
1

Unranking algorithms applied to MUPAD
X. Molinero and J. Vives

Abstract—We present an improvement of the implementation
of some unlabeled unranking algorithms of the open-source
algebraic combinatorics package MUPAD-COMBINAT for the
computer algebra system MUPAD. We compare our implemen-
tation with the current one. Moreover, we have also developed
unranking algorithms applied to some unlabeled admissible
operators that are not still implemented in the package MUPAD-
COMBINAT. These algorithms are also able to develop some
structures useful to generate molecules applied to chemistry and
influence graphs applied to game theory and social networks,
among other topics.

Index Terms—Unranking Algorithms, MuPAD, Generating
Molecules, Generating Influence Games.

I. INTRODUCTION

The problem of unranking asks for the generation of the ith
combinatorial object of size n in some combinatorial class A,
according to some well defined order among the objects of
size n of the class. Efficient unranking algorithms have been
devised for many different combinatorial classes, like binary
and Cayley trees, Dyck paths, permutations, strings or integer
partitions, but most of the work in this area concentrates in
efficient algorithms for particular classes, whereas we aim at
generic algorithms that apply to a broad family of combina-
torial classes. The problem of unranking is intimately related
with its converse, the ranking problem, as well as with the
problems of random generation and exhaustive generation of
all combinatorial objects of a given size. The interest of this
whole subject is witnessed by the vast number of research
papers and books that has appeared in over five decades (see,
for instance, [24], [12], [9], [8], [11], [25], [10], [20], [19],
[21], [3]).

[14], [13] designed generic unranking algorithms for a large
family of combinatorial classes, namely, those which can be
inductively built from the basic ε-class (a class which contains
only one object of size 0), atomic classes (classes that contain
only one object of size 1 or atom) and a collection of ad-
missible combinatorial operators: disjoint unions, labeled and
unlabeled products, sequence, set, etc. Now we use such tech-
niques to implement those algorithms in MUPAD [2], [18].
In the open-source algebraic combinatorics package MUPAD-
COMBINAT [1] for the computer algebra system MUPAD there
are implemented the unranking for some admissible combina-
torial operators, but now we improve such implementation for
unlabeled unions and products (and sequences). Moreover, we

X. Molinero is with the Department of Applied Mathematics III,
Universitat Politècnica de Catalunya, E-08240 Manresa, SPAIN. E-mail:
xavier.molinero@upc.edu. X. Molinero was partially funded by grant
MTM2012-34426/FEDER of the ”Spanish Economy and Competitiveness
Ministry”.

J. Vives is with the Department of Design and Programming of Electronic
Systems, Universitat Politècnica de Catalunya, E-08240 Manresa, SPAIN. E-
mail: jvives@epsem.upc.edu.

Unlabeled class Specification
Binary trees B = Z + B × B

Unary-binary trees or
Motzkin trees M = Z + Z ×M+ Z ×M×M

Integer partitions P = Set(Seq(Z, card ≥ 1))
Integer compositions C = Seq(Set(Z, card ≥ 1))

Non-ordered rooted trees or
Rooted unlabeled trees T = Z × Set(T)

Binary sequences A = Seq(Z + Z)
Non plane ternary trees D = Z + Set(D, card=3)

Integer partitions with
distinct parts E = PowerSet(Seq(Z, card≥1))

Fig. 1. Examples of unlabeled classes and their specifications

have also implemented other operators as unlabeled sets and
powersets (with and without restrictions).

The paper just considers unlabeled combinatorial classes
and it is organized as follows. In Section II we briefly review
basic definitions and concepts, the unranking algorithms and
the theoretical analysis of their performance. Afterwards, from
the computer algebra system MUPAD, we compare the re-
quired CPU time of our implementation with the required CPU
time of the current implementation in the package MUPAD-
COMBINAT. Moreover, we also explain our current and future
work in this subject.

II. PRELIMINARIES

As it will become apparent, all the unranking algorithms in
this paper require an efficient algorithm for counting, that is,
given a specification of a class and a size, they need to compute
the number of objects with the given size. Hence, we will only
deal with (some of) the so-called admissible combinatorial
classes [6], [7]. Those are constructed from admissible oper-
ators, operations over classes that yield new classes, and such
that the number of objects of a given size in the new class can
be computed from the number of objects of that size or smaller
sizes in the constituent classes. In this paper we just consider
unlabeled objects (those whose atoms are indistinguishable1)
built from these admissible combinatorial operators.

For unlabeled classes, the finite specifications are generated
from the ε-class, atomic classes, and combinatorial opera-
tors including disjoint union (’+’), Cartesian product (’×’),
sequence (’Seq’), powerset (’PowerSet’), set (’Set’)2, and
sequence, powerset and set (or multiset) with restricted cardi-
nality. Figure 1 gives a few examples of unlabeled admissible
classes.

1On the contrary, each of the n atoms of a labeled object of size n bears
a distinct label drawn from the numbers 1 to n.

2Also denoted by ’multisets’ (MultiSet) to emphasize that repetition is
allowed.

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 98

Z

Z

Z Z

Z

Z Z

Z Z Z Z Z Z

Z Z

Z

Z Z

Z

Z

(a) Lexicographic order

Z

Z

Z Z

Z

Z Z

Z Z

Z Z

Z

Z Z

Z

Z

Z Z Z Z

(b) Boustrophedonic order

Fig. 2. Binary trees of size 4.

For the rest of this paper, we will use calligraphic uppercase
letters to denote classes: A, B, C, Given a class A and a
size n, An will denote the subset of objects of size n in A.

The order ≺Cn among the objects of size n for a class
C = A + B is naturally defined by γ ≺Cn γ′ if both γ and
γ′ belong to the same class (either An or Bn) and γ ≺ γ′

within their class, or if γ ∈ An and γ′ ∈ Bn. It is then
clear that although A + B and B + A are isomorphic (“the
same class”), these two specifications induce quite different
orders. The unranking algorithm for disjoint unions compares
the given rank with the cardinality of An to decide if the
sought object belongs to A or to B and then solves the problem
by recursively calling the unranking on whatever class (A or
B) is appropriate.

For Cartesian products the order in Cn = (A×B)n depends
on whether γ = (α, β) and γ′ = (α′, β′) have first components
of the same size. If |α| = |α′| = j then we have γ ≺Cn γ′ if
α ≺Aj

α′ or α = α′ and β ≺Bn−j
β′. But when |α| 6= |α′|, we

must provide a criterion to order γ and γ′. The lexicographic
order stems from the specification

Cn = A0 × Bn +A1 × Bn−1 + . . .+An × B0,

in other words, the smaller object is that with smaller first
component. On the other hand, the boustrophedonic order is
induced by the specification

Cn = A0 × Bn +An × B0 +A1 × Bn−1 +An−1 × B1+
A2 × Bn−2 +An−2 × B2 + . . . ,

in other words, we consider that the smaller pairs of total size
n are those whose A-component has size 0, then those with
A-component of size n, then those with A-component of size
1, and so on. Figure II shows the lists of unlabeled binary
trees of size 4 in lexicographic (a) and boustrophedonic order
(b).

Of course, other orders are also possible, but they either do
not help improving the performance of unranking or they are
too complex to be useful or of general applicability.

For powersets, among some natural orders (see [14], [16])
we can choose

PowerSet(A) = ε +⋃
n>0

⋃n
j=1

⋃1
k=n÷j

(
PowerSet(Aj , card= k)×

PowerSetn−kj(A>j)
)

where

PowerSet(Aj , card= k) =
⋃
α∈Aj

(
α×

PowerSet(A(�α)
j , card= k − 1)

)
,

being A(�α) = {α′ ∈ A : α′ � α}, and PowerSet(A>j)
is a powerset with A-components of size at least equal to
j + 1. Other orders described in [14], [16] do not change
the complexity and they could also be easily adapted to our
implementation.

For sets we have analogous isomorphisms but allowing
repetitions.

The theoretical performance of these unranking algorithms
is summarized in [16], [13].

Theorem 1: The worst-case time complexity of unranking
for objects of size n in any admissible labeled class A using
lexicographic ordering is of O(n2) arithmetic operations.

Theorem 2: The worst-case time complexity of unranking
for objects of size n in any admissible labeled class A
using boustrophedonic ordering is of O(n log n) arithmetic
operations.

III. OUR IMPLEMENTATION V.S. MUPAD-COMBINAT
IMPLEMENTATION

In this section we compare our implementation3 for unrank-
ing in MUPAD with the current implementation of the package
MUPAD-COMBINAT(using MUPAD Pro 4.0). All our experi-
ments run under Linux in a AMD64X2 4400 at 2.2 GHz with
4 Gb of RAM, and they use the basic facilities for counting
already provided by the package MUPAD-COMBINAT.

For instance, the interface for binary trees has the following
inputs:

spec := {B = Union(Z, BB), BB = Prod(B, B)};
p1 := combinat::

decomposableObjects(spec, Lexi/Bous);
p1::unrank(rank, size);

where spec is the specification4, Lexi or Bous forces
the lexicographic or boustrophedonic order, respectively, and
rank and size are the considered rank and size, respectively.
Thus, the following commands provide all binary trees of size
8 in lexicographic order:

spec := {B = Union(Z, BB), BB = Prod(B, B)};
p1 := combinat::

decomposableObjects(spec, Lexi);
for i from 0 to p1::count(8) - 1 do

p1::unrank(i, 8);
end_for

3It is available on request from the first author; send an E-mail to
xavier.molinero@upc.edu.

4The first class defined in the specification is the considered class (B in
this case).

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 99

Lexicographic order Boustrophedonic order
Size τT τ ′T ρ

25 1.24 4.55 0.27
50 3.63 11.95 0.30
75 6.08 20.17 0.30

100 9.27 29.65 0.31
125 12.46 39.98 0.31
150 16.54 51.73 0.31
175 21.37 66.16 0.32
200 26.85 79.93 0.33

Size τT τ ′T ρ
25 0.90 2.95 0.30
50 2.50 6.52 0.38
75 4.27 10.24 0.41

100 6.20 13.97 0.44
125 6.99 17.91 0.39
150 8.39 20.80 0.40
175 9.67 24.90 0.38
200 11.63 28.87 0.40

TABLE I
AVERAGE CPU TIME (IN MILLISECONDS) FOR BINARY TREES,
B=Z+B×B. THE CPU TIME REQUIRED TO CALCULATE THE

PRE-COMPUTED TABLES IN OUR UNRANKING IS 380 MILLISECONDS.

Lexicographic order Boustrophedonic order
Size τT τ ′T ρ

25 1.12 3.24 0.34
50 2.60 9.33 0.27
75 4.81 16.61 0.28

100 7.18 25.72 0.27
125 9.65 34.27 0.28
150 12.28 42.57 0.28
175 15.42 54.44 0.28
200 18.83 67.08 0.28

Size τT τ ′T ρ
25 1.06 2.57 0.41
50 2.71 5.75 0.47
75 4.19 9.74 0.43

100 5.95 13.76 0.43
125 8.01 17.66 0.45
150 9.80 22.43 0.43
175 11.49 27.76 0.41
200 13.56 32.67 0.41

TABLE II
AVERAGE CPU TIME (IN MILLISECONDS) FOR MOTZKIN TREES,

M=Z+Z×M+Z×M×M. THE CPU TIME REQUIRED TO CALCULATE
THE PRE-COMPUTED TABLES IN OUR UNRANKING IS 690 MILLISECONDS.

Notice that, in general, p1::count(size) returns the
number of objects of p1 with size size.

The selected collection for our experiments are two classical
classes: binary trees (B = Z +B×B) and, unary-binary trees
or Motzkin trees (M = Z + Z ×M+ Z ×M×M).

Essentially, we have used two techniques in our imple-
mentation. First, we have appropriately used the command
option remember. Second, we have also used some pre–
computed tables to store the counting of each considered
class and size. The access to the indices of such tables is
notably faster than the access to the command count. Tables I
and II show the improvement of the average CPU time (in
milliseconds). We have pre–computed the counting tables and,
afterwards, we have generated 10000 random objects of the
considered class and size. τT is our average time required
to unrank a random rank of the considered class and size,
τ ′T is MUPAD-COMBINAT average time required to unrank
a random rank of the considered class and size, and ρ is the
ratio τT /τ ′T . For any case, it looks as the improvements tend
to be stable when the size n increase. For lexicographic binary
trees it approaches to ρ = 0.33, for Boustrophedonic binary
trees it approaches to ρ = 0.40, for lexicographic Motzkin
trees it approaches to ρ = 0.28, and for Boustrophedonic
Motzkin trees it approaches to ρ = 0.41. Thus, all results are
satisfactorily better. Note that even the pre–computed tables
require some CPU time, the average CPU time (when the
number of generated objects increase) of our implementation
substantially improves the previous one. We have meaningfully
improved the average CPU time required to generate a random
unranking: In lexicographic order, our implementation spends
about 30% of the CPU time of the previous version; and, in
boustrophedonic order, it spends about 40% of the CPU time
of the previous version.

Sequences are done from unions and products, thus the
timing improvements have similar advantages.

On the other hand, we have also done some experiments
with classes that involve sets or cycles, for instance, we
have considered the so-called functional graphs defined by
F= Set(Cycle(T)) with T =×(Z, Set(T)). In such cases, our
implementation spends between 60% and 80% of the CPU
time of the previous version.

A. Future implementation

The current implementation in MUPAD-COMBINAT does
not consider all admissible combinatorial operators as well as
restricted cardinalities in sets or powersets. We have added
some of these operators in our implementation. In particular,
we have considered admissible operators like

ϕ(B, card τ k)

where ϕ ∈ {Seq,Set,PowerSet}, τ ∈ {≤ / =≥} and k ∈
N.

By the way, the required average CPU time for the im-
plemented operators is clearly competitive. Now one of the
following open problems is to develop the corresponding pre–
computed tables of counting for powersets and sets (see the
described isomorphisms for powersets and sets in Section II).

IV. CONCLUSIONS AND FUTURE WORK

We have implemented in MUPAD the unranking applied
to some basic unlabeled admissible combinatorial operators:
disjoint unions, Cartesian products, and sequences. We are
now working on the implementation for (unlabeled) powersets
and sets (with and without restricted cardinalities).

Our implementation is making two main improvements for
the unranking of unlabeled admissible classes in front of the
implementation in the package MUPAD-COMBINAT. First, we
have significantly reduced the average CPU time required to
generate a random unranking. Second, we are programming
more unlabeled admissible combinatorial operators (powersets
and sets with and without restricted cardinalities).

Future work is to implement even more unlabeled admis-
sible combinatorial operators (substitution, the open problem
for unlabeled cycles, the union among non-disjoint classes, the
intersection among classes, etc.).

Another line of research is to study similar operators but
from the labeled point of view, that is, to consider that
the nodes of the combinatorial structures of size n can be
distinguished by labels from 1 to n.

The ranking, exhaustive and random generation should also
be implemented [24], [12], [16].

On the other hand, these algorithms are also able to develop
some structures useful to generate molecules [4], [5] applied
to chemistry and influence graphs [17] applied to game theory
and social networks, among other topics [22].

Finally, to what we know, it is still open to study the
unranking, ranking and exhaustive generation of combinatorial
structures from the viewpoint of genetic algorithms [15], [23].
Thus, it should be very interesting to establish some genetic
algorithms to solve these problems.

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 100

ACKNOWLEDGMENTS

We thank anonymous referees for their useful comments
and suggestions that helped us to improve the contents of the
paper.

REFERENCES

[1] MuPAD-Combinat – open-source algebraic combinatorics package
for the computer algebra system MUPAD. URL: http://mupad-
combinat.sourceforge.net/.

[2] C. Creutzig and W. Oevel. MUPAD Tutorial. SciFace Software
(SciFace), Paderborn, 2004.

[3] S. Even. Combinatorial Algorithms. MacMillan, New York, 1973.
[4] P. Flajolet and B. Salvy. Computer algebra libraries for combinatorial

structures. J. Symbolic Computation, 20:653–671, 1995.
[5] P. Flajolet, B. Salvy, and P. Zimmermann. Lambda-upsilon-omega: The

1989 cookbook. Technical Report 1073, INRIA, 1989.
[6] P. Flajolet and R. Sedgewick. The average case analysis of algorithms:

Counting and generating functions. Technical Report 1888, INRIA,
1993.

[7] P. Flajolet and J.S. Vitter. Average-case Analysis of Algorithms and
Data Structures. In J. Van Leeuwen, editor, Handbook of Theoretical
Computer Science, chapter 9. North-Holland, 1990.

[8] D.L. Kreher and D.R. Stinson. Combinatorial Algorithms: Generation,
Enumeration and Search. CRC Press LLC, 1999.

[9] Greg Kuperberg, Shachar Lovett, and Ron Peled. Probabilistic existence
of regular combinatorial structures. CoRR, abs/1302.4295, 2013.

[10] J. Liebehenschel. Ranking and unranking of lexicographically ordered
words: An average-case analysis. J. of Automata, Languages and
Combinatorics, 2(4):227–268, 1997.

[11] J. Liebehenschel. Ranking and unranking of a generalized dyck language
and the application to the generation of random trees. In The Fifth
International Seminar on the Mathematical Analysis of Algorithms,
Bellaterra (Spain), 1999.

[12] A. Lorenz and Y. Ponty. Non-redundant random generation algorithms
for weighted context-free languages. Theoretical Computer Science,
Elsevier, 2013, Generation of Combinatorial Structures, 502:177–194,
2013.

[13] C. Martı́nez and X. Molinero. A generic approach for the unranking of
labeled combinatorial classes. Random Structures & Algorithms, 19(3-
4):472–497, 2001.

[14] C. Martı́nez and X. Molinero. Efficient iteration in admissible com-
binatorial classes. Theoretical Computer Science, 346(2–3):388–417,
November 2005.

[15] M. Mitchell. An Introduction to Genetic Algorithms (Complex Adaptive
Systems). The MIT Press.

[16] X. Molinero. Ordered Generation of Classes of Combinatorial Struc-
tures. PhD thesis, Universitat Politècnica de Catalunya, November 2005.

[17] X. Molinero, F. Riquelme, and M. J. Serna. Cooperation through social
influence. European Journal of Operation Research, 242(3):960–974,
May 2015.

[18] MUPAD: The computer algebra system. URL:
http://es.mathworks.com/discovery/mupad.html.

[19] A. Nijenhuis and H.S. Wilf. Combinatorial Algorithms: For Computers
and Calculators. Academic Press, Inc., 1978.

[20] J.M. Pallo. Enumerating, ranking and unranking binary trees. The
Computer Journal, 29(2):171–175, 1986.

[21] E.M. Reingold, J. Nievergelt, and N.Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[22] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of
Algorithms. Addison-Wesley, Reading, MA, 1996.

[23] R. Keller W. Banzhaf, P. Nordin and F. Francone. Genetic Programming
An Introduction. San Francisco, CA: Morgan Kaufmann, 1998.

[24] Y. Wei. The grouping combinaton generating algorithm. In Proceedings
of the International Conference on Computer, Network Security and
Communication Engineering (CNSCE 2014), pages 670–674, 2014.

[25] H.S. Wilf. East side, west side ... an introduction to combinatorial
families- with MAPLE programming. Technical report, 1999. URL:
http://www.cis.upenn.edu/˜wilf/lecnotes.html.

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 101

