
 

 

 
Abstract— The purpose of this article is to show a novel learning 

rule derived from the Hebb rule, for the training of recursive deep 
belief networks. The derivation is de novo, elegant, and similar to 
Hinton’s Contrastive Divergence CD-N, where N is the number of 
recursions (e.g., 1 in a traditional neural multi-layered perceptron). 
This rule is introduced in this article as “Generalized Hebb rule” 
(GH-N) for an entropic cost function for deep belief recursive learn-
ing. This rule is important because: (i) It is easy to apply, (ii) it ap-
plies to a stacked deep belief network, (iii) Hinton’s Contrastive Di-
vergence rule CD-N for continuous units is a special case of this rule, 
and (iv) preliminary experimental results show that – for binary pat-
terns – a deep belief auto-associator trained with a recursive neural 
network often shows a clearer separation of classes in the bottleneck 
layer than trained with backpropagation or compared to principal 
component analysis. 
 

Keywords—deep belief network, Generalized Hebb rule, contras-
tive divergence, auto-associator.  

I. MOTIVATION 

EEP belief networks (DBN) [1-2] have rejuvenated inter-
est in artificial neural networks, but are still hard to grasp 

for novices in artificial neural networks. DBN are basically a 
stacking of layers of neurons and can be trained layer by layer 
using Restricted Boltzmann Machines (RBM) [3-6]. The pur-
pose of this article is to introduce and derive a novel training 
rule, the Generalized Hebb rule (GH-N), for recursive deep 
belief stacked auto-associators, which can also be applied to 
deep belief networks. The resulting training rule has a strong 
similarity with Hinton’s Contrastive Divergence rule (CD-N) 
[6-8] but applies directly to continuous units [16] as well, and 
does not need the Boltzmann type of “stochasticity” to inter-
pret the firing of a neuron. This rule is derived de novo, start-
ing from the Hebb rule, and applies to a recursive single layer 
of a stacked auto-associator. Preliminary tests using the Italian 
olive oil data [11-12] show that the bottleneck neuron outputs 
of a deep belief recursive stacked auto-associator for binary 

 
This work was supported in part by the German Federal Ministry of Educa-

tion and Research under Grant 03EK3536A (PrIME project).  
M. J. Embrechts is with CardioMag Imaging, Inc., 13 British American 

Boulevard, Latham, NY 12110, U.S.A. (mark.embrechts@gmail.com). 
 B. Sick is with the University of Kassel, Germany, Electrical Engineering 

and Computer Science Department, Intelligent Embedded Systems Lab, Wil-
helmshoeher Allee 71-73, 34121 Kassel, Germany (bsick@uni-kassel.de). 

 

and multi-class classification patterns show a clearer separa-
tion on the test data than a deep belief network trained with 
backpropagation based on LeCun’s Efficient BackProp [9-10]. 

This article is organized as follows: Section II shows an in-
tuitive derivation of the GH-N algorithm; Section III address-
es how this rule can be implemented for a stacked auto-
associator; Section IV discusses preliminary experiments; and 
Section V summarizes the key findings and gives an outlook 
to future work. 

II. DEEP BELIEF AUTO-ASSOCIATIVE NEURAL 

NETWORKS 

A deep belief auto-associative neural network is an auto-
associator [13-15] with many layers, usually with symmetric 
weights, and trained with a deep belief method. An auto-
associator can be regarded as an artificial neural network, 
where the output values (i.e., the target values) are exactly the 
same as the input values. Such an auto-associator has many 
layers of neurons and a bottleneck layer.  

 

 
Figure 1. Example of a deep auto-associator where the target outputs 
are the same as the inputs. Except for the input layer, all other ele-
ments represented by a circle are artificial neurons. It can be shown 
that the weights are symmetric. [21] 

 
The auto-associator depicted in Fig. 1 has a symmetric 

structure and in this case, also symmetric weights. Usually the 
bottleneck layer is often of special interest and can be used in 
a similar manner as principal components and/or independent 
components. Fig. 1 represents the scheme of a deep auto-
associator, where the outputs are the same as the inputs. Ex-
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cept for the input layer, all other elements represented by a 
circle are artificial neurons (i.e., first computing a weighted 
sum of the inputs, and then applying a nonlinear activation 
function: typically a sigmoid or a hyperbolic tangent func-
tion). 

III. DERIVATION OF THE GENERALIZED HEBB RULE 

It is in principle possible to train an auto-associative net-
work via the backpropagation algorithm [17], and a deep auto-
associative network via Efficient BackProp [9-10]. However, 
a stepwise building up of a deep belief auto-associative net-
work [10] can easier avoid that neurons get into saturation and 
possibly reduce the training time, too. A stepwise deep belief 
auto-associator can be trained – layer by layer – by Hinton’s 
Contrastive Divergence rule CD-N [7-8], or by our new Gen-
eralized Hebb rule, GH-N.  

The derivation of the Generalized Hebb rule will proceed as 
follows: (i) First we will derive the delta rule as an extension 
of the Hebb rule; (ii) using this rule we will derive the training 
rule for a single layer of a symmetric recursive auto-
associator; (iii) then we will derive the training rule of a 
stacked symmetric auto-associator. A comparison of the GH-
N rule with Hinton’s CD-N will then be made. 

A. A de novo derivation of the Widrow-Hoff Delta rule 
from Hebb’s rule  

The Widrow-Hoff Delta rule can be considered as an exten-
sion of Hebb’s rule, which states: “When an axon of a cell A is 
near enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A’s efficien-
cy, as one of the cells firing B, is increased.” [10, 18].  

The above rule is a “carrot rule”: i.e., good behavior gets 
rewarded. We can extend this to “a carrot and a stick” rule: 
i.e., good behavior gets rewarded and bad behavior gets pun-
ished. 

Rosenblatt’s single-layer Perceptron rule for binary patterns 
can be derived from that principle and written more elegantly 
for polar (i.e., [-1,1]) units. In this case, the output of a neural 
network is the weighted sum of the inputs (modified by a bias 
b) according to: 

output  w
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Patterns are shown one-at-a-time. If a pattern is classified 
correctly, the weights are not modified. If a pattern is misclas-
sified, one of the following rules is applied: 
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depending on whether  belongs to the negative or the posi-
tive class [10]. N indicates the update iteration level.  
For continuous units and supervised learning both rules can be 
combined into the Widrow-Hoff delta rule  
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where delta is the error. Here, we use the following notation: 
wji is a weight for the connection from neuron i on the input 
side to neuron j on the output side.  

In the backpropagation algorithm δ’ is used rather than δ, 
where δ’ = (yj – xj).f’(xj). In case	 just	δ	 is	used, this is also 
equivalent to a backpropagation rule where a different cost 
function than the least-squares error is applied, the bi-level 
entropic error function described by Baum [19,20]: 
 

         


 yxyxyxC 1log1log, . 

B.  Stacked (recursive) symmetric auto-associator 

A stacked auto-associator with symmetric weights is shown 
in the left hand side of the figure below. In the unfolded recur-
sive auto-encoder with shared weights the weights are not 
shown. For symmetric weights and three recursions in the 
auto-encoder the Widrow-Hoff delta rule with a bi-level en-
tropic error function and three recursions the learning rule is 
shown below. 

 

 
Figure 2. Recursive auto-associator with cross-entropic cost func-
tion, symmetric weights, weight sharing and delta rule through time 
approach with a 3-step example. 
 

Note that we used the notation as explained in the right 
hand-side of Fig. 2, where the auto-encoder with three recur-
sions is unfolded. We now use symmetric weights (i.e., only 
the weights of the second layer in the auto-encoder are 
trained, the weights in the first layer are just copied, using the 
weight symmetry property). Note also that we use weight 
sharing, which explains why the respective weight updates 
contain the factor 1/3. 
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C. Stacking several recursive symmetric auto-associators 

Fig. 3 expands to concept of Fig. 2 to an indefinite level of 
K recursions. 
 

 
Figure 3. Recursive auto-associator with cross-entropy cost function, 
symmetric weights, weight sharing and delta rule through time ap-
proach (general  K steps). 
 

The learning formula can now be approximated as shown 
below. An explanation of the bracket notation is now in order. 
The bracket notation shows that all the patterns need to be 
applied. Note that we assumed in the notation a more or less 
convergent behavior from one recursive auto-associator to the 
next layer. 
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D. The Generalized Hebb rule GH-N for deep belief auto-
encoders 

In short, the Generalized Hebb rule for updating the weight wji 

can be written as: 
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Assuming that we are near a converging behavior for the 

output of the hidden layer, this rule can be approximated by 
the well-known Contrastive Divergence rule for continuous 
(non-stochastic) units: 

 
        K

i
K

jij
KCD

ji hyhxw   11 . 

IV. PRELIMINARY RESULTS 

 We will illustrate this procedure on the Italian olive oil 
data [11-12]. In this case there are 572 olive oils (Fig. 4) from 
different regions in Italy, described by 8 different fatty acids. 

 

 
Figure 4. Presentation of 572 Italian olive oils. The olive oils are 
described by measures for 8 different fatty acids. Not that the 9 clas-
ses of olive oils are not balanced. 

 
Fig. 5 shows several deep belief network results for the Ital-

ian olive oil data. Fig. 5a is equivalent to a principal compo-
nent projection on the first two principal components, while 
5b – 5c are results from a backpropagation algorithm for deep 
belief networks for different network structures. Even though 
in this particular case the results were obtained from applying 
the backpropagation algorithm without recursion, the GH-1 
results are of a similar nature and also show a much clearer 
separation than the principal components. Note that the north-
ern and southern Italian olive oils become more clearly sepa-
rated the deeper the network is. 

 

 
 

Figure 5. Projections in the bottleneck layer of 572 Italian olive oil 
data for various deep belief neural network structures. The olive oils 
become the more clearly separated, the deeper the network structure 
is (cf. [21]). 
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V. CONCLUSION 

This paper introduced a novel Generalized Hebb rule (GH-
N) as an alternate to Hinton’s Contrastive Divergence rule 
(CD-N) for training deep belief networks. While both rules 
have many similarities, the emphasis of this paper is on a sim-
ple derivation from basic principles. 

In our future work we will investigate the theoretical behav-
ior and the actual performance of the novel GH-N technique 
in much more detail. 
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