

Abstract- The study provides the model-driven approach for

implementation of software configuration management. Provided
approach uses technologies of Semantic Web to improve
transformations between different models. Software configuration
management is a discipline that controls software evolution process
and helps to make valid builds of intelligent web-based systems.
Nowadays, high level of agility requires to setup process of software
configuration management as soon as possible. Provided approach
helps to decrease process implementation time by reuse of existing
source code for new processes.

Keywords— Software Configuration Management, Model-
Driven Approach, Semantic Web.

I. INTRODUCTION
OFTWARE CONFIGURATION MANAGEMENT (SCM) is the

discipline that controls the evolution of large and complex
software systems. SCM tools and systems vary and range from
small tools such as RCS (Revision Control System) over
medium-sized systems such as Subversion to large-scale
industrial systems such as Adele ClearCase.

Nowadays software configuration management is not only
challenge to choose optimal system for source code
management. Complex software development projects with
multiple mutually dependent components and high level of
agility require two important things: firstly, in context of
software configuration management, many tasks should be
implemented such as source code manage managements,
version control, build and deploy management, accounting of
statuses of items, etc.; secondly, the mentioned implementation
should be ready as soon as possible because agile
methodologies require frequent releases of new versions of
product.

Some of the most common problems in the area of software
configuration management are the following:

• Use of multiple different configuration
management tasks in a single solution. For
example, use of a script that performs source code
management, build management, and installation

management tasks. Such multifunctionality makes
this script specific for one particular project and
makes it impossible to reuse it without some
modifications.

• Lack of approaches and recommendations on how
to design reuse-oriented solutions for configuration
management that could be used in the other
projects without additional customizations to save
up time and resources.

Reusable configuration management solutions should be
parameterized and structured by different tasks. It means that,
for example, solutions on how to build the product from the
source code should be independent from the other tasks like
source code management or installation management. The
mentioned product build solution should receive a set of
parameters and return an executable or an error message. It
should not contain any details or hardcoded information like
the location of the source code or the address of the server
where the executable should be installed.

The paper describes a new model-based approach for
implementation of software configuration management. Unlike
the other approaches, it is not oriented to any particular tool or
script that “should solve any problem” but describes the steps
how to increase the reuse of the existing solutions. This
approach is independent from the tools being used for tasks
like source code management, continuous integration, bug
tracking, build management, etc. as it only defines a way to
make a solution reusable.

Authors also investigate how the Semantic Web
technologies like OWL and SPARQL could be used to
improve this approach and to perform transformations between
different levels of models.

The paper is structured as follows: the second section
describes the work done by other researchers in the fields of
Software Configuration Management and Semantic Web
technologies. The third section covers the use of the Semantic
Web technologies (like RDF, OWL, etc.) in the model-driven
Software Configuration Management and potential advantages
they could bring. The fourth section contains the detailed
description of the proposed model-driven EAF methodology.
Fifth section is concerned with how the Semantic Web

Semantic Web Technologies and Model-Driven
Approach for the Development and

Configuration Management of Intelligent Web-
Based Systems

Arturs Bartusevics, Andrejs Lesovskis, Leonids Novickis

S

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 32

technologies could be used to improve EAF methodology. The
last section is related to the results of the experimental
assessment of the EAF methodology in 5 different software
projects.

II. RELATED WORKS
Long term expert in software build management Tracy

Ragan in her paper [1] writes that solutions for software
configuration management should be model-driven, not static
script-oriented as it was normal in 20th century. That paper
outlined some of the reasons why model-driven approaches
could be better for modern software configuration
management processes.

Firstly, a lot of software products are supported by cloud
computing technologies where the things like server names,
absolute paths, and other information required for static scripts
and specific platforms are unknown. In this case, model-driven
approach could provide a way from planning to
implementation of software configuration management in
virtual environments [1]. There are many tools can configure
builds and deployments for complex products within a few
hours without writing huge and complex static scripts for
particular platforms [2].

Secondly, model-driven approach helps to reduce the human
factor during selecting solutions for particular task of software
configuration management. Usually traditional implementation
of software configuration management contains two major
steps: process planning and development of static scripts for
the planned process. There are risks related to writing source
code for scripts, because sometimes executable source code is
not in consistence with initial planning. Model-driven
approach could reduce these risks by generating source code
for configuration management automatically [1][2][4].

Unfortunately, modern tools mentioned in [2] are oriented
only for one task of software configuration management: build
and deployment management. But it is not possible to prepare
a valid build with any tool without correct source code
management [3][4][5]. Additionally, tools that mentioned in
paper [2] help to improve builds and deployments, but can not
fix successful use cases to reuse them in new projects. These
tools require the acquisition of additional knowledge and
financial investments. However, sometimes enterprises already
have tools for software configuration management that they
trust and rely on. Because of that these companies are looking
for approaches and methodologies that could increase reuse of
the existing solutions.

There are some novel approaches related to implementation
of software configuration management using models. The
study [3] provides semantic integration of different tools.
Ontologies are used to create concept of each tool using in
software configuration management process.

The paper [4] presents software configuration management
model based on ITIL framework. The model is theoretical and
no any suggestions about increasing reuse of existing solutions
are given. The main advantage of approach [4] is based on

well-known framework that works in real world, but lack of
suggestions about tools and approaches that could be used for
implementation makes provided approach perspective in
theory but not trusted in practice.

Approach described in work [5] provides a method for
selecting optimal software configuration management tool by
using artificial intelligence methods. The method seems very
useful from the theoretical point of view. Empirical evidence
provided in [5] shows that method could really improve source
code management and version control in particular software
development project. As a main disadvantage is a fact, that
theory of fuzzy logic is relative difficult for understanding.

In context of software configuration management, very
important task is a management of source code and version
control. The study [6] describes the approach related to
improvement of version control. Nowadays, majority of
version control tools supports management of source code.
However, there is a lack of approaches that provide version
control for model-driven software development. Approach
presented in work [6] describes a model of universal version
control system that could be used for code and model
management.

The current paper provides approach for implementation of
software configuration management process. Provided
approach is an improved version of the researches described in
works [7][8]. Practical assessment of the first version of the
approach outlined some disadvantages. In the improved
version of approach described in current paper, all useful ideas
will be taken from studies [3][4][5][6] and conclusions from
the practical experiments of approaches [7][8].

Unlike other approaches, methodology described in this
paper:

• Does not impose to use any specific tools for
software configuration management process,

• Increase reuse of existing solutions for software
configuration management,

• Defines full cycle of models related to step-by-step
implementation of software configuration
management using existing solutions,

• Transformations between models are improved with
semantic web technologies.

• Has an abstract views that allows to design new
implementation of provided approach.

This study is not the first attempt to introduce the Semantic
Web technologies into software configuration management. In
a related study, Falbo [13] proposed an SCM ontology that
was used to establish a common conceptualization about the
SCM domain in order to support SCM tools integration.

III. SEMANTIC WEB TECHNOLOGIES AND MODEL-DRIVEN
SOFTWARE CONFIGURATION MANAGEMENT

The Semantic Web is an extension of the current Web in
which information is given well-defined meaning, better
enabling computers and people to work in cooperation [10]. It
is based on the idea of having data on the Web defined and

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 33

linked in a way that it can be used by machines not just for
display purposes, but for automation, integration, and reuse of
data across various applications.

The Semantic Web is composed of a set of technologies,
and it can be defined as a symbiosis of Web technologies and
knowledge representation. Semantic Web technologies can be
used in a variety of application areas; for example: in data
integration, whereby data in various locations and various
formats can be integrated in one, seamless application; in
cataloging for describing the content and content relationships
available at a particular Web site, page, or digital library; by
intelligent software agents to facilitate knowledge sharing and
exchange; in content rating; in describing collections of pages
that represent a single logical “document”; for describing
intellectual property rights of Web pages, and in many others
[11].

Authors think that the Semantic Web technologies can be
efficiently utilized in the software configuration management
to ease and improve efficiency of processes like data
integration and reuse, transformation, and searching.

Ontologies serve as a key enabling technology for the
semantic software configuration management. Ontologies are
developed to provide a machine-processable semantics of
information sources that can be communicated between
different agents (software and humans). Ontology is an explicit
formal specification of a shared conceptualization.
'Conceptualization' refers to an abstract model of some
phenomenon in the world which identifies the relevant
concepts of that phenomenon. 'Explicit' means that the type of
concepts used and the constraints on their use are explicitly
defined. 'Formal' refers to the fact that the ontology should be
machine readable. Hereby different degrees of formality are
possible [12].

The type of knowledge used to describe SCM field is very
hard to represent formally using traditional approaches.
Organizations use different proprietary solutions that make it
much harder to reuse encoded software configuration
information across different software projects. The lack of a
standard for compatible encoding of configuration data is one
of the major SCM problems. Web Ontology Language (OWL),
a family of knowledge representation languages for ontology
authoring and one of the key Semantic Web building blocks,
provides developers with features and opportunities that can be
used to solve this problem.

OWL is an ontology language designed for use in the
Semantic Web and is the language recommended by the W3C
for this use. OWL DL and OWL Lite semantics are based on
Description Logic (DL). OWL 2 exhibits the desirable features
of Description Logics, including useful expressive power,
formal syntax and semantics, decidability, and practical
reasoning systems, resulting in OWL 2 providing effective
ontology representation facilities.

Ontologies provide software developers with a standard and
powerful way of representing knowledge not only the
configuration management tasks but about software

engineering project in general.
Besides the general benefits of formal specification that can

be gained by encoding the software configuration knowledge,
the main advantage of using OWL ontologies is an ability to
provide a fully automated procedure to detect inconsistencies
in the configuration via standard reasoning engines (for
example, Pellet or RacerPro). The reasoning service can not
only determine, if a certain configuration is valid or not, but it
also provides justifications for such decision (i.e. it lists the
reasoning steps that lead to this decision).

One of the key benefits of the use of the Semantic Web
technologies is that they provide means to reason and query
over semantically annotated metadata from the software
configuration models. Reasoning provides an opportunity to
perform an inference.

Inference is a process to infer a new relationship from the
existing resources and some addition information in form of
set of rules. Inference base technique is also used to check data
inconsistency at time of data integration. The inference engine
can be described as a form of finite state machine with a cycle
consisting of three action states: match rules, select rules, and
execute rules [12]. The use of DL reasoners allows OWL
ontology applications to answer complex queries and to
provide guarantees about the correctness of the result. This is
obviously of crucial importance when ontologies are used in
safety critical applications.

Some of the features that can be provided by a standard
Description Logic reasoner are the following [9]:

• Consistency checking – ensures that an ontology
does not contain any contradictory facts;

• Concept satisfiability - determines whether it is
possible for a class to have any instances;

• Classification - computes the subclass relations
between every named class to create the complete
class hierarchy;

• Realization - computes the direct types for each of
the individuals.

The reasoning is especially important when developers are
dealing with different versions of software application to
support various machines and/or operating systems and in the
scenarios where the constantly changing requirements are
different for different target groups. For example, it is possible
to detect that individual doesn’t belong to a certain class or
doesn’t satisfy constraints and/or restrictions of available
configurations.

Another important aspect of using OWL ontologies is that
every document or resource can be uniquely identified and
referenced using Universal Resource Identifier (URI). This
makes tasks like configuration management planning much
easier

IV. EAF METHODOLOGY FOR IMPLEMENTATION OF SOFTWARE
CONFIGURATION MANAGEMENT PROCESS

Methodology provided in this section is an improved
version of works [7][8] and is related to decreasing

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 34

implementation time of software configuration management by
reuse of existing solutions. The main principles of novel
methodology are the following:

• Ready implementation of software configuration
management process is a source code that could be
executable only from particular software
configuration management server. It could be one
of well-known continuous integration servers like
Bamboo, Jenkins, CruiseControl etc.

• The main result of EAF methodology is generated
source code for software configuration
management process.

• Generation of the source code for software
configuration management is automated process
that uses models and existing executable units of
source code.

The name of provided methodology (Environment -> Action
-> Framework) provides the main steps for generating source
code for software configuration management:

• Defines all environments in particular software
development project. Environments in context of
EAF methodologies is a set of servers,
applications, virtual machines needed to use
software. For example, web application needs
database server and application server to make this
application ready to use. Usually, the scope of
particular environment is particular process in
software development project. For example, DEV
environment for development, TEST for testing
etc. During the first step of EAF methodology, all
environment in project should be defined and all

transfers of changes between these environments.
The mentioned step is formalized by Environment
Model, described in [7].

• Defines all actions needed to apply Environment
Model from the previous step. In context of this
work, actions are tasks of general software
configuration management process. For example,
to move software changes from DEV environment
to TEST environment, the following actions could
be defined:

o PREPARE_BASELINE: merge changes
of source code from development to test
branch;

o BUILD: run builds scripts or tools to
make executable from prepared source
code;

o INSTALL: deploy ready executables to
applications servers.

In the previous versions of provided methodology
[7][8], there are two models: Environment Model
and Platform independent Action Model.
Improved EAF methodology contains merged
variant of mentioned models, called PIEM
(Platform Independent Environment Model). This
model also contains all environments and flows of
changes between them, but additionally,
configuration manager could define actions
needed to apply transfers of changes. Example of
PIEM model is given in Fig.1.

Fig. 1 Example of PIEM model

• Choose the Framework for each action defined in

PIEM model. The framework in context of this
paper is a set of executable units of source code for
implementation of particular action form PIEM
model. During this step, configuration manager
chooses implementation for each PIEM action

from Solutions Database. Solution Database is a
structure there all solutions for configuration
management in particular enterprise are stored. The
structure of Solution Database is improved version
that have been provided in [7][8]. The structure of
Solution Database provided in Fig. 2.

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 35

Fig. 2 Solution Database

Solution database provided in Fig. 2 illustrates principles of

framework with Subversion example. PIEM model shows
actions of configuration management but after actions are
defined, configuration manager have to choose a framework
for each action. For example, for action “prepareBaseline()”
Subversion framework could be selected. Configuration
manager should choose platform for implementation and
framework. After framework for particular action is defined,

Solution Database provides notes about variables that should
be defined to activate framework. Each framework has a set of
functions that could be called from other scripts and tools. So,
during implementation of software configuration management
in particular project, only project specific parts should be
developed. Significant part of the source code could be taken
from framework. Fig. 3 contains an overview of all steps and
principles of provided EAF methodology.

Fig. 3 EAF methodology in enterprise

Fig. 3 contains all main steps of EAF methodology. During

the implementation process configuration manager makes
environment model (PIEM), defines actions of software
configuration management. Ready PIEM model should be
fulfilled with information about frameworks. Configuration
manager chooses frameworks from Solution Database for each
actions. Platform Specific Action Model contains
implementation details. This model could be transformed to
Code Model and last one could be implemented in software
configuration management server to support software
configuration management process for particular project.

V. APPLYING SEMANTIC WEB TECHNOLOGIES TO THE EAF
METHODOLOGY

Authors think that EAF methodology could greatly benefit

from the use of the Semantic Web technologies not only in
terms of improved efficiency but could also potentially
provide additional functionality.

In their research [14], Arantes et al came to the conclusion
that ontology from [13] lacked some important concepts
mostly related to change and version control. Therefore, they
presented what they called an evolution of this ontology that
introduced a few new concepts and a taxonomy of change
control actions. The new version features concepts like
Repository, Branch, Version, Artifact, Change, etc.

Authors believe that Arantes et al’ SCM ontology could be
used in the proposed EAF methodology as a base ontology.
That would allow the reuse of the valuable expert knowledge
encapsulated within this ontology. However, it is necessary to
correspondingly modify it according to the needs of the EAF
methodology. One of the main reasons for these changes is that
the ontology was not designed with a good reasoning support.

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 36

The Semantic Web Rule Language is a language for the
Semantic Web that can be used to express rules as well as
logic, combining OWL DL or OWL Lite with a subset of the
Rule Markup Language [15]. SWRL complements DL by
providing the ability to infer additional information in DL
ontologies, but at the expense of decidability. SWRL rules are
Horn clause-like rules written in terms of DL concepts,
properties, and individuals. SWRL includes a high-level
abstract syntax for Horn-like rules in both the OWL DL and
OWL Lite sublanguages of OWL.

An SWRL rule is composed of an antecedent (body) part
and a consequent (head) part, both of which consist of positive
conjunctions of atoms. The SWRL rule syntax is the
following:

antecedent ⇒ consequent

where both antecedent and consequent are conjunctions of

atoms written a1 ∧ ... ∧ an. For example, we can say that if a is
a parent of b and b is a parent of c, then a is also is a parent of
c using the following rule:

parent(?a, ?b) ∧ parent(?b, ?c) ⇒ parent(?a, ?c)

SWRL atom can be either a class, an object property, a data

type, a data type property, or a built-in. A rule is satisfied by
an interpretation if every binding that satisfies the antecedent
also satisfies the consequent.

SWRL has already been successfully used in the quite
related field of Network Access Control Configuration
Management [16]. This experience suggests that SWRL rules
can also be used to implement ontology-based SCM model
transformation rules (for example, transformation of PSAM to
Code Model).

Given the rich SCM ontology, SWRL provides developers
with an opportunity to define the resilient rules for different
kinds of model transformation scenarios all while inferring
possible new knowledge.

VI. PRACTICAL ASSESSMENT OF THE EAF METHODLOGY
For the practical assessment, software configuration

management process had been implemented at 5 different
software development projects by provided EAF methodology.
The projects are the following:

• Project 1: Maintenance of Oracle E-Business Suite

system. Development technologies are Oracle
Forms, Oracle ADF, PL/SQL, JAVA. Version
control system is Subversion, bug tracking system
is JIRA and continuous integration server is
Bamboo.

• Project 2: Implementation of Oracle Customer Care
and Billing Utilities system. Development
technologies are Oracle CC&B, PL/SQL, Java,
Cobol. In this project also Subversion and JIRA
are used, but continuous integration server is
Jenkins.

• Project 3: Development of Web-Based ERP
(Enterprise Resource Planning) system based on
Ruby On Rails platform. In this project Git system
have been used for version control. For bug
tracking and continuous integration also JIRA and
Jenkins have been used.

• Project 4: Development of custom billing system
based on Oracle Application Development
Framework. This project have been used the same
set of tools as Project 1.

• Project 5: Development of Web-services for ERP
system using Oracle SOA Suite 11g platform. This
project also have been used Subversion as version
control system, JIRA for bug tracking and Jenkins
for continuous integration.

To underline benefits of EAF methodology,
implementation time of software configuration management is
fixed and compared by implementation time by old methods
(without EAF). The difference between old and new
implementation time provided at percent. To save up daily
processes of mentioned projects, experimental implementation
of configuration management by EAF are completed at new
(parallel) software configuration management servers. The Fig.
4 provides overview of difference between implementation
time of software configuration management by old methods
and by EAF methodology. Difference is provided in percent,
for example value ‘-10%’ mean that implementation time by
EAF methodology of later for 10%, but value ‘+15%’ means
that implementation by EAF methodology is not useful
because it needs for 15% more time.

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 37

Fig. 4 Difference of implementation time by old methods and EAF

Fig. 4 provides that the first experiment at “Project 1”,

while Solution database is empty, benefits of EAF
methodology in context of implementation time is only 9%.
However, implementation of software configuration
management by EAF at Project 2 is for 90% later because
Solution Database already has a set of reusable solutions for
similar set of tools (Subversion, JIRA). Implementation time at
Project 3 is only for 41% later, because Solution Database
does not contain framework for Git version control system.
The benefits at projects 4 un 5 are great (89% and 96%),
because at this moment Solution Database contains all
reusable Frameworks for Subversion, Git, JIRA, Jenkins,
Hudson. During implementation of software configuration
management, mostly existing functions from frameworks are
used. In this case, only a small part of source code for
particular software configuration management process should
be developed.

The main trend provided at Fig. 4 shows that benefits from
EAF is relatively small while Solution Database is empty, but
if mentioned database contains framework for all most used
tools at particular enterprise, implementation time of software
configuration management could be for 80% - 95% later.

VII. CONCLUSIONS
The study provides new model-driven approach for

implementation of software configuration management. The
main scope is to increase reuse of existing solutions and
reduce efforts to implement the process in other projects.
General picture and principles of new EAF approach are
provided, Platform Independent Environment Model and
Solution Database with example are introduced. Finally,
experiments of implementation of software configuration
management by EAF methodology are provided.

Results of this work were used in Latvian Council of
Science project "Approach and Generic Methodology for
Development of Applied Intelligent Software Based on

Artificial Intelligence, Modelling, and Web Technologies"
(project leader prof. J. Grundspenkis) and in European
Commission 7th Framework project "eINTERASIA "ICT
Transfer Concept for Adaptation, Dissemination and Local
Exploitation of European Research Results in Central Asia's
Countries"" (project coordinator prof. L. Novickis).

In order to continue research, it is necessary to carry out the
following activities:

• Develop additional criteria that evaluate models
benefits in software development projects not only
from point of implementation time,

• Based on developed criteria, evaluate benefits of
designed models,

• Develop criteria to assess whether the developed
model-driven approach for configuration
management implementation corresponds to
guidelines of ISO/IEC 15504, ITIL, CMMI
standards.

• Design Code Models and transformation algorithms
for other platforms.

• Add and improve tools and frameworks in existing
platforms.

The approach provided in this article is abstract and only
general stages, kinds of models and basic elements are defined.
The authors hope that the new approach will generate new
ideas because many useful lessons could be learned from
different implementations of this model-driven approach.

ACKNOWLEDGMENT
The research has been partly supported by the project

eINTERASIA "ICT Transfer Concept for Adaptation,
Dissemination and Local Exploitation of European Research
Results in Central Asia's Countries", grant agreement No.
600680 of Seventh Framework Program Theme ICT-9.10.3:
International Partnership Building and Support to Dialogues
for Specific International Cooperation Actions - CP-SICA-

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 38

INFSO.

REFERENCES
[1] Ragan, T., 21st-Century DevOps--an End to the 20th-Century Practice

of Writing Static Build and Deploy Scripts, Linux Journal, 230, pp.
116-120, Computers & Applied Sciences Complete, EBSCOhost,
viewed 22 October 2014.

[2] Azoff, R., DevOps: Advances in Release Management and Automation.
[ONLINE] Available at: http://electric-cloud.com/wp-
content/uploads/2014/06/EC-IAR_Ovum-DevOps.pdf, 2014.

[3] Calhau R., Falbo R., A Configuration Management Task Ontology for
Semantic Integration. Proceedings of the 27th Annual ACM Symposium
on Applied Computing Pages 348-353 ACM New York, NY, USA,
2012.

[4] Giese H., Seibel A., Vogel T., A Model-Driven Configuration
Management System for Advanced IT Service Management. Available
at: http://www.hpi.unipotsdam.de/giese/gforge/publications/pdf/GSV-
MRT09_paper_7.pdf, 2009.

[5] Yongchang, R., Fuzzy Decision Analysis of the Software Configuration
Management Tools Selection. In ISCA 2010. France, 19-23 June, 2010.
Information Science and Engineering (ISISE): ACM. 295 - 297., 2010.

[6] de Almeida Monte-Mor, J., GALO: A Semantic Method for Software
Configuration Management. In Information Technology: New
Generations (ITNG), 2014. USA, 7-9 April, 2014. ITNG: IOT360. 33 -
39., 2014.

[7] Novickis, L., Bartusevics, A. Model-Driven Software Configuration
Management and Environment Model. In: Recent Advances in
Electrical and Electronic Engineering: Proceedings of the 3rd
International Conference on Systems, Communications, Computers and
Applications (CSCCA"14), Italy, Florence, 22-24 November, 2014.
Florence: WSEAS Press, 2014, pp.132-140. ISBN 978-960-474-399-5.
ISSN 1790-5117.

[8] Novickis, L., Bartusevičs, A., Lesovskis, A. Model-Driven Software
Configuration Management and Semantic Web in Applied Software
Development. Proceedings of the 13th International Conference on
Telecommunications and Informatics (TELE-INFO '14), IIstanbul,
Turkey December 15-17, 2014.

[9] Clark & Parsia, LLC, Pellet Features. Available at:
http://clarkparsia.com/pellet/features, 2015.

[10] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). "The Semantic
Web", Scientific American, May 2001, p. 29-37. Available at :
http://www-
sop.inria.fr/acacia/cours/essi2006/Scientific%20American_%20Feature
%20Article_%20The%20Semantic%20Web_%20May%202001.pdf

[11] W3C. Semantic Web Frequently Asked Questions. Available from
http://www.w3.org/2001/sw/SW-FAQ#swgoals, 2009.

[12] Fensel D. Ontologies: Silver Bullet for Knowledge Management and
Electronic Commerce. Springer, 2003, 162 p.

[13] Falbo, R., A., Calhau, R. F. A Configuration Management Task
Ontology for Semantic Integration. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing.ACM, New Yorok, 2012.
Pages 348-353.

[14] Arantes, L., D., Falbo, R. D., Guizzardi G. Evolving a Software
Configuration Management Ontology. [ONLINE] Available at:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C71AC33F80
2C1644AB292AFD9268ED9F?doi=10.1.1.95.9969&rep=rep1&type=p
df

[15] Horrocks, I. et al. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML [ONLINE] Available at:
http://www.w3.org/Submission/SWRL/

[16] Fitzgerald, William M. and Foley, S. N. and Ó Foghlu, M. (2009)
Network Access Control Configuration Management using Semantic
Web Techniques. Journal of Research and Practice in Information
Technology, 41 (2). pp. 99-117.

Arturs Bartusevics currently is a Doctoral Student at Riga Technical
University, the Faculty of Computer Science and Information Technology, the
Institute of Applied Computer Systems. He obtained BSc (2008) and MSc
(2011) degrees in Computer Science and Information Technology,

respectively, from Riga Technical University. His research areas are software
configuration management, release building and management process and its
optimization. He works at Ltd. Tieto Latvia as a Software Configuration
Manager.
E-mail: arturik16@inbox.lv

Andrejs Lesovskis is a Doctoral Student at Riga Technical University, the
Faculty of Computer Science and Information Technology. He obtained MSc
degree in Computer Science and Information Technology at Riga Technical
University in 2009. His research areas are e-Learning and Semantic Web. He
works as a researcher at Riga Technical University.
E-mail: andreyl@inbox.lv

Leonids Novickis is a Head of the Division of Software Engineering at Riga
Technical University. He obtained Dr.sc.ing. degree in 1980 and
Dr.habil.sc.ing. degree in 1990 from the Latvian Academy of Sciences. He is
the author of 180 publications. Since 1994, he is regularly involved in
different EU-funded projects: AMCAI (INCO COPERNICUS, 1995-1997) –
WP leader; DAMAC-HP (INCO2, 1998-2000), BALTPORTS-IT (FP5, 2001-
2003), eLOGMAR-M (FP6, 2004-2006) – scientific coordinator; IST4Balt
(FP6, 2004-2007), UNITE (FP6, 2006-2008) and BONITA (INTERREG,
2008-2012) – RTU coordinator; LOGIS, LOGIS-Mobile and SocSimNet
(Leonardo da Vinci) – partner, eINTERASIA (FP7, 2013-2015)- project
coordinator. He was an independent expert of IST and Research for SMEs in
FP6 and FP7. He is a corresponding member of the Latvian Academy of
Sciences and an elected expert of the Latvian Council of Science. His
research fields include Web-based applied software system development,
business process modeling, e-learning and e-logistics.
E-mail: lnovickis@gmail.com

New Developments in Circuits, Systems, Signal Processing, Communications and Computers

ISBN: 978-1-61804-285-9 39

