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ABSTRACT 

The car’s detection is one of the current research topics; it is 

characterized by the presence or absence of cars in a special place. 

Several recent works were made in this context; there’s three class 

of car detections method, one based on the study of the move, 

another based on a geometrical model and the last one based on 

the use of the learning process. 

In this paper, we implement a method for car detection based on 

the monocular vision by Gaussian receptive fields features; when 

getting features extracted, we reduce the size of the vectors 

samples, which were used as input for our learning step and 

learning procedure based on the neural network MLP. 
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1. INTRODUCTION 
The cars detection is a very delicate task because of the many 

disturbing facts as, the presence of unfavorable condition’s 

capture (shadow) in a part, and in another part the multi shape of 

the cars (colors, and size ). 

Many works has been made in the context of the cars 

detection, within them we can  quote [1], where authors has 

proposed two steps, the first one is the HG hypothesis generation 

application and the second one the is HV hypothesis verification 

of application. In the first step, the hypothesis of generation was 

made based on the edge detection and this whith the aim to locate 

the car, while the second part was the feature extraction with Haar 

parameter’s combined to SVM. Other technics tested in [2], 

where BGF was used for feature extraction for an SVM training. 

[3], outlined a technic based on a representation of the vehicle in 

the shape of a geometric model, after an energy function include 

information about this shape (the symmetry and the shadow of the 

car) was calculated. The used the genetic algorithm for reduce the 

space of the features, by selecting the good features. Jun Kong 

and his colleagues proposed a new approach [4] for extraction of 

the image from the background and the update of the features 

based on the quantification of the gray level and the mitigation of 

the weight in order to reduce the effect of the lighting of the light. 

At the end, they use a a discrimination function to separate 

between the two parts the object and the background in order to 

locate the area in move. The paper [5], talks about a new technic 

combining approach by appearance, a geometric model and 

approach in motion. In the first approach, we used the Adaboost 

training algorithm. A geometric model was used in order to have a 

good localization of the cars, and the last approach was applied to 

determine al the area in move. The merger of the various 

information obtained has been made by adopting the principle of 

the Bayes. 

In our method, the cars detection was based on training; with 

Gaussian receptive fields features, eigenvalues and the MLP 

(neural network). Our approach was tested on the 

“UIUC”database’s. 

2. THE PROPOSED APPROACH FOR 

CARS DETECTION 
in this method, we get a good cars detection by the training 

process devised in three steps : feature extraction based on the 

Gaussian receptive field (Eigenvalues) and the training by the 

neural network MLP. 

A. Features extraction 

Features extraction with Gaussian receptive fields was 

applied using five cores shown in the figure below. 

Because of the variability of the size of the cars in the 

pictures, this phase was applied on an intrinsic space and for the 

three levels of size, largest to smallest. 

The figure 1 presents the results obtained for the feature 

extraction step by the Gaussian receptive field on one of the three 

cores. 

 

 

 

 

 

 

After applying the different kernels to extract the features of 

Gaussian receptive field, we organized these features into vectors. 

Two types of vector were built, the haves vectors positive 

examples or the healthy carriers of negative examples. Of course, 

this operation was used separately for each intrinsic level. 

For example, on an intrinsic level of size 40 * 100, one can built a 

vector of size 5 * 40 * 100, knowing that 5 represents the number 

of cores used. 

Note that the vector size is very large (20,000 items). If one 

considers that the number of positive examples is 500 examples 

and the number of negative examples is 500 examples, calculates 

becomes very heavy. To remedy this problem, it has been applied 

 

Figure 1 the cores of the Gaussian receptive fields 
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in this phase by the clean space called a technical method for 

reducing the size of these vectors; in effect a covariance matrix Q 

uses the relationship in (1): 

TSSQ .       (1) 

Knowing that S is a matrix of size 20000 * 1000. 

After the SVD, we can find three types of matrices U, V, and UT 

Reducing the size of the vectors was made using the first 

eigenvectors of the matrix U. 

Tests and tests with different image sizes, ranging from 5, 10 

through 100 and reaching up to 500 led us to limit the size to 100. 

  

Finally, this technique allows us to reduce the size of our sample 

training vectors in size to a size of 20 000 100. 

A. The neural network MLP 

The last step was performed by applying an artificial neural 

network MLP. 

A multilayer perceptron (MLP) is a feedforward artificial neural 

network model that maps sets of input data onto a set of 

appropriate outputs. A MLP consists of multiple layers of nodes 

in a directed graph, with each layer fully connected to the next 

one. Except for the input nodes, each node is a neuron (or 

processing element) with a nonlinear activation function. MLP 

utilizes a supervised learning technique called backpropagation 

for training the network. MLP is a modification of the standard 

linear perceptron and can distinguish data that are not linearly 

separable. 

Figure 2 shows the general scheme of a multilayer perceptron 

neural network. If a multilayer perceptron has a linear activation 

function in all neurons, that is, a linear function that maps the 

weighted inputs to the output of each neuron, then it is easily 

proved with linear algebra that any number of layers can be 

reduced to the standard two-layer input-output model (see 

perceptron).  

 

Figure 2 Multilayer Perceptron Scheme 

 

In this phase, we applied an artificial neural network MLP with 

one hidden layer, further setting the number of neurons in the 

hidden layer was achieved by adopting (2): 

sec NNN        (2) 

Nc : Number of neurons in the hidden layer. 

Ne : Number of neurons in the input layer. 

Ns : Number of neurons in the output layer. 

Th best results obtained was with, 98 neurons in the hidden layer. 

The activation function was sigmoid. Matrices weight and bias 

vectors were fixed randomly, the number of iterations equal to 

100, and the error of the gradient was set at 0.01. 

After initialization of the artificial neural network MLP, come the 

learning step to finally get all the reference models. 

To calculate the amount of evaluation of our vehicle detection 

method, we applied formula (3): 

100.
BDFD

BD
TR


      (3) 

TR : recognition rate. 

BD : good detection. 

FD : bad detection. 

Our tests were on a database of (500 examples of vehicles and 500 

examples of non-vehicles), we managed to achieve a recognition 

rate of 95.8%. 
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Following is a comparison between our features used and the 

characteristics of the wavelet Haar as regards the variation of the 

recognition rate depending on the variation of the length of the 

vectors. 

Table 1. Comparative study between the Gaussian receptive 

field features type and the wavelet Haar features. 

Vectors length 

\type des 

features 
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4 

95.0

4 

OH 40.0

5 

46.2

1 

61.2

5 

83.4

7 

83.2

8 

81.0

4 

 

Figure 3 displays the results obtained after features extraction by 

Gaussian receptive fields with the negative and the positive 

example. 
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Figure 3 The features of the type  of Gaussian receptive 

field: (a) positive example, (b) negative example. 
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3. The final results of our vehicle detection 

method  
After having presented our vehicle detection method. Here is the 

presentation of some final results of the tests. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion et perspective 
In this study we realized an effective method for the detection of 

vehicles, and the application of a learning process allowed us to 

have very good results with a very high detection rate. 

As a perspective, we try to use the principle of this method in a 

work referred to detect vehicles in highways. 
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Figure 4 The results of the test 
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