
Network Proximity and Physical Web

Yousef Ibrahim Daradkeh
College of Engineering at Wadi Aldawaser

Prince Sattam bin Abdulaziz University, Saudi Arabia
daradkehy@yahoo.ca

Dmitry Namiot
Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
Moscow, Russia

dnamiot@gmail.com

Abstract— The Physical Web is a tool (an approach) to connect
any physical object to the web. The Physical Web lets “render”
physical objects in web, usually, with the help of mobile devices.
This approach lets us navigate and control physical objects in the
world surrounding mobile devices. There are different ways to
enumerate physical objects. In this paper, we will describe the model
based on the network proximity. In this model, the circulated
information depends on the proximity to the network nodes in the
wireless networks. We will discuss the possibility to use network
proximity for interactions with physical objects.

Keywords—Physical Web; network proximity; Bluetooth; Wi-Fi

I. INTRODUCTION
The Physical Web is a term that describes the process of

presenting everyday objects in Internet. It aims to offer users
the way to manage their daily tasks at using everyday objects
that are soon to become smart and remotely controllable. This
approach lets us navigate and control physical objects in the
world surrounding mobile devices. Also, it helps perform
everyday tasks depending on the surrounding physical objects.
Of course, one of the first questions on this path is the way to
enumerate physical objects.

One of the most often used approaches for physical objects
markup is the deployment of wireless tags. Wireless tags can
support standard protocols like Bluetooth and Wi-Fi. So, for
mobile devices (mobile users) the detection of tags is actually
the detection of wireless nodes. Note, that in this approach
other mobile devices can play a role of tag too. And the
network proximity here describes data models based on the
detection of surrounding network nodes.

In this paper, we would like to discuss several approaches
for building mobile systems based on the detection of physical
objects via network proximity. Note, that the classical models
for interaction with physical objects are a subject of Internet of
Things (Web of Things) [1]. In this paper, we will mostly
discuss the services which could be initiated by the presence
of surrounding physical object. Such services do not always
incur two-way data exchange with the physical objects. In the
most cases, it is enough to detect and identify the object.

The proximity is a very conventional way for context-
aware programming in mobile world. There are many practical
use cases, where the concept of the location can be replaced

by that of proximity. Proximity can be used as a main
formation for context-aware browsers [2]. The context-aware
browser will reveal data chunks depending on the current
context.

The usage of network proximity for context-aware systems
is very transparent. At his moment, network modules are most
widely used “sensors” for mobile phones. All smartphones
nowadays have Wi-Fi (Bluetooth) modules. So, Wi-Fi
(Bluetooth) related measurements are included into standard
interfaces of mobile operating systems. The above-mentioned
measurements include the visibility for network nodes and
signal strength. By the definition, the distribution for
Bluetooth signal, for example, is limited. So, if any Bluetooth
node is visible from a mobile device (a mobile phone, for
example), then this device is somewhere nearby that node (it is
so-called Bluetooth distance). The same is true for Wi-Fi
access point. And this proximity information (network
proximity) can replace location data. There are two main
reasons for this replacement. At the first hand, we can target
here all indoor application [3]. Obtaining GPS (Global
Positioning System) data indoor is not reliable and sometimes
even impossible. In the same time, modern offices usually
have plenty of wireless nodes. The second reason is much
more interesting. The wireless node could be moveable. So,
our context information will follow to the moved object.

For network proximity-based context-aware applications,
any existing or even especially created Bluetooth node could
be used as a presence-sensor that can play the role of a trigger.
This trigger can open access to some content, discover
existing content, as well as cluster nearby mobile users [4,5].

The rest of the paper is organized as follows. In Section II,
we discuss iBeacons. In Section III, we discuss Google
Physical Web. In Section IV, we describe Bluetooth Data
Points.

II. IBEACONS
The iBeacon is a wireless tag (beacon), based on Bluetooth

Low Energy (BLE) standard [6]. Shortly, any beacon is set to
transmit a set of numbers several times per minute, so that any
mobile device with BLE support nearby can detect it. The
beacon’s repetitive transmission is called also as
“advertising”. The BLE standard specifies a structure for the

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 170

data that must be transmitted. An application on a mobile
device can then detect this parcel of information, unpack it,
and use it for providing context-aware services.

The above-mentioned advertising includes a unique ID for
a tag and two application-dependent numbers (so-called minor
and major).

As per Apple’s manual, a proximity universally unique
identifier (UUID) is 16 Bytes, and major and minor codes are
2 Bytes each. The common usage for UUID is the
identification for a place. For example, it could be a particular
shop, café, etc. Major and minor codes could be used to a
description of an area within a physical space associated with
the above-mentioned UUID. For example, a retailer might use
the major and minor code to identify, respectively, a given
retail store and a specific shelf, where a beacon will be placed.

On iOS, a given application can scan for up to 20 tags
(proximity UUIDs). It is, probably, one of the biggest
limitations for iBeacons technology. The mobile application
should statically declare UUIDs for the tags in questions [7].
For a mobile application, this declaration lets register to be
notified if a Beacon with a given UUID comes within range
(or goes out of range) of the device [8]. From the notification,
a mobile application can obtain minor and major codes and
they can then be used to uniquely identify a given beacon.

The application can then use this data, often (almost
always) in tandem with a cloud service, to decide what action
to take, if any, when the beacon is detected.

Beacons could be placed anywhere where potential users
might wish to either trigger some form of action in a mobile
application, or have that application log the fact that it came
near to the beacon. For example, commuters in London are to
be targeted with branded messages directly to their
smartphones, as 500 buses in the capital are equipped with
Bluetooth iBeacon technology [9].

There are legal and technical problems behind iBeacons.
The legal problems are associated with the company Apple,
who owns this technology. The main technological problem is
the need for the static description of observer tags. Of course,
the underlying system (iOS) can read data from all tags in the
proximity, but dispatches only some of them to an application.
It means that the only one company (Apple) has the whole
picture.

Google comes with the own protocol for BLE [10].
Eddystone is the protocol specification that defines a
Bluetooth low energy (BLE) message format for proximity
beacon messages. It describes several different frame types
that may be used individually or in combinations to create
beacons that can be used for a variety of applications. At this
moment, we can see the following frames (types of data) in
the protocol:

Eddystone-UID: an opaque, unique 16-byte Beacon ID
composed of a 10-byte namespace ID and a 6-byte instance
ID. The Beacon ID may be useful in mapping a device to a
record in external storage. The namespace ID may be used to
group a particular set of beacons, while the instance ID

identifies individual devices in the group. It is an analog for a
minor/major pair in iBeacon from Apple.

Developers typically can use the namespace ID to signify
own company or organization, so they know the owner for a
beacon.

You can generate a namespace identifier with a UUID
generator. But because standard UUIDs are 16-byte identifiers
and namespace identifiers are only 10 bytes, we can simply
drop the middle six bytes from the UUID. Google also
prescribes a second technique a one-way hashing algorithm
for generating a UID out of a URL. So you can
algorithmically convert a domain name into a unique
namespace ID. The instance identifier is meant to uniquely
identify a specific beacon. Because the field is 6 bytes long,
there are 248 = 281 trillion combinations.

Eddystone-URL: a URL in a compressed encoding format.
Once decoded, the URL can be used by any client with access
to the Internet. It is a link to the Google Physical web, we will
discuss below.

Eddystone-TLM frame broadcasts telemetry information
about the beacon itself such as battery voltage, device
temperature, and counts of broadcast packets. It contains the
packet version (always a one-byte value of 0 for now), the
beacon temperature (2 bytes), the beacon battery level (2
bytes), the number of seconds the beacon has been powered (2
bytes) and the number of “PDU” packet transmissions the
beacon has sent (2 bytes.)

Actually, the general idea (pattern) is the same as with the
“classical” iBeacons. Tags broadcast some ID, an application
uses ID for getting data from the cloud. URL here is just a
special case for ID. We can simulate URL transmission just by
mapping tag’s ID to some URL in the cloud-based datastore.
Anyway, with obtained URL application should get access to
the Internet for obtaining data.

Google provide Proximity Beacon API for setting
attachment (data associated with) for BLE tags [11]. This API
supports the following actions:

• Registering tags

• Publishing attachments to tags (associate data
with tags)

• Retrieving attachments (data from tags)

• Monitoring beacons

Registered tag has got the following attributes:

• Advertised ID (required).

• Status.

• Expected stability.

• Latitude and longitude coordinates.

• Indoor floor level.

• Google Places API Place ID.

• Text description.

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 171

Attachment is a string up to 1024 bytes long. It could be a
plain string, JSON data or even encoded binary data.
Attachments are stored in Google’s scalable cloud.

There is also a very important remark for the development:
on Android platform it is possible to obtain information about
all “visible” tags.

Eddystone is a part of Nearby API [12]. Nearby uses a
combination of Bluetooth, Wi-Fi, and inaudible sound (using
the device’s speaker and microphone) to establish proximity
(Figure 1). Its implementation has been just announced

Fig. 1. Nearby API

III. GOOGLE PHYSICAL WEB
Google Physical Web project is an example of integration

Web technologies and physical world. Actually, it is part of a
more generic problem: how to integrate Internet of Things and
web technologies [13]. At its base, the Physical Web is a
discovery service: a smart object broadcasts relevant URLs
that any nearby device can receive. This simple capability can
unlock exciting new ways to interact with the Web [14].

Fig. 2 The physical web

Figure 2 illustrates the basic idea. Actually, the physical
objects here are (in the most cases) the same Bluetooth tags.
In the current implementation, URL broadcast method
involves a Bluetooth broadcast from each tag. The user's
phone obtains this URL without connecting to the beacon. As
per Google, this ensures the user is invisible to all beacons,
meaning a user can't be tracked simply by walking past a
broadcasting beacon. It is a very important principle, we
would like to discuss separately. As per Google, this was very
much by design to keep user’s silent passage untrackable. But
it is assumes also, that URL detection should be performed
automatically, on the background. Again, as per Google’s
manual, once the user does click on a URL, they are then
known to that website. With this solution, Google mostly
follows to iBeacon usage (deployment model). Application on
the mobile device automatically discovers nearby objects,
obtains associated data (URLs in this case) and pushes this
information to the user. It is a true push, iBeacons are using
push notifications, supported by mobile OS [15]. Notification
service is a popular functionality provided by almost all
modern mobile OS (iOS, Android, etc). To facilitate
customization for developers, mobile platforms support highly
customizable notifications. And yes, the third-party push
notification customization may allow an installed trojan
application to launch phishing attacks or anonymously post
spam notifications [16]. So, why do not switch to browsing
mode instead of push notifications? Mobile applications may
still obtain iBeacons data automatically, but show them only
when a user directly requests them. It should like browsing.
We must see the direct intention from mobile users to obtain
nearby data. In this case, our application should form
dynamically a web page (like CGI-script in the web) and show
it to the user.

Technically, the Physical Web can use not only BLE as a
transport layer. We can mention in this context UPnP

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 172

technology, for example [17]. The UPnP (Universal Plug and
Play) architecture offers pervasive peer-to-peer network
connectivity of PCs, intelligent appliances, and wireless
devices. The UPnP architecture is a distributed, open
networking architecture that leverages TCP/IP and the Web to
enable seamless proximity networking in addition to control
and data transfer among networked devices [18]. The UPnP
architecture defines a base set of standards and conventions
for describing devices and the services they provide. It is
designed to bring easy-to-use, flexible, standards-based
connectivity to ad-hoc or unmanaged networks. In case of the
Physical Web, the provided service is just an URL, associated
with discovered device.

As the next possible solution, we can mention mDNS [19].
mDNS - multicast DNS service discovery, also known as zero
configuration. It is an interface being used to announce and
query services on the local network. Using mDNS allows a
client to advertise the services of a given host without the
direct help of a centralized DNS server. Again, the service
here is just an URL.

We can mention here a very simple approach for creating
the Physical Web for any Bluetooth/Wi-Fi device. We can
define a SSID (name) for Wi-Fi access point (Bluetooth node)
as some URL. SSID for Wi-Fi access point (Bluetooth node in
the discoverable mode) is broadcasted (being advertised in
terms of the Physical Web). Of course, this setup could be
done programmatically. And mobile application
(programmatically also) can get a list of available Wi-Fi
access points (Bluetooth nodes in the so-called discoverable
node). This list includes SSIDs (URLs). So, it is a typical
Physical Web, even without BLE. This approach will work
even without the dedicated tags. Wi-Wi access point
(Bluetooth node in the discoverable mode) could be set
programmatically (it is true for Android) right on the mobile
phone. So, any smart phone could be turned into a Physical
Web tag and provide advertising for some URL.

In the more generic form, this approach could be described
as Beacon stuffing [20]. It is a low bandwidth communication
protocol for IEEE 802.11 networks that enables Wi-fi access
points to communicate with clients without association. This
enables clients to receive information from nearby access
points even when they are disconnected, or when connected to
another access point. Originally, this scheme was developed
for Wi-Fi as complementary to the 802.11 protocol. It works
by overloading 802.11 management frames while not breaking
the standard. The beacon-stuffing protocol is based on two key
observations. First, clients receive beacons from access points
even when they are not associated to them. Second, it is
possible to overload fields in the beacon and other
management frames to embed data. Access point embeds
content in Beacon and Probe Response frames, while clients
overload Probe Requests to send data. By the similar manner,
this scheme will work for Bluetooth [21]. And of course, for
the Physical Web we do not need the two-way
communication.

Actually, the beacon-stuffing was the inspiration point for
Bluetooth Data Points.

IV. BLUETOOTH DATA POINTS
Bluetooth Data Points (BDP) [22] let us turn any Bluetooth

node into tag. The main idea behind BDP is to associate some
user-defined data with existing (or even especially created)
wireless networks nodes. Originally, the project targets
Bluetooth nodes in the discoverable mode, but the same
principles will work for Wi-Fi access points too. This
association is similar to the above-mentioned data attachments
for beacons. The main difference is the definition (the
description) for a tag. BDP is based on the idea of “zero scene
preparation”. For example, any mobile users should be able to
create (open) Bluetooth node right on the own mobile phone,
associate some data with this node and so, make them
available for other mobile users in the proximity. Figure 3
illustrates this idea. As existing node, we see here Bluetooth
node in the car. Many modern cars nowadays are actually
Bluetooth nodes. Car’s owner can attach data to the own node.
Other mobile users in the proximity can “see” Bluetooth node
and use its identification (SSID, MAC-address) as key for
obtaining associated data from the cloud. It is so-called hyper-
local data concept. Data not only present some local
information but could be prepared locally also. Instead of the
car (Bluetooth node in the car) we can use just another mobile
phone. A Bluetooth node (a tag) could be created
programmatically. And programmatically we can attach some
data to it. So, just one mobile application (in publishing mode)
is enough for creating a new data channel. And the same
mobile application (in browsing mode) could be used for
reading data in the proximity.

Fig. 3. BDP data flow.

The simplest use case is a mobile classified. A mobile
users creates an advertising (announce), links it to the wireless
node on the own mobile phone and so, it becomes available
for reading for other mobile users in the proximity. If the
mobile phone (the mobile tag) is moved, all associated data
will be “moved” too. Data are not associated with
latitude/longitude pair (as in geo-location systems), but with
ID of wireless node. Data are visible in the proximity of the
node (in the proximity of the author) only.

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 173

Google does not describe the above mentioned database
for beacons data attachments. BDP uses the classical key-
value model for data. Attachments area described individually
for the each Bluetooth point. So, there is a key (MAC-address)
and a JSON text with linked data. It is a typical key-value data
model. This data model is one of the most used models for
NoSQL approach. One of the available examples of Open
Source key-value stores is Apache Accumulo [23]. It is
distributed key-value store. Actually, the whole database for
BDP is a distributed hash table. The table rows as key-value
pairs to provide a fast way to look up by a key item as
attribute given by the value of a column qualifier of a row. In
order to support lookups by more than one attribute of an
entity, additional indexes can be built.

Data is represented as key-value pairs, where the key is
comprised of the following elements: RowID, Column
(Family, Qualifier, Visibility) and Timestamp. All elements of
the Key and the Value are represented as byte arrays except
for Timestamp, which is a Long. Accumulo sorts keys by
element and lexicographically in ascending order. Timestamps
are sorted in descending order so that later versions of the
same Key appear first in a sequential scan. Tables consist of a
set of sorted key-value pairs [24].

In terms of data design, BDP store contains the following
information:

(recordID, MAC_address, data_array)

Each record describes a one data chunk (information
element) for the given (MAC_address) Bluetooth node. Of
course, we could have more than one information element for
the same node.

The typical query requests data by MAC_address. So, it is
a direct scan via the primary index and it will be fast.

JSON array for data chunks let present the various
elements within data attachments. For example, plain text,
phone number, email address, hyperlink, link to
Twitter/Facebook/Linkedin profile or even an encoded image.

The basic algorithm as it is described above is based on the
ideas of browsing data rather than push them to mobile users.
BDP’s context-aware “browser” obtains a list of the visible
Bluetooth node. Than for the each node browser can perform
database scan (lookup) and get data associated with this node.
This request simply returns nothing in the case of Bluetooth
nodes without attachments. All collected data could be packed
in JSON array and this array will be returned back to the
“browser”. And the browser will perform data rendering.
Nodes in the array could be sorted by the obtained RSSI
(signal strength). Figure 4 illustrates this.

Fig. 4. BDP

As per collected statistics, the system can accumulate
“browsing” events. An event here is the fact states that the
device with address MAC1 requests a data chunk provided by
the device MAC2 at the time t.

In the normal case, most of the nearby Bluetooth nodes
will be “empty” (they will be out of BDP circle). So, we can
decrease the number of database lookups with some cache.
BDP uses a Bloom filter [25]. The Bloom filter is a method for
representing a set of n elements A = {a1, a2,…,an} also called
keys to support membership queries. Elements here are MAC-
addresses for Bluetooth nodes.

V. CONCLUSION
In this paper, we discuss existing and upcoming software

systems based on the network proximity. As a main result, we
can present our list of requirements to the flexible solution,
based on the wireless tags.

Any proposed system should support software-based tags.
It should be possible to define tags and linked data with
existing wireless infrastructure and/or existing mobile devices.
We do not reject the idea of using dedicated hardware tags.
We just highlight the fact that software-based systems are
much more flexible, cheaper and finally allow much more
services.

The wireless modules (Bluetooth, Wi-Fi) in the mobile
devices make them the most popular and widely distributed
sensors. With software based wireless tags, it is a most simple
and convenient approach for context-aware programming in
Smart Cities environments.

The push-based data delivery in case of wireless tags has
got serious usability limitations. By our opinion, the browsing
is a more promising approach for getting data in the proximity
of tags. Finally, we can predict, that at the end of the day,
mobile browsers will incorporate data about proximity. Any
mobile browser is a mobile application too. And nothing
prevents it, for example, to scan nearby wireless devices.

In the “browsing” mode collected statistics about data
scanning is a direct analogue of web log, collected by any web
server. This statistics is an important part of data mining for

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 174

analyzing the behavior of mobile users and should be collected
by beacons supporting frameworks.

Acknowledgment
We would like to thank prof. Manfred Sneps-Sneppe for
the valuable discussions.

References

[1] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On IoT Programming."
International Journal of Open Information Technologies 2.10 (2014): 25-
28.

[2] Namiot, Dmitry. "Network Proximity on Practice: Context-aware
Applications and Wi-Fi Proximity." International Journal of Open
Information Technologies 1.3 (2013): 1-4.

[3] Namiot, Dmitry. "On Indoor Positioning." International Journal of Open
Information Technologies 3.3 (2015): 23-26.

[4] Namiot, Dmitry, and Manfred Sneps-Sneppe. "Geofence and network
proximity." Internet of Things, Smart Spaces, and Next Generation
Networking. Springer Berlin Heidelberg, 2013. 117-127.

[5] Sneps-Sneppe, Manfred, and Dmitry Namiot. "Spotique: A new
approach to local messaging." Wired/Wireless Internet Communication.
Springer Berlin Heidelberg, 2013. 192-203.

[6] Gomez, Carles, Joaquim Oller, and Josep Paradells. "Overview and
evaluation of bluetooth low energy: An emerging low-power wireless
technology." Sensors 12.9 (2012): 11734-11753.

[7] Cavallini, Andy. "iBeacons Bible 1.0." Online im Internet:
http://meetingof ideas. files. wordpress. com/2013/12/ibeacons-bible-1-
0. pdf 22 (2014).

[8] What are iBeacons? http://radar.oreilly.com/2015/04/what-are-
ibeacons.html Retrieved: Jun, 2015

[9] Hundreds of London Buses to be Fitted with iBeacons
http://performancein.com/news/2015/07/01/hundreds-london-buses-be-
fitted-ibeacons Retrieved: Jul, 2015

[10] Eddystone https://github.com/google/eddystone Retrieved: Jul, 2015
[11] Proximity Beacon API

https://developers.google.com/beacons/proximity/guides Retrieved: Jul,
2015

[12] Nearby API https://developers.google.com/nearby/ Retrieved: Jul, 2015
[13] Want, Roy. "The Physical Web." Proceedings of the 2015 Workshop on

IoT challenges in Mobile and Industrial Systems. ACM, 2015.
[14] The physical web https://github.com/google/physical-web Retrieved:

Jul, 2015
[15] Hansen, J., Gronli, T. M., & Ghinea, G. (2012). Towards cloud to device

push messaging on Android: technologies, possibilities and challenges.
[16] Xu, Z., & Zhu, S. (2012, August). Abusing Notification Services on

Smartphones for Phishing and Spamming. In WOOT (pp. 1-11).
[17] Miller, B., Nixon, T., Tai, C., & Wood, M. D. (2001). Home networking

with universal plug and play. Communications Magazine, IEEE, 39(12),
104-109.

[18] UPnP, http://www.upnp.org, Retrieved: Jul, 2015
[19] Nordman, B., & Christensen, K. (2010). Proxying: The next step in

reducing it energy use. Computer, 43(1), 91-93.
[20] Chandra, R., Padhye, J., Ravindranath, L., & Wolman, A. (2007,

March). Beacon-stuffing: Wi-fi without associations. In Mobile
Computing Systems and Applications, 2007. HotMobile 2007. Eighth
IEEE Workshop on (pp. 53-57). IEEE.

[21] Banerjee, N., Agarwal, S., Bahl, P., Chandra, R., Wolman, A., & Corner,
M. (2010). Virtual compass: relative positioning to sense mobile social
interactions. In Pervasive computing (pp. 1-21). Springer Berlin
Heidelberg.

[22] Namiot, D., & Sneps-Sneppe, M. (2014, October). CAT??? cars as tags.
In Communication Technologies for Vehicles (Nets4Cars-Fall), 2014
7th International Workshop on (pp. 50-53). IEEE.

[23] Sen, R., Farris, A., & Guerra, P. (2013, June). Benchmarking apache
accumulo bigdata distributed table store using its continuous test suite.
In Big Data (BigData Congress), 2013 IEEE International Congress on
(pp. 334-341). IEEE.

[24] Namiot, D., & Sneps-Sneppe, M. (2015). On Mobile Bluetooth Tags.
arXiv preprint arXiv:1502.05321.

[25] Broder, A., & Mitzenmacher, M. (2004). Network applications of bloom
filters: A survey. Internet mathematics, 1(4), 485-509.

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 175

