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Abstract - In this paper we present new, dual approach to 
analysis and simulation of a complex nonlinear ecological system 
of preys and predators, using classic nonlinear dynamic Lotka-
Volterra mathematical model (LVM) in parallel with an Agent 
Based model (ABM), using model attributes description of the 
system. We propose to implement this dual approach using 
"mathematical" approach together with an "agent based" 
approach using appropriate modeling environments, such as 
Matlab and NetLogo. As the system models become more 
complex we aim at using both LVM and AMB to reinforce each 
other and check each other findings. This way the validity of the 
model and its usefulness would be greatly increased, and some 
long standing ecological paradoxes may be explained and 
qualified. 
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1. INTRODUCTION 
     In analysis and simulation of complex ecological 
systems, a researcher often starts with a nonlinear Lotka 
Volterra model (LVM) of predator prey dynamic system 
[1]. The problem with this approach is that the LVM is 
very simplified model and apart from a detailed stability 
analysis [1], there are no real life complex ecological 
dynamic system models which are flexible and useful 
enough. Some of the reasons are (i) Lack of any general 
model build up methodology, (ii) Lack of any structural 
analysis of complex dynamical ecological models, and (iii) 
Very few results explaining some well know ecological 
paradoxes. We aim to address some of these important 
issues. In this paper, examples of various Single Prey 
Single Predator (SPSP) as well as Multiple Prey Multiple 
Predator (MPMP) models are introduced in a gradual way, 
from simple to more complex ones. Our goal is to gain 
insight into (i) Predator-prey population, (ii) Structural 
properties of the models, (iii) Understanding of stability in 
multispecies communities, and (iv) Improve usability, 
robustness and adaptivity of LVM ecological models. With 
this approach we aim to go towards analytical description 
of the key classic problems in ecology, such as (i) Paradox 
of the Plankton,  (ii) Paradox of the Enrichment, (iii) 
Oksanen's description and tropic level numbers, and other 
general Complex Systems paradigms such as (iv) 
Adaptivity and (v) Emergence. We also compare LVM 
analytical stability results with simulated ABM results. We 
propose to take advantage of flexibility that ABM offers, 
and in doing so acquire key feedback to reinforce and 
improve nonlinear mathematics of the LVM as well.  This 
way we can build very complex but usable predator-prey 
ecological models which are also mathematically tractable.  

     2.  NONLINEAR  MODEL LINEARIZATION 
    As a starting point, we can assume the most general non 
linear ecological model described as:  
                               S:  dX/dt = f[X(t),t]                            (1) 

 
    Any well-behaved non liner system can be linearized 
around equilibrium  points X* of the function f[X(t)]. This 
approach works well close to equilibrium points. The other 
advantage is that there are well known theoretical stability 
results for linear complex systems [1,4,6,7].  
     Unfortunately, linearization may be very restrictive and 
limited in its usefulness, hence analysis of real nonlinear 
ecological predator-prey systems will produce more 
realistic results. But, nonlinear problems are not easy to 
deal with. We propose here a step-by-step build-up of 
nonlinear models which will allow us to better understand 
effects of nonlinearities and interconnections in multi 
species environments.  
    3.  GENERAL ECOLOGICAL NONLINEAR MODEL 

      General ecological nonlinear model in the context of 
our interest in this paper is described by [1]: 
 
                             S:  dX/dt = A(t,X) X                            (2) 
where X is vector of (for example aquatic) species. The 
model in (2) is obviously a nonlinear one, but has an 
appearance of a linear system. The vector X may be as 
simple as a two dimensional vector (one pray, one 
predator), or it could consist of 10s and 100s of species  
arranged in some logical conglomerate of prey and 
predator species, all collected into the species vector X. 
Matrix A(t,X) is a "community" matrix with its elements as 
nonlinear time-dependent functions aij=aij(t,X), where "ij" 
indicates position in the matrix, i for the rows, j for the 
columns. In the case of X of dimension 2,  matrix  A is 2 
by 2, and its elements are  a11, a12, a21, and a22, and they 
describe self and cross interactions among the two species.   
     One of our goals is to find a practical way how to model 
elements of community matrix for a specific ecological 
system of some aquatic species (small and big fish).  

4.  SINGLE PREY SINGLE PREDATOR MODELS 
     Next level of simplification of the ecological model is 
embodied in the well known nonlinear Lotka-Volterra 
Model (LVM), which is just a special case of the model 
(2).  Consult [1] for more details.  For our purposes in this 
paper, we will illustrate LVM at first using second order 
model, with Single Prey Single Predator (SPSP) model. 
Following that, more complex models will be also given.  
      A.   LVM Solution 
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      Let us assume X = [X1, X2]T , X1 is prey species, X2 is 
predator species. The classic LVM [1] is: 
 
       dX1/dt = X1 ( A1 + A12 X2) = A1X1 + A12X2X1 
       dX2/dt = X2 ( A2 + A21 X1) = A2X2 + A21X1X2

               (3) 
which can also be written in a compact form as: 

                   dXi/dt = Xi ( Ai + Aij Xj)                                (4) 
where i=1,2  and  j  is different than  i,  with  j=1,2.  Here 
A1 is the growth rate of the prey. Note that with A12 = 0 the 
prey population X1 continues to increase exponentially, 
which is equivalent to the absence of any predator X2. With 
A12 < 0, predator X2 will control prey population from 
growing exponentially. For the predator population, growth 
is dependent on A2 < 0, the rate of predator removal from 
the system (either by death or migration), and A21, the 
positive growth rate for predators. The solution to 
Equations 3 and 4 is periodic, with the predator population 
always following the prey. Fig. 1 gives an example from a 
typical SPSP LVM. We assumed constant values of 
positive A1 and A21, and negative growth rates A12 and A2. 
The other SPS models can be defined, such as positive A2 
and negative A21 for the predator, depending on the 
predator model. The key is to keep the basic model stable.  

Figure 1. SPSP LVM Population Levels   
(Prey Solid, Predator Dashed)  

 
      In terms of the general nonlinear model given in (2), 
and with no time dependency, the community matrix A is:  
                        A(t,X) = A =                                             (5) 

a11(t,X) a12(t,X) 
a21(t,X) a22(t,X) 

with: 
                                     a11 = A1 
                                     a12 = A12 X1 
                                     a21 = A21 X2                                  (6) 
                                     a22 = A2 
General LVM stability results are given in [1]. 

      

B.   ABM Solution 
     The original LVM Equations 3 and 4 are very simple 
ecological model. They assume, for example, unlimited 
food available to the prey, and so the prey (and predator) 
growth rates are limited by corresponding “growth” 

coefficients.  In these equations, the growth coefficient is 
A1 for the prey and A21 for the predators. As a comparison, 
in ABM model, the growth rate for both populations can be 
determined by how successful they are at finding food. 
This can be modeled as a stochastic process which 
averages out to a stable rate across each population, hence 
corresponding to large extent to LVM approach, in the 
limit. Other effects can be incorporated as well, per 
modeling flexibility of ABM approach.  Fig. 2 gives a 
typical agent based snapshot of simulation control window. 
Various model attributes are easily defined. For example, 
the predators are not consumed, but they disappear from 
the simulation at a constant rate by reaching the end of 
their programmed lifetime.  This is represented by negative 
A2.  Their population increases linearly based on the prey 
consumption. This is proportional to the number of both 
populations, and thus represented by A21X1X2.  
     In the ABM, when the food is increased initially, both 
growth values, A1 and A21, temporarily go out of 
equilibrium and they both increase initially.  In the steady 
state, the prey growth rate remains constant, because their 
population growth is offset by increased predation, due to 
an increase in the predator population.  The predator 
population, however, stays elevated, and so increased 
competition means that their growth rate returns to the 
original value, for initial food availability. Note that the 
coefficient A2, the rate of predator removal (death or 
migration) from the system model, is determined by the 
predator attribute age and a limited lifetime for each 
individual. The prey also has an attribute for age, but in 
practice,  very few fish die of old age.  This is particularly 
true at higher levels of resources, because their average age 
drops as a consequence of fish being born faster while their 
population remains stable. It is this last fact that seems to 
cause the system to eventually become unstable, at very 
high levels of resources. We will compare this with general 
stability results in [1], in our future paper. 
 
     There is a limit to how quickly fish can be consumed 
after being spawned.  As the limit is reached, endogenous 
spatial heterogeneities appear in time with increased 
volatility in both populations. Per Fig. 2, ABM gives lots 
of flexibility to model the system, but essentially gives no 
analytical insight and the solution such as the case with 
LVM. That is the essence of our dual approach here, i.e.  

(i)    Use ABM for its flexibility, and  
(ii)   LVM for its mathematical elegance  

This way we can learn about using ABM to improve or 
change LVM. One obvious idea is to make the LVM 
model in Equations 3 and 4 times varying to some extent 
(Section D). The next model illustrates adding a 
"crowding" term in LVM which corresponds to species 
dynamic when disconnected from the other specie(s).  
  
C.  Crowding Effect In LVM 
     The extended LVM with crowding effect is as follows:  
                      dXi/dt = Xi ( Ai + ∑Aij Xj)                           (7) 
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    Figure 2.  SPSP ABM simulation control window      

      
where  i = 1,2  and sum  ∑  is over  j = 1,2. This would be 
equivalent to prey self multiplication without predator in 
dX1/dt. In this case community matrix (Equation 5) 
elements are: 
                                 a11 = A1 + A11X1 
                                 a12 = A12 X1 

                                 a21 = A21 X2                                (8) 
                                 a22 = A2 + A22X2 
 
In this model,  A12  and  A21 are negative, with newly 
introduced A11 and A22 positive. Another option is to go 
back to our original ABM in Equations 3 and 4 and 
simulation of Section B. In that case the last two equations 
in (8) change to: 
                             a21 = A21 + A22 X2                                (9) 
                             a22 = A2   
with A21 and A22  positive and A2 negative. The key is not 
to allow either model to let the predator grow out of 
control (become unstable). When using ABM simulation, 
the "crowding" effects can be implemented according to 
options in Fig. 2, or by adding new options and additional 
model attributes. 
 
     Next step is to accommodate time varying community 
matrix. Again, the ABM model of Fig. 2 can accommodate 
this by simple addition of proper agent model attribute 
which translates easily in to LVM equation for A=A(t). We 
can also add dependency on populations themselves, i.e. 
A=A(t,X). That is discussed next. 

 
     D.  Time Varying LVM Community Matrix 

     The time varying LVM in general is: 
 

    dXi/dt = Xi [ Ai(t,X) + ∑Aij(t,X) Xj]             (10) 
 

where  i=1,2  and sum  ∑  is over  j=1,2. The Equation 10 
is an extension of Equation 7, where we added time 
varying and population dependencies in the model. This 
can be presented in the compact form as: 
 
                                  dX/dt = A(t,X) X                           (11) 
with: 
                        A = A(t,X) =                                            (12) 

a11(t,X) a12(t,X) 
a21(t,X) a22(t,X) 

 
and for example: 
                      a11(t,X) = A1(t,X) + A11(t,X) X1                (13) 
 
similarly for the rest of the coefficients in (8). Note that 
community matrix elements are functions  of both X1 and 
X2. This will give us lots of freedom in modeling dynamic 
of two interconnected species. The modeling should be 
done in individual steps (coefficient by coefficient) so we 
have full understanding of making even the simplest 
change. Both ABM and LVM approaches to compare and 
simulate accordingly, follow. 
 
Example 1.  Coefficients only functions of time,  not of X, 
i.e. in (13), we have: 
                                  aij(t,X) = aij(t), i,j=1,2                    (14)   
Example 2.   Coefficients only functions of X, not of time, 
i.e. from (8,13), we have:  
                                 aij(t,X) = aij(X), i,j=1,2                   (15) 
          
Example 3.  Coefficients functions of local populations X1 
or X2 only, but not of time, i.e.  
 
                                aij(t,X) = aij(Xj), i,j=1,2                   (16) 
 
where we assumed local dependencies only, for example 
a11(X1) is function of X1 and not of X2, etc. Obviously we 
can have more complicated case such as: 
 
Example 4.  Coefficients only functions of X1 and/or X2 
but not of time, i.e.  
 
      aij(t,X) = aij(Xj), i≠j, aii(t,X) = aii(Xj,Xj), i,j=1,2       (17) 
 
where we left the "crowding" coefficients functions of only 
their corresponding specie population. 
 
Finally, we introduce time and have the following time 
varying version of Example 4. 
 
Example 5.  Coefficients functions of time as well as of X1 
and/or X2, i.e.  
 
    aij(t,X) = aij(t,Xj), i≠j, aii(t,X) = aii(t,Xj,Xj), i,j=1,2     (18)  
    As we develop complex LVM and ABM, our approach  
here is to follow the above formulas in implementing LVM 
and ABM to model corresponding features into both 
models. This way we will be able to precisely interpret 
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every step of the two models. For example, in  Example 5 
earlier, we would agree on what does A12(t,X2) mean in 
terms of t and X2, similarly for other coefficients. That is 
then modeled in ABM via appropriate attributes of Fig. 2. 
As indicated bellow, Reference [1] has an extensive 
analysis of stability of LVM, which would be corroborated 
with carefully designed experiments in ABM simulations. 
 
5.  ABM SPSP SIMULATION     
     In this Section we summarize and discuss various 
details of ABM SPSP simulation, based on setup of Fig. 2, 
which can address and attempt to simulate various models 
and Examples of Section 4. 
 
     Simulation [9] was run for 1000 time step chunks which 
generate ‘counts’ for all the variables at each step, i.e.  (i) 
New prey or predators introduced, (ii) Food consumed by 
prey or prey consumed by predators, (iii) Predator deaths 
(due to end of lifetime), and (iv) Population sizes.  Without 
any changes during the 1000 time steps, the simulation 
(under certain settings) is stable, and each variable is 
averaged across the recorded time. Each food level had 
plenty of time to stabilize.  The data from 1001 thru 2000 
were used only for 0.20 food (20% chance of food growth 
per patch, per step); then changed to 0.30, ignored the next 
1000 steps and used 3001 thru 4000 for 0.30, etc., for 0.40.   
 
     In the simulation the predators are assumed of the same 
size, but the prey grows larger as they eat, starting at 0.  
Hence, the measurement below of “biomass” for the prey 
as indicated in Table 1.    

           TABLE 1. ABM SIMULATION SUMMARY 
Food 
Rate 

Fish  
Average 

Fish St. 
Deviation 

Predator 
Population 

Fish 
Consumption 

0.20 1154.73 33.56 158.97 4562 
0.30 1140.39 39.66 329.09 6841 
0.40 1140.45 36.27 462.10 9120 

 
Food 
Rate 

Predator 
Consumpt. 

New  
Fish 

New  
Predators 

Predator 
Death 

0.20 61.41 74.19 2.124 2.117 
0.30 125.88 144.2 4.392 4.391 
0.40 177.87 225.7 6.158 6.179 

 
     We can use the simpler fish model where, like the 
predators, each fish can be exactly the same size and would 
not change. The effects of fish size can be easily removed 
from the model. So, for example, to calculate A12 we don’t 
really need the size of the fish, only the population size. 
Various options such as “big fish are easier to catch” can 
be also implemented in ABM. This can be programmed 
into the model, for example under the option labeled 
“Predator Preferences” which can be added to Fig. 2.   
     In the ABM simulation, we get the following behaviors:  

a)  Completely stable 
b)  Oscillating-but-stable, and  
c)  Oscillating-but-unstable.    

In the stable settings neither the fish nor the predator 
population changes. Since dX1/dt = 0, we can (presumably) 
say that in terms of LVM, Equations 3 and 4:  

                                 A1X1 = A12X2X1                             (19) 
 

which corresponds to prey growth rate equal to predator 
consumption rate of the prey. Similarly dX2/dt = 0, hence:  
                                A2X2 = A21X1X2                              (20) 
 
which simply means that the predator growth rate equals 
the predator death rate.  Per Equation (19), A1, the growth 
rate of prey, irrespective of the number of prey, is equal to 
the consumption rate of predators times the number of 
predators. The death rate for the predators, in terms of the 
number of prey, irrespective of the number of predators, is 
equal to the consumption rate of preys times the number of 
preys, as in (20) above. In addition to that, in Table 1, we 
see that the last two columns, new predators and predator 
deaths (A2X2), are approximately equal, corresponding to 
the stable state, irrespective of the food rate.  
      
     Calculating the above during out-of-equilibrium periods 
(transients) is trickier, such as right after prey food is 
increased from 0.20 to 0.30.  It becomes trickier when 
other nonlinear effects emerge. For example, increasing the 
food produces spatial inhomogeneities, i.e. there are areas 
where food or prey becomes scarce for a time, and the 
consumption rates vary across the simulation space. This 
emerges from the ABM simulation itself. However, these 
can be modeled by a random “jump” to predator and prey 
movement. Hence each turn, fish in the simulation jumps 
to new, random spatial coordinates. This particularly 
affects the predator numbers, as they consume prey faster 
only while the system is out of equilibrium.  Once the 
system stabilizes (steady state) with a higher predator 
population, then each particular predator consumes roughly 
the same amount of fish as before the change.       
     This is the key dynamic of the ABM: the predators are 
more in number but have harder time finding prey, and the 
prey (more food) are more in number, making it easier for 
the predators to find prey. These two dynamics balance 
out, so that the equilibrium consumption rate per predator 
is the same. These numbers would grow in a kind of an S-
curve, right after the food for the prey is increased, so that 
the number of predators would start to grow, then grow 
faster, then grow slower, and then stabilize at a new, higher 
level. The way to measure this would be to divide the total 
predator consumption rate by the total number of new 
predators.  Per the assumptions of LVM, the fish growth is 
proportional to the amount of fish-food consumed, and the 
predator growth is proportional to the amount of fish (prey) 
consumed. See Table 2 bellow.  
       TABLE 2. PREDATOR CONSUMPTION / NEW PREDATORS 

Food 
Rate 

Predator 
Consumption 
(Fish Biomass) 

New  
Predators 

Quotient 

0.20 61.41 2.124 28.91 
0.30 125.88 4.392 28.66 
0.40 177.87 6.158 28.88 

 
     Here, A21, the predator growth rate, is a constant, even 
when the food available to the fish increases.  So each 
predator eats same amount before and after the prey food is 
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increased.  The prey growth rate, A1, increases with more 
food, but the prey population size does not, because prey is  
consumed faster by the predators. As expected, these are 
all about the same size.  The predator consumption rate is 
not the number of fish consumed, but the total biomass, 
which controls predator numbers.  Hence the predators eat 
more, but there are more predators, so one eats about the 
same, after the new equilibrium. The consumption growth 
is stable initially, Fig. 3,4. In Fig. 5 we see an S-curve 
which flattens out, when the new equilibrium is reached.   
6. MULTIPLE PREY MULTIPLE PREDATOR MODEL  
 
    We now extend the SPSP LVM (Section 3) to a general 
nonlinear model to include multiple species (MPMP):  
            dXi/dt = Xi [ Ai(t,X) + ∑Aij(t,X) Xj ]                  (20)   
where i = 1,2, ... ,n,  and sum  ∑  is over all  j = 1,2, ... , n.  

 
Figure 3. Total Predator Consumption Rates 

 
Figure 4.  Total New Predator Growth 

 
Figure 5.  Predator Consumption / New Predator Growth 

 
We can model 2 preys 1 predator, 4 preys 2 predators, 10 
preys 3 predators, etc., hence building up complexity of the 

LVM’s. Here are some specific examples, where we 
continued from Example 5 (Section 4D) and increased the 
number of species. This may be influenced by a specific 
multispecies situation, such as an aquatic fish environment 
with a variety of preys and predators involved. 
 
Example 6. Two preys one predator, coefficients time and 
functions of X1,  X2 ,and  X3  or the total vector X, i.e.:  
              aii(t,X) =  Ai(t,X) + Aii(t,Xi) Xi 
                           aij(t,Xj) =  Aij(t,Xj) Xi                           (21) 
 
where i,j=1,2,3, i≠j, and X3 is a predator.  In compact form, 
community matrix A(t,X) is now represented as 3x3 array: 
 
       A(t,X) =                                                                   (22) 

a11(t,X) a12(t,X2) a13(t,X3) 
a21(t,X1) a22(t,X) a23(t,X3) 
a31(t,X1) a32(t,X2) a33(t,X) 

Example 7.  Four preys (species 1,2,4,5) and two predators 
(3,6), for simplicity, and  coefficients functions of time as 
well as of Xi, or the total vector X:   
   aii(t,X) =  Ai(t,X) + Aii(t,Xi) Xi, i=1,2,3,4,5,6 
                 aij(t,Xj) =  Aij(t,Xj) Xi , i,j=1,2,3,4,5,6; i≠j          
   aij(t,X4) = 0, i=1,2,3; j=4,5,6 
                 aij(t,X4) = 0, j=1,2,3; i=4,5,6                          (23) 
 
The community matrix  A(t,X)  is now 6x6 array: 
 
       A(t,X) =                                                                   (24) 

a11 a12 a13 0 0 0 
a21 a22 a23 0 0 0 
a31 a32 a33 0 0 0 

0 0 0 a44 a45 a46 

0 0 0 a54 a55 a56 

0 0 0 a64 a65 a66  
and it consists of two decoupled predator prey systems. 
Any of the zero coefficients aij

  indicates lack of influence 
of j-th specie to i-th specie. Assuming that predators can 
prey on all of the species, but not on each other, we have:  
 
Example 8.  Community matrix  A(t,X)  is still 6x6, with 
less 0 elements (“*” are also 0 for this Example): 
 
       A(t,X)=                                                                    (26) 

a11 a12 a13 0 0 a16 

a21 a22 a23 0 0 a26 

a31 a32 a33 0 0 * 
0 0 a43 a44 a45 a46 

0 0 a53 a54 a55 a56 

0 0 * a64 a65 a66                
If predators prey on each other, then we have Example 9: 
 
Example 9.  Community matrix  A(t,X)  is still  6x6, with 
even less 0 elements,  “*” are a36 and a63 respectively.  
Example 10.  Here we have an overlapping model, where 
two almost decoupled specie communities share a 
common four (boldfaced) elements: 
       A(t,X) =                                                                  (27) 
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a11 a12 a13 0 0 0 

a21 a22 a23 0 0 0 

a31 a32 a33 a34 0 0 

0 0 a43 a44 a45 a46 

0 0 0 a54 a55 a56 

0 0 0 a64 a65 a66                      
This model  can  be  handled by an  approach  in  [5] where 
the model is “expanded” to decouple it effectively. Finally 
we add environmental effects [1] into LVM by: 
                   S:   dX/dt = A(t,X) X + B(t,X)                      (28) 
where  B(t,X)  models  external  effects  of  the environment 
(food, space,  temperature). Let  us look at Example 6, and 
add  environmental  vector  B(t,X).  We  obtain   community  
matrix A(t,X) in (22), with  species vector X=[X1,X2,X3 ]T 

and the corresponding environmental vector is: 
 
                B(t,X)  = [B1(t,X),  B2(t,X),  B3(t,X)]T           (29)  

Or even simpler case, where each environmental 
component depends only on individual specie, i.e.  
 
               B(t,X)  = [B1(t,X1), B2(t,X2), B3(t,X3)]T           (30) 
 
As it was discussed in Section 4B and 5, ABM introduced 
food supply into the model and the above environment 
vector is the right place to introduce the food supply, as a 
control input into the LVM (future work research subject). 
 
     As the community matrices become larger and more 
complex, we note that  there are certain structural properties 
in the way "0" elements are placed. This is calling for 
approaches described in [2,4,5,6] which take advantage of  
special structures to simplify calculations and expose key 
structural properties of the models. There are elements of 
"overlapping" components in community matrices, which 
can be "expanded and contracted" [5] in building effective  
controls in multispecies communities. As the number of 
species grow, smart shuffling of the position of species in 
the vector X may produce hierarchical structure of 
community matrix A(t,X) [4], producing much simpler 
controls and simpler stability analysis, as the overall 
community matrix is split into subsystems (agents) 
hierarchically interconnected.  
 
7.   STABILITY AND COMPLEXITY 
 
     There are some key existing mathematical results related 
to  LVM which can be used and which can accommodate 
multi-species modeling and stability in particular [1]. They 
give regions of stability estimates and point to specific 
reasons for instability and balance between stability and 
complexity.  These regions can be tested using both LVM 
and ABM approaches which will add a measure of 
confidence and practicality to the stability results. As 
several ecology researchers (not mathematicians) pointed 
out in literature, there seems to be a balance in competing 
multi-species environments between numbers of inter 
connections among the species versus interconnection 
strengths. Our (obvious) mathematical conjecture is:  
 

If we denote by N number of interconnections for a given 
species (in a multi species  environment)  and by I  their 
intensity, then:   

                 N  times  I  =  Constant                    (31)  
where equality sign is just a measure of closeness of two 
sides of the expression. We could rephrase this intuitive 
notion and add stochastic measure by using Expected 
Value E( ) as:  
                                E(N  times I)  = Constant                (32) 
 
where intensity I may be represented by some norm. In this 
context the LVM would need to be expressed in a 
stochastic form by adding certain stochastic processes 
either in random parameters in the community matrix 
elements, or as an additive colored or white noise process 
to the model itself. We will consider this in future work. 
 
 8.  CONCLUSION 
 
In this paper we set the scene for a robust and effective, 
dual model based approach (LVM, AMB) to build simple-
to-complex predator-prey ecological models and examples 
of Single Prey Single Predator (SPSP) as well as Multiple 
Prey Multiple Predator (MPMP) models. This approach 
aims to produce practical results which can be used in real 
life ecological problems, and to better understand classic 
notions in multi-species models, as (i) Paradox of the 
Plankton, (ii) Paradox of the Enrichment, (iii) Oksanen's 
description and tropic level numbers, and other general 
Complex Systems paradigms such as (iv) Adaptivity and 
(v) Emergence. Our dual approach relies on methodology 
of step-by-step model build-up and reinforcement using 
two very different approaches, i.e. “mathematical” LVM 
and “ad-hoc” ABM. Proposed approach adds to the overall 
rigorousness of the obtained results and their validation 
and interpretations, by meticulously checking and 
comparing results of ABM and LVM as more and more 
complex models are built. In the research which follows, 
we will (i) Explore specific examples from this paper using 
appropriate computing environments such as Matlab, 
Mathematica, NetLogo, and (ii) Compare theoretical LVM 
stability results [1] with ABM modeling.  
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