inference engine evaluates the set of IF-THEN and executes 7*7 rules as shown in Table I.

<table>
<thead>
<tr>
<th>ce/e</th>
<th>NL</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
</tr>
<tr>
<td>NM</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
</tr>
<tr>
<td>ZE</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
<tr>
<td>PL</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
</tbody>
</table>

Table I. Fuzzy rule base
The linguistic rules take the form as in the following example:

IF \(e \) is NL AND \(ce \) is NL THEN \(u \) is NL

C. Defuzzification

In this stage, the fuzzy variables are converted into crisp variables. There are many defuzzification techniques to produce the fuzzy set value for the output fuzzy variable. In this paper, the centre of gravity defuzzification method is adopted here and the inference strategy used in this system is the Mamdani algorithm.

VI. SIMULATION RESULTS AND DISCUSSION

A series of simulation tests were carried out on sliding mode control of induction motor based on the Luenberger observer using fuzzy logic controller in adaptation mechanism. Simulations have been realized under the Matlab/Simulink. The parameters of induction motor used are indicated in Table II.

A. Operating at Load Torque

Figures 5, 6 and 7 represent the simulation results obtained from a no load operating. We impose a speed of reference of 100 rad/s and we applied a load torque with 10 N.m between \(t = 1 \) s and \(t = 1.5 \) s.

B. Operating at Inversion of Speed

In this case, we applied a speed reference varying between 100 rad/s to -100 rad/s.

C. Operating at Load Speed

Figures 10 and 11 illustrate simulation results with a speed carried out for low speed \(\pm 10 \) rad/s.
With the results above, we can see the good estimated speed tracking performance test in different working in inverse and low speed in terms of overshoot, static error and fast response. The flux is very similar to the nominal case. The stator phase current remains sinusoidal and takes appropriate value. It is evident from these simulation results that the proposed sliding mode control presents an excellent performance.

VII. CONCLUSION

In this paper we have presented the sensorless sliding mode control using the Luenberger observer with fuzzy logic adaptation mechanism. The simulation results have demonstrated the performances of the proposed scheme for steady state responses of flux and speed even at inverse and low speed and with application of the load torque disturbances.

APPENDIX

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>3 KW</td>
</tr>
<tr>
<td>Voltage</td>
<td>380V Y</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Pair pole</td>
<td>2</td>
</tr>
<tr>
<td>Rated speed</td>
<td>1440 rpm</td>
</tr>
<tr>
<td>Stator resistance</td>
<td>2.2 Ω</td>
</tr>
<tr>
<td>Rotor resistance</td>
<td>2.68 Ω</td>
</tr>
<tr>
<td>Inductance stator</td>
<td>0.229 H</td>
</tr>
<tr>
<td>Mutual inductance</td>
<td>0.217 H</td>
</tr>
<tr>
<td>Moment of Inertia</td>
<td>0.047 kg.m²</td>
</tr>
</tbody>
</table>

Table II. Induction motor parameters

REFERENCES

Abderrahim Bennassar was born in Casablanca, Morocco in 1987. He received Master degree in treatment of information from Hassan 2 University, Casablanca in 2011. Currently, he is pursuing PhD degree at Mohammadia School of Engineering, Rabat. His researcher interests include the control strategies for AC Drives, especially Induction Motor Drives and Sensorless Control.

Ahmed Abbou received the “ Agrégation Génie Electrique” from Ecole Normale Supérieure de l’Enseignement Technique ENSET Rabat in 2000. He received the “Diplôme des Etudes Supérieurs Approfondies” in industrial electronics from Mohammadia School’s of engineers, Rabat in 2005. He received with Honors the Ph.D. degree in industrial electronics and electrical machines, from Mohammadia School’s of engineers Rabat in 2009. Since 2010, he has been a Professor of power Electronic and Electric drives at the Mohammadia School’s of engineers, Rabat. He has presented papers at national and international conference on the Electrical machine, Power Electronic and electric drives. His current area of interest is related to the innovative control strategies for Ac machine Drives, renewable energy.
Mohammed Akherraz Graduated from the Mohammadia School’s of engineers Rabat morocco, in 1980. In 1983 he was graduated a Fulbright scholarship to pursue his post-graduate studies. He earned the Ph.D degree in 1987 rom UW, Seattle. He joined the EE department Of the Mohammadia School’s of engineers, Rabat Morocco, where he's presently a Professor of power electronics and Electric drives. He published numerous papers in international journal and conferences. His areas of interests are: power electronics, Electric drives, Computer Modeling of power Electronics circuit, and systems drives.

Mohamed Barara was born in Fez, Morocco in 1986. He is received master degree in industrial automated systems engineering from college of sciences Fez, Morocco in July 2011. Currently he is Phd student from Mohammadia School of Engineering. His researcher interested include, advanced control of wind turbine system, power electronic and renewable energy.