

Abstract— The purpose of this article is to show a novel learning

rule derived from the Hebb rule, for the training of recursive deep
belief networks. The derivation is de novo, elegant, and similar to
Hinton’s Contrastive Divergence CD-N, where N is the number of
recursions (e.g., 1 in a traditional neural multi-layered perceptron).
This rule is introduced in this article as “Generalized Hebb rule”
(GH-N) for an entropic cost function for deep belief recursive learn-
ing. This rule is important because: (i) It is easy to apply, (ii) it ap-
plies to a stacked deep belief network, (iii) Hinton’s Contrastive Di-
vergence rule CD-N for continuous units is a special case of this rule,
and (iv) preliminary experimental results show that – for binary pat-
terns – a deep belief auto-associator trained with a recursive neural
network often shows a clearer separation of classes in the bottleneck
layer than trained with backpropagation or compared to principal
component analysis.

Keywords—deep belief network, Generalized Hebb rule, contras-
tive divergence, auto-associator.

I. MOTIVATION

EEP belief networks (DBN) [1-2] have rejuvenated inter-
est in artificial neural networks, but are still hard to grasp

for novices in artificial neural networks. DBN are basically a
stacking of layers of neurons and can be trained layer by layer
using Restricted Boltzmann Machines (RBM) [3-6]. The pur-
pose of this article is to introduce and derive a novel training
rule, the Generalized Hebb rule (GH-N), for recursive deep
belief stacked auto-associators, which can also be applied to
deep belief networks. The resulting training rule has a strong
similarity with Hinton’s Contrastive Divergence rule (CD-N)
[6-8] but applies directly to continuous units [16] as well, and
does not need the Boltzmann type of “stochasticity” to inter-
pret the firing of a neuron. This rule is derived de novo, start-
ing from the Hebb rule, and applies to a recursive single layer
of a stacked auto-associator. Preliminary tests using the Italian
olive oil data [11-12] show that the bottleneck neuron outputs
of a deep belief recursive stacked auto-associator for binary

This work was supported in part by the German Federal Ministry of Educa-

tion and Research under Grant 03EK3536A (PrIME project).
M. J. Embrechts is with CardioMag Imaging, Inc., 13 British American

Boulevard, Latham, NY 12110, U.S.A. (mark.embrechts@gmail.com).
 B. Sick is with the University of Kassel, Germany, Electrical Engineering

and Computer Science Department, Intelligent Embedded Systems Lab, Wil-
helmshoeher Allee 71-73, 34121 Kassel, Germany (bsick@uni-kassel.de).

and multi-class classification patterns show a clearer separa-
tion on the test data than a deep belief network trained with
backpropagation based on LeCun’s Efficient BackProp [9-10].

This article is organized as follows: Section II shows an in-
tuitive derivation of the GH-N algorithm; Section III address-
es how this rule can be implemented for a stacked auto-
associator; Section IV discusses preliminary experiments; and
Section V summarizes the key findings and gives an outlook
to future work.

II. DEEP BELIEF AUTO-ASSOCIATIVE NEURAL

NETWORKS

A deep belief auto-associative neural network is an auto-
associator [13-15] with many layers, usually with symmetric
weights, and trained with a deep belief method. An auto-
associator can be regarded as an artificial neural network,
where the output values (i.e., the target values) are exactly the
same as the input values. Such an auto-associator has many
layers of neurons and a bottleneck layer.

Figure 1. Example of a deep auto-associator where the target outputs
are the same as the inputs. Except for the input layer, all other ele-
ments represented by a circle are artificial neurons. It can be shown
that the weights are symmetric. [21]

The auto-associator depicted in Fig. 1 has a symmetric

structure and in this case, also symmetric weights. Usually the
bottleneck layer is often of special interest and can be used in
a similar manner as principal components and/or independent
components. Fig. 1 represents the scheme of a deep auto-
associator, where the outputs are the same as the inputs. Ex-

A Generalized Hebb (GH) rule based on
a cross-entropy error function

for deep belief recursive learning

Mark J. Embrechts and Bernhard Sick

D

New Developments in Computational Intelligence and Computer Science

ISBN: 978-1-61804-286-6 21

cept for the input layer, all other elements represented by a
circle are artificial neurons (i.e., first computing a weighted
sum of the inputs, and then applying a nonlinear activation
function: typically a sigmoid or a hyperbolic tangent func-
tion).

III. DERIVATION OF THE GENERALIZED HEBB RULE

It is in principle possible to train an auto-associative net-
work via the backpropagation algorithm [17], and a deep auto-
associative network via Efficient BackProp [9-10]. However,
a stepwise building up of a deep belief auto-associative net-
work [10] can easier avoid that neurons get into saturation and
possibly reduce the training time, too. A stepwise deep belief
auto-associator can be trained – layer by layer – by Hinton’s
Contrastive Divergence rule CD-N [7-8], or by our new Gen-
eralized Hebb rule, GH-N.

The derivation of the Generalized Hebb rule will proceed as
follows: (i) First we will derive the delta rule as an extension
of the Hebb rule; (ii) using this rule we will derive the training
rule for a single layer of a symmetric recursive auto-
associator; (iii) then we will derive the training rule of a
stacked symmetric auto-associator. A comparison of the GH-
N rule with Hinton’s CD-N will then be made.

A. A de novo derivation of the Widrow-Hoff Delta rule
from Hebb’s rule

The Widrow-Hoff Delta rule can be considered as an exten-
sion of Hebb’s rule, which states: “When an axon of a cell A is
near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficien-
cy, as one of the cells firing B, is increased.” [10, 18].

The above rule is a “carrot rule”: i.e., good behavior gets
rewarded. We can extend this to “a carrot and a stick” rule:
i.e., good behavior gets rewarded and bad behavior gets pun-
ished.

Rosenblatt’s single-layer Perceptron rule for binary patterns
can be derived from that principle and written more elegantly
for polar (i.e., [-1,1]) units. In this case, the output of a neural
network is the weighted sum of the inputs (modified by a bias
b) according to:

output w
i

i 1

m

 x
i
b .

Patterns are shown one-at-a-time. If a pattern is classified
correctly, the weights are not modified. If a pattern is misclas-
sified, one of the following rules is applied:

 NNNN

NNNN

xww

xww

1

1

,

depending on whether belongs to the negative or the posi-
tive class [10]. N indicates the update iteration level.
For continuous units and supervised learning both rules can be
combined into the Widrow-Hoff delta rule

w ji

N 1 w ji

N j

xi

,

where delta is the error. Here, we use the following notation:
wji is a weight for the connection from neuron i on the input
side to neuron j on the output side.

In the backpropagation algorithm δ’ is used rather than δ,
where δ’ = (yj – xj).f’(xj). In case	 just	δ	 is	used, this is also
equivalent to a backpropagation rule where a different cost
function than the least-squares error is applied, the bi-level
entropic error function described by Baum [19,20]:

 yxyxyxC 1log1log, .

B. Stacked (recursive) symmetric auto-associator

A stacked auto-associator with symmetric weights is shown
in the left hand side of the figure below. In the unfolded recur-
sive auto-encoder with shared weights the weights are not
shown. For symmetric weights and three recursions in the
auto-encoder the Widrow-Hoff delta rule with a bi-level en-
tropic error function and three recursions the learning rule is
shown below.

Figure 2. Recursive auto-associator with cross-entropic cost func-
tion, symmetric weights, weight sharing and delta rule through time
approach with a 3-step example.

Note that we used the notation as explained in the right
hand-side of Fig. 2, where the auto-encoder with three recur-
sions is unfolded. We now use symmetric weights (i.e., only
the weights of the second layer in the auto-encoder are
trained, the weights in the first layer are just copied, using the
weight symmetry property). Note also that we use weight
sharing, which explains why the respective weight updates
contain the factor 1/3.

 3311

3323312211

333322211

333222111

'

3

3

3

ijijji

jijjjjjjjiji

jjijjijjiji

jjijjijjiji

hyhxw

yhhhxhhxxhw

yxhxxhxxhw

yxhyxhyxhw

New Developments in Computational Intelligence and Computer Science

ISBN: 978-1-61804-286-6 22

C. Stacking several recursive symmetric auto-associators

Fig. 3 expands to concept of Fig. 2 to an indefinite level of
K recursions.

Figure 3. Recursive auto-associator with cross-entropy cost function,
symmetric weights, weight sharing and delta rule through time ap-
proach (general K steps).

The learning formula can now be approximated as shown
below. An explanation of the bracket notation is now in order.
The bracket notation shows that all the patterns need to be
applied. Note that we assumed in the notation a more or less
convergent behavior from one recursive auto-associator to the
next layer.

w
ji

K
h

i

1 x
j

1 y
j

1

 h

i

2 x
j

2 y
j

2

 ... h

i

K x
j

K y
j

K

w
ji

K
h

i

1 x
j

1 x
j

2

 h

i

2 x
j

2 x
j

3

 ... h

i

3 x
j

K y
j

K

w
ji

K
h

i

1 x
j

1 x
j

2 h
j

2 h
j

1

 ... x

j

K h
j

K h
j

K 1

 h

i

K y
j

K

w
ji
 ' x

j

1 h
i

1 y
j

K h
i

K

w ji ' x j

1 hi

1 y j

K hi

K

D. The Generalized Hebb rule GH-N for deep belief auto-
encoders

In short, the Generalized Hebb rule for updating the weight wji

can be written as:

K
i

K
j

K

k

k
j

k
j

k
jij

KGH
ji

hyhhxhx

w

1

2

111

Assuming that we are near a converging behavior for the

output of the hidden layer, this rule can be approximated by
the well-known Contrastive Divergence rule for continuous
(non-stochastic) units:

 K

i
K

jij
KCD

ji hyhxw 11 .

IV. PRELIMINARY RESULTS

 We will illustrate this procedure on the Italian olive oil
data [11-12]. In this case there are 572 olive oils (Fig. 4) from
different regions in Italy, described by 8 different fatty acids.

Figure 4. Presentation of 572 Italian olive oils. The olive oils are
described by measures for 8 different fatty acids. Not that the 9 clas-
ses of olive oils are not balanced.

Fig. 5 shows several deep belief network results for the Ital-

ian olive oil data. Fig. 5a is equivalent to a principal compo-
nent projection on the first two principal components, while
5b – 5c are results from a backpropagation algorithm for deep
belief networks for different network structures. Even though
in this particular case the results were obtained from applying
the backpropagation algorithm without recursion, the GH-1
results are of a similar nature and also show a much clearer
separation than the principal components. Note that the north-
ern and southern Italian olive oils become more clearly sepa-
rated the deeper the network is.

Figure 5. Projections in the bottleneck layer of 572 Italian olive oil
data for various deep belief neural network structures. The olive oils
become the more clearly separated, the deeper the network structure
is (cf. [21]).

New Developments in Computational Intelligence and Computer Science

ISBN: 978-1-61804-286-6 23

V. CONCLUSION

This paper introduced a novel Generalized Hebb rule (GH-
N) as an alternate to Hinton’s Contrastive Divergence rule
(CD-N) for training deep belief networks. While both rules
have many similarities, the emphasis of this paper is on a sim-
ple derivation from basic principles.

In our future work we will investigate the theoretical behav-
ior and the actual performance of the novel GH-N technique
in much more detail.

REFERENCES
[1] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lam-

blin [2009] Exploring strategies for training deep neural networks. Jour-
nal of Machine Learning Research, Vol. 1, pp. 1-40.

[2] Yoshua Bengio [2012] Learning Deep Architectures for AI. Technical
Report 1312, University of Monreal, Canada.

[3] Geoffrey E. Hinton, and Terrence J. Tejnowski [1986] Learning and re-
learning in Boltzmann machines. In Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition. MIT Press. Cambridge,
MA, Vol. 1, pp. 283-317.

[4] Hsin Chen and Alan. F. Murray [2003] Continuous restricted Boltzmann
machine with an implementable training algorithm. IEE Proceedings of
Visual Image and Signal Processing, Vol. 150(3), pp. 153-158.

[5] Benjamin M. Marlin, Kevin Swersky, Bo Chen, and Nondo de Freitas
[2010] Inductive principles for restrictive Boltzmann Machine Learning.
Proceedings of the 13th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), Chia Laguna Resort, Sardinia, Italy.
Volume 9 of JMLR: W&CP 9, pp. 509-516.

[6] Geoffrey Hinton [2010] A practical guide to training Restricted Boltz-
mann Machines, Version 1. University of Toronto Technical Report,
UTML TR 2010-003 [Augst2, 2010].

[7] Ilya Sutskever and Tijmen Tieleman [2010] On the convergence proper-
ties of Contrastive Divergence. Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS). May 13-
15, Sardinia, Italy.

[8] Geoffrey Hinton [2002] Training products of experts by minimizing
contrastive divergence. Neural Computation, Vol. 14(8), pp. 1771-1800.

[9] Yan LeCun, L. Bottou, G. Orr and K. Muller [1988] Efficient BackProp.
In Orr, G. and Muller, K. (Eds.) Neural Networks: Tricks of the Trade.
Springer

[10] Simon Haykin [2009] Neural Networks and Learning Machines, Third
Edition, Pearson.

[11] Michele Forina and Carla Armanino [1981] Eigenvector projection and
simplified nonlinear mapping of fatty acid content of Italian olive oils.
Ann. Chem., Vol. 72, pp. 125-127.

[12] Jure Zapan and Johann Gasteiger [1999] Neural Networks in Chemistry
and Drug Design (2nd Edition). Wiley –VCH.

[13] Hervé Bourlard and Yves Kamp, Auto-association by multilayer percep-
trons and singular value decomposition, Biological Cybernetics, Vol. 59,
pp. 291-294, 1988.

[14] Nathalie Japkowicz, Stephen J. Hanson, and Mark A. Gluck, Nonlinear
autoassociation is not equivalent to PCA, Neural Computation, Vol. 12,
pp. 531-545, MIT, 2000.

[15] M. A. Kramer, Autoassociative neural networks, Computers and Chemi-
cal Engineering, Vol.16, pp. 313-328, Pergamon Press, 1992.

[16] Hugo LaRochelle, Benjamin Bengio, Jerôme Lourdour, and Pascal
Lamblin [2007] Exploring strategies for training deep belief networks.
Journal of Machine Learning Research, Vol. 1, pp. 1-40.

[17] Paul J. Werbos [1994] The Roots of Backpropagation. From Ordered
Derivatives to Neural Networks and Political Forecasting. New York,
NY. John Wiley & Sons, Inc.

[18] Donald O. Hebb [1949] The Organization of Behavior. New York,
Wiley and Sons.

[19] Eric B. Baum, and Frank Wilzek [1988] Supervised learning of probabil-
ity distributions by neural networks. In Neural Information Processing
Systems. Denver 1987. D. Z. Anderson, Editor, pp. 52-56.

[20] Pascal Vincent, Hugo LaRochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoinne Manzagol [2010] Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising

criterion. Journal of Machine Learning Research, Vol. 11, pp. 3371-
3408.

[21] Mark J. Embrechts, Blake Hargis, and Jonathon D. Linton, “Augmented
Efficient BackProp for Backpropagation Learning in Deep Autoassocia-
tive Neural Networks.” Proceedings of the 2010 IEEE International
Joint Conference on Neural Networks (IJCNN 2010) as part of The
World Congress on Computational Intelligence (WCCI 2010), pp. 1012-
1020, Barcelona, Spain, July 18-23, 2010.	

New Developments in Computational Intelligence and Computer Science

ISBN: 978-1-61804-286-6 24

