
 

 

  
Abstract— This study use the Extreme Value Copula to construct 

the joint distribution, which is adopted to estimate Value at Risk 
(VaR) of a portfolio consisting of the crude oil and natural gas 
commodities futures. When the VaR estimation focus on modelling 
extreme values, i.e., the tails of the distribution, the extreme value 
copula may be a good choice, since it considers max-stable 
distributions and give certain restrictions on the copulas. The heavy 
tail distribution has been found in crude oil margin and the thin tail is 
detected in natural gas margin. Moreover, we estimate VaR of the 
underlying portfolio at 90% and 95% by out of sample forecasting. 
According to the results of backtesting, we compare the out-of-sample 
forecasting performance of VaR by several extreme value copulas and 
benchmark method. The results show that the extreme value copulas 
have out-of-sample forecasts than the benchmark one. 
 

Keywords: Extreme value copula, Value at Risk, Energy 
commodity futures, Risk management. 

I. INTRODUCTION 
HE copula method has been used widely in modelling the 
dependence of the financial assets. In the application, the 
most interested part is to model the largest expected loss, 

i.e. the extreme value in the market; therefore the extreme value 
copula which is used as a tail dependence modelling may be a 
good choice.  

Value at Risk (VaR) is one of most widely used measures in 
financial risk management. This measure gives a threshold loss 
such that the probability that the loss on the portfolio over the 
given time horizon exceeds this value is p. The advantage of 
VaR is that it reduces the risk to just one single number (Jorion, 
2007). It is simple and also useful. There are many methods to 
estimate the VaR, but they are mainly categorized in three 
groups: (1) parametric method, (2) non-parametric method and 
also (3) semi-parametric method. The method we introduce here 
is the parametric method, which makes specific distributional 
assumptions on returns, i.e., the extreme value distribution and 
then calculates the corresponding VaRs. 

Moreover, the commodity futures, such as the energy 
futures always exhibit heavy-tailed. As we known, the financial 
asset returns has two kinds of non-normal features the joint 
distribution and the distribution of margin, both of them exhibit 
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the heavy tail and extreme tail dependence. The characteristic of 
the extreme movement can be captured by different models 
(Bastianin, 2009 [1]). The alternative distributions are student t 
distribution, which focuses on the heavy tail, or skewed student 
t distribution, which focuses on skewness and heavy tail (As Lu, 
Lai, and Liang, 2011 [2]). However, in this study we select the 
extreme value approach since it models directly on the tails of 
the distribution, and more flexible than the student t distribution 
or skewness t distribution. Moreover, the extreme value copulas 
are the copulas which can connect the component-maxima 
margins. It could be a promising approach to model the VaR of 
portfolio. 

In our study, we use the extreme value copula with 
component maxima margins to estimate VaR of a portfolio 
which consist of crude oil futures and natural gas futures traded 
on the New York Mercantile Exchange (NYMEX). Since the 
relationship between the oil and natural gas is interacted, it is 
interesting and meaningful to investigate the dependence of 
them. The main objective is to investigate the VaR of the 
diversification portfolio consisting of two energy commodities. 

The rest of the study is organized as follows. Section 2 
introduces the theory of copulas and extreme value copula 
modelling. Section 3 illustrates how to use copulas to model 
VaR by out-of-sample forecasts. Empirical results are presented 
in Sect. 4. Section 5 concludes. 

II. EXTREME VALUE COPULA 

A. Copulas 
Copula is a useful tool to link univariate distribution 

functions to a multivariate probability distribution. Copulas are 
used widely in financial risk management, especially in credit 
scoring, derivative pricing, and portfolio selection (Rootzén, 
and Tajvidi, 1997 [3]; Poon., Rockinger, and Tawn, 2004[4]). 

A two-dimensional copula is a distribution function [0, 1]2 
with standard uniform marginal distributions. The copula for 

every 
2
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Theorem (Sklar 1959 [5]). Let F be a joint distribution 

function with margins F1, …, Fd. Then there exists a copula C: 
[0, 1]2[0, 1] such that, for x1 and x2, 
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1 2 1 1 2 2( , ) ( ( ), ( ))F x x C F x F x=                                   (2) 
If F1 and F2 are both continuous, then C is uniquely defined. 
This theorem implies that every multivariate distribution has 

and only has one copula, and the combination of copulas with 
univariate distribution function can be used to obtain 
multivariate distribution functions (Gudendorf, and Segers, 
2010 [6]; Cebrian, Denuit, and Lambert, 2003 [7]). 

B. The Extreme Value Copulas 
The commodities futures suffered the extreme co-movement, 

especially in the energy futures since the crude oil and natural 
gas are substitutes and also complements in consumption and 
production. When the demand or supply is tight (loose), the 
price will shoot high (low) together. Therefore, it is reasonable 
to study these two futures by extreme value Copula. They are 
one kind of copulas, which are the possible limits of copulas of 
component-wise maxima of i.i.d. samples. 

Consider two series of component-wise maxima: 
1max( ,..., )n nM X X=                                       (3) 
1max( ,..., )n nN Y Y=                                       (4) 

Assume that the pairs (Xi, Yi) are independent and that their 
common bivariate distribution function is H with marginal 
distribution functions F1 and F2 as in (1). Then the distribution 
functions of Mn and Nn are: 

Pr( ) ( )n
nM x F x≤ =                                      (5) 

Pr( ) ( )n
nN y G y≤ =                                        (6) 

The joint distribution of two series is: 
Pr[ , ] ( , )n

n nM x N y H x y≤ ≤ =                     (7) 
The extreme value copula has the maxima-stable property, 

which said that from the extreme value (maxima) we can derive 
the whole joint distribution. 

C. The Pickands dependence function 
A copula C is called as an extreme-value copula where there 

is a real-valued function A on the interval [0, 1] such that 
log( )( , ) exp log( )
log( )

vC u v uv A
uv

  
=   

                 (8) 
for 0 , 1u v< < , :[0,1] [1/ 2,1]A →  is convex and satisfies 

(1 ) ( ) 1k k A k∨ − ≤ ≤   for all [0,1]k ∈  (Gudendorf, and Segers, 
2010 [6]). Specially, (0) (1) 1A A= = . 

D.  The extreme value copula families 
There are several extreme value copulas, they are: 
Gumbel copula 
The dependence function is  

1/( ) [(1 ) ]r r rA w w w= − +  
with 1r ≥ . The corresponding copula function is given by 

{ }1/
1 2 1 2( , ) exp [( ln ) ( ln ) ]r r rC u u u u= − − + −     (9) 

when r=1, it means independence, when r = ∞ , it 
approaches to complete dependence. 

Husler-Reiss (HR) copula 

the HR copula has following corresponding distribution: 
2 1

1 2 1 2
1 2

ln ln1 1( , ) exp ln ln ln ln
2 ln 2 ln

u ua aC u u u u
a u a u

        = Φ + + Φ +       
        (10) 

where Φ is the standard normal cumulative distribution 
function. 

Galambos copula (negative logistic model) 
The dependence function: 

1/ 1/( ) 1 { (1 ) }A t t tθ θ θ− − −= − + −  
and the corresponding distribution is  

( ){ }1/

1 2 1 2 1 2( , ) exp ( log ) ( log )C u u u u u u
θθ θ −− −= − − + − (11) 

where 0θ > . 

E. The estimation problem 
There are two steps to estimate the extreme value copulas 

(Larsson, 2010 [8]): 
Step one: to estimate the marginal distribution function Fn 

and Gn of Mn and Nn.  
Step two: to estimate the copula Cn. 

F. The goodness of fit test for the copula 
To choose an appropriate copula is critical (Durrleman, et al., 

2000 [9]; Liu and Sriboonchitta, 2013 [10]). One of methods is 
to find the copula which is to minimize the distance between the 
empirical copula and the proposed copula. Another criterion is 
to measure AIC and BIC. The last one we introduced here is the 
goodness of fit (GOF) tests (Genest et al., 2009 [11]). Although 
there are many kinds of GOF tests, we will use the Cramérvon 
Mises (CVM) statistic which is simple and also powerful. 

{ }2

1

ˆ( , ; ) ( , )
n

n k t t n t t
t

S C u v k C u v
=

= −∑
                                 (12) 

This measures the distance between the fitted copula 
ˆ( , ; )k t tC u v k  and the empirical copula Cn. 

G. The multivariate VaR of the portfolio 
The VaR of the univariate asset is actually a quantile. The 

definition is as follows (Embrechts and Puccetti, 2006 [12]): 
For [0,1]α ∈ , at probability level α  for a random variable 

Y, that is. 
( ) inf{ : ( ) }VaR Y x G xα α= ∈ ≥                   (13) 

It should be noted that when G is strictly increasing function, 
( )VaR Yα  is the unique threshold t at which ( )G t α= . However, 

with the multivariate marginal, there are infinite vectors 
ks ∈  

at which ( )G s α= . Therefore, the multivariate VaR at 
probability level α for an increasing function G is a set: 

( ) { : ( ) }kVaR G x G xα α= ∂ ∈ ≥                  (14) 
According to Denuit (1999) [13], the VaR associate with S = 

X1+ X2 will lie within the bounds: 
2

1 2 1 2( ) {( , ) : ( ) }VaR G X X G X Xα α= ∂ ∈ + ≥                       (15) 
* **

1 2 1 2 1 2{ ( ) } { ( ) } { ( ) }G X X G X X G X Xα α α∂ + ≥ ≤ ∂ + ≥ ≤ ∂ + ≥ (16) 

The aggregate risks in which the variable 
*
2X  and 

**
2X  are 
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both distributed as 2X but are respectively in perfect negative 
and positive dependence with X1 via the relation: 

* 1
2 2 1 1{1 ( )}X F F X−= − , 

** 1
2 2 1 1{ ( )}X F F X−=  

where Fi is the distribution function of Xi and  
1

1( ) inf{ : ( ) }, 1, 2iF t s F s t i− = ∈ ≥ =  
It is obvious that the VaR lies in the boundary of totally 

dependent and totally independent case, the value depends on 
the dependence degree of two assets. 

III. EMPIRICAL STUDY 

A. Data Description 
We examine the VaR of the portfolio of two commodities 

futures: crude oil and natural gas futures traded on the NYMEX. 
The weekly closing futures prices are collected, which is 
covering the period of January 7, 2005 to January 2, 2015, 
totally 552 observations, 11 years. The data are sourced from 
Datastream. The percentage returns are adopted in changes in 
log of prices, that is, log(pt/pt-1)x100. The descriptive statistics 
of the two price returns are shown in the Table.1. 

It should be noted that the returns of oil is higher than the 
natural gas, however, the standard deviation is lower. The 
correlation between these two products is 0.289. The skewness 
of oil is negative while natural gas is positive. The oil series 
exhibit much higher excess kurtosis. The Jarque-Bera statistic 
also confirms that that the series are not normal distribution. 
 
 
 

Table.1 The Summary Statistics 

  Crude Oil Natural Gas 

Min -21.045 -21.604 

Max 18.598 22.852 

Mean 0.044 -0.135 

Median 0.327 -0.232 

St.dev 4.028 6.469 

Skewness -0.612 0.126 

Kurtosis 3.067 0.547 

JB statistics 240.04(***) 8.229(***) 
No. of 
observations 521 521 

Correlation 0.289 
 

B. Modelling the dependence between the futures commodities 
The results of both margin and dependence are shown in 

Table. 2. Since we use the one-step method, we present the two 
margins in all of the four copula models. We can see that the 
estimated parameters of GEV margins are consistent with each 
other. The shape parameter of crude oil is positive, while the 
natural gas is negative. That implies that the Oil future exhibits 
the heavy-tailed, while the Natural gas is thin-tailed. This result 
justifies the use of the GEV distribution, which can measure 
different shapes of tails. The Tawn copula has the best fit in 
in-sample analysis according to AIC. The Kendall tau of the 
Tawn copula is around 0.1. 
 

Table 2 The Estimation Results of Four Extreme Value Copulas  
  Gumbel Copula  Galambos Copula  Husler-Reiss Copula 

  Oil gas Oil  gas Oil Gas 

mu 4.697 9.719 4.699 9.717 4.699 9.717 
  (0.518)*** (1.097)*** (0.517)*** (1.098)*** (0.517)*** (1.097)*** 
beta 2.221 4.21 2.22139 4.208 2.221 4.208 
  (0.376)*** (0.846)*** (0.376)*** (0.846)*** (0.376)*** (0.846)*** 
xi 0.093 -0.004 0.092 -0.005 0.092 -0.005 
  (0.122) (0.246) (0.122)*** (0.246)*** (0.122 (0.246)*** 
r (1.013)** (0.061)* (0.212)*** 
AIC 253.549 253.557 253.557 

 

C. The Goodness of Fit Test 

Table 3 Cramér–von Mises Statistics 

  Gumbel  Galambos  Husler-Reiss  

statistics 0.0343 0.0254 0.0212 

p-value 0.467 0.513 0.528 
Note: The p-value was obtained by using a boots tapping process. 
 

 

 

 
 
 
In table 3, the CVM statistic and its corresponding P-value are 
presented. All of the three copula models are not reject the null 
hypothesis, therefore the three copulas are all proper for our 
study. 
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D. The in-sample VaR analysis 
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Note: the black mix line is VaR0.90, the red mixed line is VaR0.95, and the 
green mixed line is VaR0.99. 
 

To estimate the multivariate VaR, we used the results of 
Gumbel Copula in in-sample analysis since it has the smallest 
AIC. The following steps are conducted, to obtain VaR0.90 for 
the bivariate distribution. First, we give the first margin oil price 
as the 90% quantile of F1, with the GEV distribution 0.9(24) 

quantile (the observations in one block is 24), the VaR for the 
first margin is 2.72. 

Second, to keep the quantile of bivariate distribution as 90%, 
by using the numerical method, we obtain the second margin 
5.804, which is almost 99.9% quantile of F2. 

Third, repeat the first step and second step 100 times with 
accumulated 0.01 quantile of F1 each time. That is, start from 
90%, 91%, 92% quantile, until 99% quantile, we make 100 
points and then draw the curves, as Fig.1.  

Fig.1 shows that the lowest curve is VaR0.90 for bivariate risk, 
and the higher curve is bivariate VaR0.95. The top curve is the 
bivariate VaR0.99.  

In our study, the bivariate portfolio VaR is the sum of two 
margins such that the probability of bivariate distribution is 
equal to q. For the bivariate VaR0.90, it is between [12.48, 
27.01]. For the bivariate VaR0.95, it is between [17.19, 31.15], 
and the last for VaR0.99 of the bivariate distribution is between 
[28.21, 34.90]. Therefore, we receive a range of VaR, which has 
the worst and best situation. In our case, the VaRs is not much 
different than the independent copula, since the dependency 
parameter is quite small, the dependence is weak. 
 

E. The Out-of-Sample VaR Forecasts 
The out of sample are from the last three years of our data set, 
which is from January 2, 2012 to January 2, 2015, totally 144 
observations. We use the 377 rolling window span to do 
forecasting, that is, drop first observation and add another latest 
observation. Therefore, we totally get 144 forecasting points. 
We use the violation rate to measure the performance of four 
extreme value copula. The benchmark method to estimate the 
VaR is the historical method, which is the nonparametric 

method. As same as the in-sample analysis, we fix the first 
margin to some level, such as for 0.90α = , we fix the first  

Table 4 The Violation Rate of Multivariate VaR 

  
Expected 
Violation  

Gumbel 
Copula 

Historical 
 Method 

VaR0.9 0.1 0.03 0.001 

VaR0.95 0.05 0.00 0.00 
 

margin as 0.95 quantile, and get the second margin, then sum 
them up. The results are shown in the Table 4. The backtesting 
method shows that comparing to the historical method, the 
Gumbel copula has better forecasting ability at 0.9 level. 
however, for the VaR0.95, it is not clear which method is better, 
this is because our data set is small. And also for our extreme 
value copula, the GEV margins are from each 24 observations; 
therefore the VaR is not that flexible and frequently change. 

IV. CONCLUSIONS 
In this study, we present multivariate VaR of portfolio which 

consists of crude oil and natural gas futures by using the extreme 
value copula. It is a good tool to estimate the VaR due to the fact 
that extreme value copulas also specifically focus on the tail 
distribution and tail dependence. 

Our out-of-sample results may be not strong evidence to 
prove that the extreme value copulas are superior to the other 
method, since the data set is small. The future work should use 
longer data span to verify it. The multivariate VaR measures 
also can be improved according to the literatures, such as the 
method in Embrechts, Höing, and Juri (2003) [17]. 
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