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Abstract—This paper proposes maximum a priori (MAP)
channel estimation technique in chaos based code division mul-
tiple access (CDMA) system. Two different cases are considered
for estimating the fading channel. In the first case, channel
coefficients are estimated with the help of chaotic sequences. In
the second case estimation is performed without including the
chaotic sequence in the estimation algorithm. Simulation results
shows that the MAP estimation algorithms performance is better
for the first case.

Index Terms—Channel estimation, CDMA, Chaotic sequence,
Bayesian estimation, MAP

I. INTRODUCTION

Fading is the phenomena which makes wireless communica-
tion more difficult as compare to other communication systems
e.g. optical fiber communication and wired communication
etc. For many wireless systems, independent of whether time
division multiple access (TDMA) or code division multiple
access (CDMA) is employed, estimation of channel fading
coefficient is necessary for high speed communication. Chan-
nel estimates can be updated frame by frame for slower fading
rate as compare to frame rate. If channel coefficients changes
significantly within the frame then it is necessary to update
coefficients iteratively based on symbol by symbol basis [1],
[2].

Various estimation methods have been studied in last few
decades and each method has its own advantages and dis-
advantages. Minimum mean square estimators (MMSE) [3],
[4], [5] are easy to implement and perform well in flat
fading environment. But these estimators require correlation
computation and have poor performance for time varying
channel estimation. Bayesian estimators [6], [7], [8], [9] used
prior knowledge of data to generate posterior analysis. There-
fore performance extensively depends on prior informations.
On the other hand, neural networks [10], [11], [12] do not
require prior knowledge of channel statistic, but there is huge
computational burden for training process. Finally, particle
filters [13], [14], [15], [16] use the sequential Monte Carlo
sampling method to implement recursive Bayesian filter. But
these filters have very high computational load for correcting
each particle, which results in higher energy consumption.
Therefore hardware implementation of these filters are dif-
ficult.

The chaotic signals generated from the same chaotic map
has high auto correlation and very low cross correlation
values. Further, these signals are very sensitive to initial
conditions, therefore infinite number of chaotic sequences can
be generated from a chaotic map. Hence, chaos based CDMA

system gains significant interest among the researchers in last
decade [17], [18], [12], [19], [20], [21], [22], [23], [24], [25].
Each user in CDMA system is distinguish by it’s spreading
code. Bayesian estimators i.e. MAP and maximum likelihood
(ML) are extensively studied for CDMA systems with binary
spreading codes [26], [27], [28], [29], [30], [31]. However,
to our best knowledge, performance of these estimators never
studied for chaos based CDMA system.

Objective of this research work is to study the Bayesian
channel estimator for chaos based CDMA system for downlink
communication. MAP estimator equation is derived for these
systems, which needs a prior knowledge of channel statistics.
Further, we have also derived the ML estimation equation
for considering the case where the mean and variance of the
channel is unknown at the receiver. Two algorithms are derived
to consider the multiplexed pilot-data case and added pilot-
data case. In multiplexed pilot-data case, after demultiplexing,
channle estimation can be performed directly on the extracted
pilot signal. Whereas for added pilot-data case, pilot needs to
be extracted by multiplying corresponding chaotic sequence,
before channel estimation process. Performance difference in
these two methods have been shown using simulation results.

This paper is organized as follows. In section II chaos
based CDMA system with Bayesian estimator is shown. MAP
and ML estimation algorithms are derived in section III.
Simulation results are shown in section IV. Finally some
concluding remarks are given in section V.

II. SYSTEM MODEL

Fig. 1 shows the baseband representation of the chaos based
CDMA system with Bayesian channel estimator. In this figure
channel estimation is performed after multiplying the chaotic
signal to received signal. The wireless channel is assume to
be quasi-static fading channel i.e. path gains are constant over
a symbol duration. Then the received signal at user can be
described as:

y(n) =

(
N∑
k=1

sTk (n)Ck(n)

)
h(n) + w(n) (1)

where s(n) = [s(n), s(n− 1), · · · , s(n− L+ 1)]
T is the

transmitted signal, h(n) = [h0(n), h1(n), · · · , hL−1(n)]T is
the quasi-static time varying channel for kth user and w(n) is
the zero mean White Gaussian noise with variance of σ2

w.
L and N represents the total number of paths and users
respectively. C(n) = diag[c(n), c(n−1), · · · , c(n−L+1)] is
the diagonal matrix with elements c(·) of length 2β known as
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Fig. 1. Block Diagram of Proposed System

spreading factor. Subscript k denotes that the symbol is related
to kth user. Channel coefficients are assumed to be Gaussian
distributed [27] i.e. h ∼ N(mh, σ

2
h) where mh and σ2

h are
the mean and variance of the channel respectively.

III. MAP AND ML ESTIMATOR

In this section we have derived Bayesian estimator equations
for two cases i.e. for multiplexed pilot-data and add pilot-data
case.

A. MAP and ML estimation with multiplexed pilot and user
data

If pilot is multiplexed with user data then it can be extracted
using demultiplexer at the receiver and can be processed by
channel estimator. Here we have to assume that fading and
nosie have same effect on pilot and user data symbols. In this
case, the condition distribution function p (y(n)|h(n)) for kth

user is defined as

p (y(n)|h(n))

= 1√
2πσ2

w

exp

(
− (y(n)−sTk (n)Ck(n)h(n))

2

2σ2
w

)
(2)

Since mean mh and variance σ2
h of Gaussian distributed

channel is known at receiver, therefore MAP estimation algo-
rithm is given by

∇h

(
− (y(n)−sTk (n)Ck(n)h(n))

2

2σ2
w

− (h−mh)σ
−2
h (h−mh)

T

2 + constants
∣∣∣
h=ĥ

)
= 0

(3)

Above derivative reduces to following equation (see ap-
pendix A for derivation)

ĥMAP (n) =

mh + 1
σ2
w

(
σ−2h + 1

σ2
w
CT
k (n)sk(n)s

T
k (n)Ck(n)

)−1
×CT

k (n)sk
(
y(n)− sTk (n)Ck(n)mh

) (4)

If we do not have a prior knowledge of the channel statistic,
then we remove the second term in equation (3) and resultant
algorithm is known as ML estimation i.e.

∇h

(
−
(
y(n)− sTk (n)Ck(n)h(n)

)2
2σ2

w

+ constants

∣∣∣∣∣
h=ĥ

)
= 0

(5)
After solving derivative, we have following ML estimation

equation

ĥML(n) =
(
sTk (n)Ck(n)

)−1
y(n) (6)

B. MAP and ML algorithm for added pilot and user data

For multiplexed pilot and user data, we have to assume same
fading effects on both the signals. If we add pilot symbols
to user symbols then fading have same effect on both the
signals. Therefore same fading and noise effect assumptions
can be removed. Further, in this case pilot has to be extracted
from data for the channel estimation process. Since the chaotic
sequences are orthogonal to each other therefore pilot symbols
can be extracted by multiplying the received signal with
chaotic sequence of pilot symbols. Multiplying received signal
i.e. equation (1) with chaotic signal of kth user we have

z(n) = y(n)
CH
k (n)

Ck(n)CH
k (n)

(7)

In this case MAP and ML estimation equations are given
by (see appendix B for derivation)

ĥMAP (n) = mh + 1
σ2
w

(
σ−2h + 1

σ2
w
sk(n)s

T
k (n)

)−1
×

sk
(
z(n)− sTk (n)mh

) (8)

and

ĥML(n) =
(
sk(n)s

T
k (n)

)−1
sk(n)z(n) (9)
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IV. SIMULATION RESULTS

In the simulation we compare the performance of estimators
for three cases. In first case, the pilot is multiplexed with data
without multiplying with chaotic sequences at the transmitter.
We represent this case as ‘Without Chaotic Multiplication’ in
the simulation results. Similarly other two cases i.e. multi-
plexed pilot-data and added pilot-data with chaotic sequences
multiplication at transmitter, are denoted by ‘Before Chaotic
Multiplication’ and ‘After Chaotic Multiplication’ respectively
in the results.

The value of the spreading factor 2β is 50. Following
Chebyshev polynomial function i is used to generate the
chaotic sequence [32].

xk = 1− 2(xk−1)
2 (10)

where xk denotes the kth chip value chaotic sequence.
Fig. 2 and Fig. 3 show the channel tracking performance

of the three estimators at 0dB and 20dB SNR conditions
respectively. Chaotic sequences spread the data over entire
bandwidth during transmission and despreading takes place
during reception. Further noise is spread by the chaotic se-
quence multiplication at the receiver. Due to this spreading of
noise, performance of the estimator in the presence of chaotic
sequence is better than the without chaotic spreading case, as
shown in Fig. 2 and Fig. 3.

From these figures it is clear that performance of all the
estimators are improved with increase in the SNR. Since
chaotic sequences are directly used for channel estimation
as well as noise spreading in multiplexed pilot-data case
therefore its performance is better than the added pilot-data
case, for lower SNR conditions. For higher SNR conditions
performance of both the chaotic estimators are same as shown
in Fig. 3.

Finally in Fig. 4, the BER performances are shown. 20dB
performance improvement can be seen at SNR = 10dB
with chaotic spreading sequence over without spreading case.
Further, performance improvement can be seen in ‘Before
Multiplication Case’ over ‘After Multiplication case’ at lower
SNR conditions.
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Fig. 2. MAP channel estimators performance, SNR = 0dB
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Fig. 3. MAP channel estimators performance, SNR = 20dB
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Fig. 4. BER performance of chaos based CDMA system using MAP, 2β = 50

V. CONCLUSION

In this paper, we propose MAP channel estimation al-
gorithms for chaos based CDMA system. In simulation,
channel estimators are compared for various cases. In the
first case, channel estimation is performed on the received
signal directly i.e. in the presence of chaotic sequence. In
second case chaotic sequence is not available for channel
estimation because estimation is done after multiplying the
received signal with chaotic sequence. The MAP estimators
work better in the presence of chaotic sequence because in
this case chaotic sequences are used for channel estimation
as well as noise spreading. However, for this case pilot and
data are multiplexed with each other, therefore we have to
assume that pilot and data have same fading and noise effect.
Further, if data and pilot have different fading effect then
second estimation algorithm can be used.

APPENDIX A
DERIVATION OF EQUATION (4)

Rewriting equation (3) after solving derivative, we have

Recent Advances on Electroscience and Computers

ISBN: 978-1-61804-290-3 62



ĥ(n) =
(
σ−2h + 1

σ2
w
CT
k (n)sk(n)s

T
k (n)Ck(n)

)−1
×(

mhσ
−2
h +

CT
k (n)sk(n)y(n)

σ2
w

) (11)

Let

σ−2h +
1

σ2
w

CT
k (n)sk(n)s

T
k (n)Ck(n) = T (12)

Hence equation (11) becomes

ĥ(n) = T−1
(
mhσ

−2
h +

CT
k (n)sk(n)y(n)

σ2
w

)
(13)

Put the value of σ−2h from equation (12) to (13), we get
equation (4)

APPENDIX B
DERIVATION OF EQUATION (8) AND (9)

Putting the value of y(n) from equation (1) in equation (7),
we have

z(n) = sTk (n)h(n) +

(
N∑

j=1,k 6=j
sTk (n)Ck(n)

)
h(n)×

CT
k (n)

Ck(n)CT
k (n)

+
w(n)CT

k (n)

Ck(n)CT
k (n)

(14)
Since the cross-correlation of two different chaotic signals

is very small, hence we can neglect the second term i.e.

z(n) ≈ sTk (n)h(n) +
w(n)CT

k (n)

Ck(n)CT
k (n)

(15)

Now, following the same steps as in section III-A, we get
equation (8) and equation (9).

REFERENCES

[1] L.-M. Chen and B.-S. Chen, “A robust adaptive DFE receiver for DS-
CDMA systems under multipath fading channels,” IEEE Transactions
on Signal Processing, vol. 49, no. 7, pp. 1523–1532, 2001.

[2] M.-A. Baissas and A. M. Sayeed, “Pilot-based estimation of time-
varying multipath channels for coherent CDMA receivers,” IEEE Trans-
actions on Signal Processing, vol. 50, no. 8, pp. 2037–2049, 2002.

[3] G. Rice, D. Garcia-Alfs, L. Stirling, S. Weiss, and R. Stewart, “An
adaptive MMSE RAKE receiver,” in Conference Record of the Thirty-
Fourth Asilomar Conference on Signals, Systems and Computers, 2000.,
vol. 1. IEEE, 2000, pp. 808–812.

[4] H. Cheng and S. C. Chan, “Blind linear MMSE receivers for MC-CDMA
systems,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 54, no. 2, pp. 367–376, 2007.

[5] S. Haykin, “Adaptive filter theory, 4 ed.” Prentice Hall, 2002.
[6] H. L. V. Trees and K. L. Bell, Detection estimation and modulation

theory, pt. I. Wiley, 2013.
[7] R. Jose and K. V. S. Hari, “Bayesian approach for joint estimation of

phase noise and channel in orthogonal frequency division multiplexing
system,” IET Signal Processing,, vol. 8, no. 1, pp. 10–20, 2014, iD: 1.

[8] A. Vempaty, H. He, B. Chen, and P. K. Varshney, “On quantizer
design for distributed Bayesian estimation in sensor networks,” IEEE
Transactions on Signal Processing,, vol. 62, no. 20, pp. 5359–5369,
2014, iD: 1.

[9] K. Zhong and S. Li, “On symbol-wise variational Bayesian CSI estima-
tion and detection for distributed antenna systems subjected to multiple
unknown jammers,” IEEE Signal Processing Letters,, vol. 21, no. 7, pp.
782–786, 2014, iD: 1.

[10] S. Guarnieri, F. Piazza, and A. Uncini, “Multilayer feedforward networks
with adaptive spline activation function,” IEEE Transactions on Neural
Networks, vol. 10, no. 3, pp. 672–683, 1999.

[11] H. H. Yang and S. ichi Amari, “Adaptive online learning algorithms for
blind separation: maximum entropy and minimum mutual information,”
Neural computation, vol. 9, no. 7, pp. 1457–1482, 1997.

[12] J.-H. Kao, S. M. Berber, and V. Kecman, “Blind multiuser detector for
chaos-based CDMA using support vector machine,” IEEE Transactions
on Neural Networks, vol. 21, no. 8, pp. 1221–1231, 2010.

[13] S. Wang, L. Cui, L. Stankovic, V. Stankovic, and S. Cheng, “Adaptive
correlation estimation with particle filtering for distributed video cod-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,,
vol. 22, no. 5, pp. 649–658, 2012, iD: 1.

[14] L. Anping and X. Nan, “Blind multiple frequency offsets and channel
estimation using particle filter in cooperative transmission wireless net-
works,” in IEEE International Conference on Computer and Information
Technology (CIT), 2014, 2014, pp. 837–841, iD: 1.

[15] S. A. Banani and R. G. Vaughan, “Blind channel estimation and dis-
crete speed tracking in wireless systems using independent component
analysis with particle filtering,” IET Communications,, vol. 6, no. 2, pp.
224–234, 2012, iD: 1.

[16] H. Hu, S. Zhang, and H. Li, “Individual channel tracking for one-way
relay networks with particle filtering,” in IEEE Global Communications
Conference (GLOBECOM), 2014, 2014, pp. 3198–3202, iD: 1.

[17] F. C. Lau and K. T. Chi, Chaos-based digital communication systems:
Operating principles, analysis methods, and performance evaluation.
Springer, 2003.

[18] R. Rovatti, G. Mazzini, and G. Setti, “Enhanced RAKE receivers for
chaos-based DS-CDMA,” IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, vol. 48, no. 7, pp. 818–829,
2001.

[19] S. Berber, “Probability of error derivatives for binary and chaos-based
CDMA systems in wide-band channels,” IEEE Transactions on Wireless
Communications, 2013.

[20] M. Coulon and D. Roviras, “Multi-user receivers for synchronous and
asynchronous transmissions for chaos-based multiple-access systems,”
Signal Processing, vol. 89, no. 4, pp. 583–598, 2009.

[21] G. Kaddoum, D. Roviras, P. Charg, and D. Fournier-Prunaret, “Accurate
bit error rate calculation for asynchronous chaos-based DS-CDMA
over multipath channel,” EURASIP Journal on Advances in Signal
Processing, vol. 2009, p. 48, 2009.

[22] G. Kaddoum, P. Charg, D. Roviras, and D. Fournier-Prunaret, “Per-
formance analysis of differential chaos shift keying over an AWGN
channel,” in International Conference on Advances in Computational
Tools for Engineering Applications, 2009. ACTEA’09. IEEE, 2009, pp.
255–258.

[23] R. Rovatti, G. Mazzini, and G. Setti, “Enhanced RAKE receivers for
chaos-based DS-CDMA,” IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications,, vol. 48, no. 7, pp. 818–829,
2001.

[24] S. Vitali, R. Rovatti, and G. Setti, “Improving PA efficiency by
chaos-based spreading in multicarrier DS-CDMA systems,” in IEEE
International Symposium on Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006, 2006, pp. 4 pp.–1198, iD: 1.

[25] M. G. Zia, “Performance of chaos-based MC-MC-CDMA in frequency
selective fading channel,” International Journal of Scientific and Engi-
neering Research, vol. 4, no. 1, pp. 1–4, 2013.

[26] B. Hu, I. Land, R. Piton, and B. H. Fleury, “A Bayesian framework for it-
erative channel estimation and multiuser decoding in coded ds-cdma,” in
IEEE Global Telecommunications Conference, 2007. GLOBECOM’07.
IEEE, 2007, pp. 1582–1586.

[27] E. Aydin and H. A. irpan, “Bayesian-based iterative blind joint data
detection, code delay and channel estimation for DS-CDMA systems in
multipath environments,” in 7th International Wireless Communications
and Mobile Computing Conference (IWCMC), 2011. IEEE, 2011, pp.
1413–1417.

[28] L. Wu, G. Liao, C. Wang, and Y. Shang, “Bayesian multiuser detection
for CDMA system with unknown interference,” in IEEE International
Conference on Communications, 2003. ICC ’03., vol. 4, 2003, pp. 2490–
2493 vol.4, iD: 1.

[29] Z. Yang, B. Lu, and X. Wang, “Blind Bayesian multiuser receiver
for space-time coded MC-CDMA system over frequency-selective fad-
ing channel,” in IEEE Global Telecommunications Conference, 2001.
GLOBECOM ’01., vol. 2, 2001, pp. 781–785 vol.2, iD: 1.

[30] Q. Yu, G. Bi, and L. Zhang, “Bayesian blind multiuser detection for
long code multipath DS-CDMA systems,” in International Conference

Recent Advances on Electroscience and Computers

ISBN: 978-1-61804-290-3 63



on Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004,
vol. 1, 2004, pp. 84–88 Vol.1, iD: 1.

[31] A. Vosoughi and A. Scaglione, “Optimal training designs for Bayesian
channel estimators with application in CDMA systems,” in IEEE/SP 13th
Workshop on Statistical Signal Processing, 2005, 2005, pp. 1348–1353,
iD: 1.

[32] G. Kaddoum, P. Charg, D. Roviras, and D. Fournier-Prunaret, “Com-
parison of chaotic sequences in a chaos based DS-CDMA system,” in
Proceedings of the International Symposium on Nonlinear Theory and
its Applications, Vancouver, Canada, 2007.

Recent Advances on Electroscience and Computers

ISBN: 978-1-61804-290-3 64




