
 

 

  
Abstract— We introduce an efficient lossless algorithm that can 

be used for the compression of multidimensional medical images. We 
experimentally test our approach on a test set of 3-D computed 
tomography (CT) and 3-D magnetic resonance (MR) images. The 
achieved results outperform other state-of-the-art approaches. 
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I. INTRODUCTION 
ODAY medical digital imaging techniques are 
continuously evolving. The research activities in 

medical imaging focus primarily on the improvement of the 
acquisition and transmission algorithms. Thanks to the wide 
diffusion of inter-connections new services are provided to 
medical staffs: for examples, exchange of medical data among 
different entities/structures connected by networks (e.g. trough 
Internet, Clouds services, P2P networks, etc.), telemedicine, 
tele-radiology, real-time tele-consultation, PACS (Picture 
Archiving and Communication Systems), etc.. 

For all these applications one of the main disadvantages is 
related to the large amount of storage space needed to save the 
images and for the time required to transmit the data. 

These costs grow proportionally to the size of data. Future 
expectations in medical applications will further increase the 
requests for memory space and/or efficient transmission time. 

Different medical imaging methodologies produce 
multidimensional data. For instance, Computed Tomography 
(CT) and Magnetic Resonance (MR) imaging technologies 
produce three-dimensional (N=3) data. 

A 3-D CT image is acquired through X-rays. The acquisition 
process is performed via a computer. By using the computer 
we are able to obtain different cross-sectional views.  

3-D CT images are an important tool for the identification of 
normal or abnormal structures of the human body. It is 
important to emphasize that an X-ray scanner allows the 
generation of different images, by considering different angles 
around the body part which is undergo analysis. Once 
processed by the dedicated computer, the output is a collection 
of the cross-sectional images, often referred as slices. 

3-D MR images are an important source of information, in 
different medical applications and, especially, in medical 
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diagnosis (ranging from neuroimaging to oncology). MR 
images are often preferred. In fact, in the case in which, both 
CT and MR images, produce the same information, these latter 
techniques are preferred, since MR acquisitions do not use any 
ionizing radiation. From the other hand, in presence of 
subjects with cardiac pacemakers and/or metallic foreign 
bodies, MR techniques cannot be applied. 

Medical data need to be managed in an efficient and 
effective manner and data compression techniques are 
essential in order to solve the transmission and storage 
problems.  

For medical images, lossless compression is often required 
and, in many situations, indispensable. In fact, these data are 
precious or often obtained by means of unrepeatable medical 
exams.  

Lossy compression techniques could sometime be 
considered, but it is necessary take into account that that the 
information lost might lead to incorrect diagnosis or it could 
affect the reanalysis of data. 

In this paper, we consider lossless predictive techniques. We 
have focused on multidimensional medical image sequences 
(3-D computed tomography images, functional resonance 
magnetic images), which have considerable space memory 
requirements (many hundreds of megabytes/gigabytes per 
acquisition). 

This paper introduces a multidimensional, configurable, 
predictive structure that can be used for the compression of 
multidimensional medical images.  

The predictor we propose is scalable, adjustable, and 
adaptive and we present experimental evidences of its 
performance on multidimensional medical images: 3-D 
Computed Tomography (CT) and 3-D Magnetic Resonance 
(MR). 

This paper is organized as follows: Section 2 describes the 
predictive structure. Section 3 reports our experimental results. 
Section 4 highlights our conclusions and outlines future 
research directions. 

II. PREDICTIVE CODING FOR MULTIDIMENSIONAL IMAGES 
The predictive model we propose is based on the least 

squares optimization technique. In order to perform the 
prediction of the current sample, a prediction context, 
composed by the neighboring samples of the current 
component and one (or more) reference component(s), is used. 
The reference component(s) can be of different dimension(s), 
with respect to the current component. Therefore the 
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prediction is achieved by using a multidimensional prediction 
context.  

Without loss of generality, for the following definitions, we 
assume that the multidimensional image which we have to 
compress, has the following size: <M1, M2, …, MN-2, X, Y>, 
where X and Y are respectively the width and the height of the 
bi-dimensional components and Mf is the size of the f-th 
dimension (1 ≤ f ≤ N – 2). A specific bi-dimensional 
component can be univocally identified through a vector of N 
– 2 elements: [p1, p2, …, pN-2], where },...,2,1{ ii Mp ! . 

For example, if we consider a three-dimensional image, <Z, 
X, Y> the dataset is composed of Z components (among the 
third dimension), where each component has respectively 
width X and height Y.  

As we outlined above, our predictive model uses one or 
more reference components, which will be specified through 
the Sets of References or (References Set).  

If the current sample has coordinates (m1, m2, …, mN-2, x, y) 
(where  1 ≤ x ≤ X and 1 ≤ y ≤ Y), for each of the N – 2 
dimension, we define a references set, denoted as: 

 Ri = },...,,{ 21
i
t

ii
i
rrr , for 

! 

i"{1,2,...,N # 2} , where 
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>
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=U
N
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Such references sets are univocally set up at the beginning 
of the algorithm and are used in the prediction step. 

A generic element !ijr iR  (1 ≤ i ≤ N – 2), denotes a 

specific bi-dimensional component. We will use the following 
notation: if 0>ijr , then the denoted component is the one 

identified through the vector [m1, m2, …, mi-1, 
i
jr , mi+1, …, mN-

2], or, if 0<ijr , then the denoted component is the one 

identified through the vector [m1, m2, …, mi-1, 
i
ji rm ! , mi+1, 

…, mN-2]. 
The proposed predictive model is based on the least squares 

optimization technique. The prediction is formed by using the 
current component and all the (valid) components of the 
references sets. 

In order to refer to a sample without the use of its 
coordinates, we define an enumeration. Its main objective is 
the relative indexing among all the samples (or a subset of 
them) of the same component. In particular, by fixing a 
sample, namely the reference sample, all the other samples of 
the component will be indexed with respect to it. Therefore, in 
this manner, it is possible to address a sample by using its 
relative index. The relative indexing of the samples is used for 
the definition of the multidimensional prediction context 
involved by our predictive model.  

Let E denotes a 2-D enumeration, which has as objective 
the relative indexing of the samples in a bi-dimensional 
context, with respect to a specific reference sample. The 
fundamental requisites that the enumeration E needs to satisfy 

are that the specified reference sample has 0 as index and that 
any two samples (with different coordinates) do not have the 
same index.  

Let )()( j
s

e
j rx  (where j

j
s Rr ! ) denotes the e-th sample in 

the bi-dimensional context according to the enumeration E 
with respect to the sample with coordinate (m1, m2, …, mj-1, 
j
sr , mj+1, …, mN-2, x, y) when 0>jsr , or (m1, m2, …, mj-1, 

j
sj rm ! , mj+1, …, mN-2, x, y) when 0<jsr . 

Finally, let )(ex  denotes the e-th sample, according to the 
enumeration E, with respect to the current sample. Notice that 

)0(x denotes precisely the current sample. 
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coefficients are chosen to minimize the energy of the 
prediction error: 

! 

P = x( i) " ˆ x ( i)( )2

i=1

H

#  (2) 

H indicates the number of samples used, for the current and 
for each of the components specified in the references sets. 
Thus, H · (T + 1) + T samples are used for the prediction. 

The coefficients 0!  are obtained by using the optimal 
linear prediction method, as in [25]. 
We can rewrite the equation (2) in the form: 

 P = (C!  – X)t ! (C!  – X),  

by using matrix notation. 

The linear system is obtained, as in [25], by taking the derivate 
of the equation (2) with respect to ! , and by setting it to zero.  

(CtC) =0! (CtX). (3) 

Thus, by computing the coefficients 0! , which solve the 
linear system (3), it is possible to determinate the prediction of 
the current sample, )0(x̂ , by using equation (1).  

The prediction error  

! ")0()0( x̂xe #=  (4) 

can then be sent to an entropy encoder. 

It is important to outline that H x (T+1) + H samples are 
used to achieve the prediction. Our predictive structure 
involves only by past information: there is no need to send any 
side information to the decompression algorithm. 

The computational complexity of the prediction is related to 
the two configurable parameters: H and the Sets of 
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References. It is possible to model the multidimensional 
prediction context by specifying its wideness and the number 
of the reference components. By doing this it is possible either 
to define a prediction context which can minimize the use of 
the computational resources or to refine the accurateness of 
the prediction by using more computational resources.  

In some situations, our predictive structure can be 
ineffective. In particular, when the linear system of equations 
(3) cannot be solved because it has no solutions or infinitely 
many solutions. In such scenarios, which we referred as 
exceptions, the predictive structure is not able to perform the 
prediction. 

In presence of a sample that cannot be predicted through the 
proposed predictive structure (because an exception is 
verified), an alternative predictive structure (as for instance 
Median Predictor, etc.) shall be used. 

III. EXPERIMENTAL RESULTS 
We have tested our prediction model by implementing a 

predictive-based compression scheme, and then we have 
experimented this algorithm on two different types of 
multidimensional medical images: 3-D computed tomography 
images and 3-D magnetic resonance images. 

The algorithm predicts the current sample by using the 
previously coded samples. In this way, it is possible to have a 
consistent prediction for both the compression and the 
decompression algorithm. 

After the prediction step, the prediction error is obtained by 
the encoder as a difference between the current sample and its 
prediction.  

Finally, the prediction error can be encoded by using an 
entropy or a statistical coder. In our tests, we have used as 
error encoder: PAQ8 [10], Prediction by Partial Matching with 
Information Inheritance (PPMd or PPMII) [26].  

The algorithm uses the 2-D Linearized Median Predictor 
(2D-LMP) [21], for all the components which have no 
component references, and our multidimensional predictive 
structure, for all the other components. 

In order to define the prediction context, we need to 
enumerate the neighboring pixels of X in the current and in the 
previous bands.  

For these reasons, we define an enumeration that depends 
on a distance d, defined as: 

When more pixels have the same indices, it is possible to 
reassign the indices of these pixels in clockwise order with 
respect to X. 

To improve the readability, we used the mnemonic name of 
the dimension instead of its index for the references sets. For 
example, RZ indicates the reference set for the Z dimension. 

 
 
 
 
 
 

3.1. 3-D Computed Tomography Images  
We have performed experiments on a the test set described 

in [21], composed by four 3-D CT images, in which each 
sample is stored by using 8 bits. For the coding of prediction 
errors, which we have mapped similarly to [15], then we have 
used PAQ8 and we have managed the exceptions with the 3-D 
Differences-based Linearized Median Predictor (3D-DLMP) 
[21]. 

The following tables summarize the results we have 
obtained on the four CT images in terms of bits-per-sample 
(BPS) by using different configurations for the H parameter 
and the references set. The results are compared with other 
state-of-the-art techniques. 

Our approach outperforms, in average, all the other state-of-
the-art techniques, as it is possible to see from Table 5. 

 
 
 

Methods / Images 
                Dimensions 

CT_skull 
<192, 256, 256> 

H=32, RZ={-1, -2, -3} 1.4836 
H=16, RZ={-1, -2, -3} 1.5309 
H=8, RZ={-1, -2, -3} 1.6258 
H=32, RZ={-1, -2} 1.5393 
H=16, RZ={-1, -2} 1.5688 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.6196 
3D-ESCOT [28] 1.8350 

MILC [21] 2.0306 
AT-SPIHT [6]  1.9180 

3D-CB-EZW [3] 2.0095 
DPCM+PPMd [1] 2.1190 

3D-SPIHT [28] 1.9750 
3D-EZW [3] 2.2251 
JPEG-LS [4] 2.8460 

Table 1: Experimental results obtained on CT  skull  
 

Methods / Images 
                Dimensions 

CT_wrist 
<176, 256, 256> 

H=32, RZ={-1, -2, -3} 0.8979 
H=16, RZ={-1, -2, -3} 0.9290 
H=8, RZ={-1, -2, -3} 1.0042 
H=32, RZ={-1, -2} 0.9527 
H=16, RZ={-1, -2} 0.9737 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.0110 
3D-ESCOT [28] 1.0570 

MILC [21] 1.0666 
AT-SPIHT [6]  1.1150 

3D-CB-EZW [3] 1.1393 
DPCM+PPMd [1] 1.0290 

3D-SPIHT [28] 1.1720 
3D-EZW [3] 1.2828 
JPEG-LS [4] 1.6531 

Table 2: Experimental results obtained on CT wrist  
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Methods / Images 
                Dimensions 

CT_carotid 
<64, 256, 256> 

H=32, RZ={-1, -2, -3} 1.2783 
H=16, RZ={-1, -2, -3} 1.2976 
H=8, RZ={-1, -2, -3} 1.3421 
H=32, RZ={-1, -2} 1.3363 
H=16, RZ={-1, -2} 1.3448 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.3496 
3D-ESCOT [28] 1.3470 

MILC [21] 1.3584 
AT-SPIHT [6]  1.4790 

3D-CB-EZW [3] 1.3930 
DPCM+PPMd [1] 1.4710 

3D-SPIHT [28] 1.4340 
3D-EZW [3] 1.5069 
JPEG-LS [4] 1.7388 

Table 3: Experimental results obtained on CT carotid 
 

Methods / Images 
                Dimensions 

CT_aperts 
<96, 256, 256> 

H=32, RZ={-1, -2, -3} 0.7283 
H=16, RZ={-1, -2, -3} 0.7350 
H=8, RZ={-1, -2, -3} 0.7587 
H=32, RZ={-1, -2} 0.7265 
H=16, RZ={-1, -2} 0.7271 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 0.7349 
3D-ESCOT [28] 0.8580 

MILC [21] 0.8190 
AT-SPIHT [6]  0.9090 

3D-CB-EZW [3] 0.8923 
DPCM+PPMd [1] 0.8670 

3D-SPIHT [28] 0.9980 
3D-EZW [3] 1.0024 
JPEG-LS [4] 1.0637 

Table 4: Experimental results obtained on CT aperts 
 

Methods / Images 
                Dimensions Average 

H=32, RZ={-1, -2, -3} 1.0970 
H=16, RZ={-1, -2, -3} 1.1231 
H=8, RZ={-1, -2, -3} 1.1827 
H=32, RZ={-1, -2} 1.1387 
H=16, RZ={-1, -2} 1.1536 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.1788 
3D-ESCOT [28] 1.2743 

MILC [21] 1.3187 
AT-SPIHT [6]  1.3553 

3D-CB-EZW [3] 1.3585 
DPCM+PPMd [1] 1.3715 

3D-SPIHT [28] 1.3948 
3D-EZW [3] 1.5043 
JPEG-LS [4] 1.8254 

Table 5: Average experimental results obtained on the four 
CT images. 

 

3.2 3-D Magnetic Resonance Images  

We have performed similar experiments also for the four 
MR images commonly used for testing in the literature. 

As for the CT images the following tables show that our 
approach outperform the current state of the art algorithms. 

 
Methods / Images 
                Dimensions 

MR_liver_t1 
<48, 256, 256> 

H=32, RZ={-1, -2, -3} 1.8511 
H=16, RZ={-1, -2, -3} 1.8850 
H=8, RZ={-1, -2, -3} 1.9894 
H=32, RZ={-1, -2} 1.8996 
H=16, RZ={-1, -2} 1.9089 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.9471 
3D-ESCOT 2.0760 

MILC 2.1968 
3D-SPIHT 2.2480 

3D-CB-EZW 2.2076 
DPCM+PPMd 2.3900 

3D-EZW 2.3743 
JPEG-LS 3.1582 

Table 6: Experimental results obtained on MR liver_t1 
 

Methods / Images 
                Dimensions 

MR_liver_t2e1 
<48, 256, 256> 

H=32, RZ={-1, -2, -3} 1.2539 
H=16, RZ={-1, -2, -3} 1.2783 
H=8, RZ={-1, -2, -3} 1.3360 
H=32, RZ={-1, -2} 1.3101 
H=16, RZ={-1, -2} 1.3232 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.3482 
3D-ESCOT 1.5100 

MILC 1.7590 
3D-SPIHT 1.6700 

3D-CB-EZW 1.6591 
DPCM+PPMd 2.0250 

3D-EZW 1.8085 
JPEG-LS 2.3692 

Table 7: Experimental results obtained on MR liver_t2e1 
 

Methods / Images 
                Dimensions 

MR_sag_head 
<48, 256, 256> 

H=32, RZ={-1, -2, -3} 1.4890 
H=16, RZ={-1, -2, -3} 1.5311 
H=8, RZ={-1, -2, -3} 1.6020 
H=32, RZ={-1, -2} 1.5477 
H=16, RZ={-1, -2} 1.5737 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.6094 
3D-ESCOT 1.9370 

MILC 2.0975 
3D-SPIHT 2.0710 

3D-CB-EZW 2.2846 
DPCM+PPMd 2.1270 

3D-EZW 2.3883 
JPEG-LS 2.5567 

Table 8: Experimental results obtained on MR sag_head 
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Methods / Images 
                Dimensions 

MR_ped_chest 
<64, 256, 256> 

H=32, RZ={-1, -2, -3} 1.2920 
H=16, RZ={-1, -2, -3} 1.3498 
H=8, RZ={-1, -2, -3} 1.4669 
H=32, RZ={-1, -2} 1.3740 
H=16, RZ={-1, -2} 1.4053 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.4694 
3D-ESCOT 1.6180 

MILC 1.6556 
3D-SPIHT 1.7420 

3D-CB-EZW 1.8705 
DPCM+PPMd 1.6890 

3D-EZW 2.0499 
JPEG-LS 2.9282 

Table 9: Experimental results obtained on MR ped_chest 
 

Methods / Images 
                Dimensions Average 

H=32, RZ={-1, -2, -3} 1.4715 
H=16, RZ={-1, -2, -3} 1.5111 
H=8, RZ={-1, -2, -3} 1.5986 
H=32, RZ={-1, -2} 1.5329 
H=16, RZ={-1, -2} 1.5528 

Proposed 
\\ 

Parameters 

H=8, RZ={-1, -2} 1.5935 
3D-ESCOT 1.7853 

MILC 1.9272 
3D-SPIHT 1.9328 

3D-CB-EZW 2.0055 
DPCM+PPMd 2.0578 

3D-EZW 2.1553 
JPEG-LS 2.7531 

Table 10: Average experimental results obtained on the four 
MR images. 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a Multidimensional 

Predictive Model that can be used for lossless compression of 
multidimensional medical image. We have experimentally 
tested our method on 3-D magnetic resonance (MR) and 3-D 
computed tomography (CT) images. 

Future work will include the testing of our approach on 4-D 
and 5-D functional Magnetic Resonance Imaging (fMRI) data, 
the usage of the model in a lossy codec, and deeper 
experimentation on lossless compression by using other N-D 
data (eg. 4-D ultrasound images, etc.). 
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