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Abstract—Prediction of the crack growth of the brittle and
quasi-brittle fracture of structural materials is studied. Crack
extension is simulated by means of element extinction algo-
rithms (cohesive elements respectively). The principal effort is
concentrated on the application of the cohesive zone model with
the various traction separation laws. Determination of micro-
mechanical parameters is based on the combination of static tests,
microscopic observation and numerical calibration procedures.
The attention is paid on the influence of initial value of J-
integral and the slope of R-curve which is modelled by the 3-
dimensional finite element method. The practical applications
refer to the modelling of the fracture behaviour of structural
steels, intermetalic alloys and fibre composites.

Index Terms—Brittle fracture, cohesive crack growth, traction
separation law, computational modelling.

I. INTRODUCTION

DEVELOPMENT and design of advanced equipments and
components introduces the question how to ensure the

operational security. Safety factors are connected with and
dependent on the presence of the defects originated during
production or service of the given part or components. An
effort is concentrated on the description, eventually prediction
of the fracture behaviour of bodies with a priori cracks or
defects created during service loading.

Cohesive crack models are nowadays widely used to predict
cracking processes in the materials. The importance of the
cohesive zone approach is emphasized to analyze the localiza-
tion and failure in engineering materials. The micromechanical
modeling encounters a new problem that is different from
assumption of continuum mechanics. The material is not
uniform on the microscale, but a material element has its own
complex microstructure and the concept of a representative
volume element (RVE) has been introduced. The material
separation and damage of the structure is described by the
interface element. Using this technique, the behavior of the
material is split into two parts: i) the damage of the free
continuum with arbitrary material law and ii) the cohesive
interface between the continuum elements.

From a variety of damage models, the cohesive models,
derived in [1] and [2], seem to be especially perspective
for practical applications. Thanks to their phenomenological
character, they can be adapted for various kinds of materials
and damages. Cohesive models or (more often) cohesive
zone models (CZM) by [3] are used to simulate fracture
and fragmentation processes in metallic, polymeric, ceramic
materials and composites. Instead of an infinitely sharp crack
envisaged in linear elastic fracture, the energy from the process
zone is transferred from external work both in the forward and

Fig. 1. Examples of the traction - separation law.

wake regions of the expanding crack. Base principle of CZM
is using cohesive elements for crack and damage modelling,
while the classical continuum elements are undamaged. In
terms of modelling, the separation of materials is realized
using cohesive elements in the boundary line between classical
elements of continuum. Using cohesive models, the behaviour
of materials is considered using two types of elements: i)
the former element for classical continuum, ii) the latter
connecting cohesive element. The separation of such connect-
ing cohesive elements is computed from the displacement of
neighbouring continuum elements. Generally the separation is
dependent on the normal and shear stresses.

In case of the cohesive models we need to identify the
hypothetical crack tip to determine the crack driving force
by using traction-separation models that are expressed in
the shape of the T-δ curve. The maximum value of T has
usually the character of cohesive strength; there is the physical
crack tip where the separation has the maximum value at
this distance, i. e. the crack is fully separated and the energy
absorption for decohesion is total, as analyzed in [4]; for the
illustration see two versions of the traction - separation law
on Figure 1. The concept of the cohesive zone model has
been widely employed to investigate various material failure
phenomena; here we shall mention only some results important
for our further considerations, whereas much more historical
conjunctions including application scopes can be found in [5]
and [6].

Since the analytic computational approaches give significant
result only in very special cases, typically for the simula-
tion of well-organized experiments, which is often valid also
for semianalytic considerations, relying on classical infinite
functions series and numerical quadrature, the majority of
recent computational algorithms works with finite elements
or similar techniques, namely with various implementations
of the extended finite element method (XFEM) by [7] or [8],
or with the cohesive segments method by [9], handling the
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nucleation, growth and coalescence of multiple cracks. Some
advantages of meshfree cohesive modelling of failure, namely
of the reproducing kernel particle method (RKPM) within the
framework of wavelet theory, are noticed in [10], together
with the comparison of the cohesive zone approach and the
atomistic view. The analysis of quasistatic brittle fracture in
inhomogeneous media by [11] relies on the method of iterated
conformal maps, distinguishing between fracture patterns in
three basic modes. Really, there are three ways of applying
a force to enable a crack to propagate: i) opening mode
(tensile stress is normal to the plane of the crack), ii) sliding
mode (shear stress acts parallel to the plane of the crack and
perpendicular to the crack front) and iii) tearing mode (shear
stress acts parallel to the plane of the crack and parallel to the
crack front). The brittle-to-ductile transition (BDT), as well
as the fracture toughness of semi-brittle materials, is studied
the competition between the bond breaking at the crack tip
and the mechanisms that govern crack tip plasticity at the
atomic scale in [12]. The element-free Galerkin method (EFG),
introduced in [13], substitutes the standard Galerkin finite
element technique by the implementation of interface elements
for the representation of displacement discontinuities due to
cracks.

Limited accuracy of all crack growth predictions, depending
on the creation of geometric singularities due to certain
nonlocal constitutive relations, motivates the development of
still alternative approaches, utilizing i) statistical considera-
tions, ii) fractal theory, iii) advanced geometrical description
of macro- and microfractured zones or iv) both physical
and mathematical homogenization and scale-bridging. In the
following remarks we shall try to preserve this classification,
although some recent approaches cannot be assigned to just
one of the classes i) – iv). Starting with i), whereas the Weibull
function in [14] is introduced as simple mathematical relation
that is capable of describing the variability in strength, [15]
presents the complete Weibull fracture statistics of ceramics
and [16] understands the brittle crack growth as the forced
separation of chemically bonded surfaces, working with the
survival probability within the separation zone. In ii) the
generalization of [11] to fractal cracks, derived in [1], opens
the way to the fractal-based mesoscopic analysis of damage
and fracture in heterogeneous materials by [20], as well as
to such discrete cohesive crack modelling by [21]; [22] then
works with the fractal statistics of fragmentation (breaking
a solid into separate fragments caused by multiple fractures)
of brittle materials, supported by original experiments and
signal processing techniques. From the point of view of
iii) the most difficult problem is to complete the general
nonlinear geometrical concept of [23] by the adequate physical
considerations, including material characteristics identifiable
in engineering practice, as documented by [24]. In iv) the
RVE-based average approaches for a cohesive zone by [25]
and [26] are still the most frequent; however, the exploitation
of more advanced bridging between macro- and microscale
models of cohesive fracture, as in [27], as well as of the
formal mathematical homogenization like the Γ-convergence
for rapidly oscillating functions in [28], should be noticed.

Regardless of quite different material structures, other size

of specimens, particles in a matrix, etc., similar approaches are
applied also to the composites utilized in civil engineering, as
for the a masonry composite made of brick units and mortar
arranged forming layers by [29] and in most applications for
concrete. Some additional physical processes should not be
neglected in this case: namely the cohesive damage friction
interface model, suggested in [30], accounts for water pressure
on crack propagation, whereas the semianalytic approach of
[31] to reinforced cementitious composites is able to study
the effects of fracture toughness, of crack bridging and of
initial unbridged flaw size, thanks to the very special physical
and geometric setting, due to the need of easy comparison
with standard experimental results. The multi-scale approaches
like [32] and fractal ones like [33] have been developped for
concrete, too.

II. PHYSICAL AND MATHEMATICAL BACKGROUND

Let us introduce the basic physical and mathematical
assumptions and notations of the cohesive zone approach,
needed in this paper to understand (at certain minimal gen-
erality level) the crack behaviour of some material classes,
important in engineering practice. A lot of potential im-
provements could be inspired by Introduction; however, the
implementation of a general geometrical description of finite
structured deformation, as well as of results from classical or
fuzzy statistics, fractal theory or two-scale and similar types of
convergences on homogenization structures would make this
text very reader-unfriendly.

As a model problem, let us consider a domain Ω in the 3-
dimensional Euclidean space R3, occupied by a deformable
body, supplied with the Cartesian coordinate system x =
(x1, x2, x3); some (local, formally outward) unit normals
n = (n1, n2, n3) are assumed to exist (almost) everywhere
on the boundary ∂Ω of Ω in R3. We shall study the behaviour
of a deformable body on certain time interval I , starting from
the zero time.

Let u = (u1, u2, u3) denote the displacement related to
the above mentioned reference geometrical configuration; their
zero-time initial values (compatible with Eq. 1), as formulated
below) are prescribed. In the following considerations, i, j,
k and l will be Einstein summation indices from the set
{1, 2, 3}; if no comments are added, all relation will be valid
for all values of free indices from this set. For simplicity,
an index i preceded by a comma means a partial derivative
with respect to xi: e. g. ψj,i can be used instead of the full
notation ∂ψj/∂xi. Unlike such derivatives, an upper dot means
a partial derivative with respect to any time t taken from I .
the following equations should be then valid on I (without
additional explanations).

Let us suppose that ∂Ω can be decomposed to its disjoint
parts Γ, Θ and Ξ. We shall consider the Dirichlet boundary
conditions

ui = 0 on Θ (1)

and the following loads: the volume ones f = (f1, f2, f3) on Ω
and the surface ones g = (g1, g2, g3) on Γ. The knowledge of
the material density ρ on Ω will be needed, too. The notation
Ξ is reserved for the crack; its time development is possible.
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For the stresses σij the well-known Cauchy equilibrium
condition reads

σij,j + fi = ρüi on Ω , (2)

together with the Neumann boundary conditions

σijnj = gi on Γ . (3)

Moreover, introducing the strains εkl(u), for the small strain
approximation identifiable with (uk,l+ul,k)/2, we need some
constitutive relations to obtain σij , typically

σ̇ij = Gij(ε̇(u)) on Ω (4)

with some prescribed mapping Gij where ε can be considered
as a symmetrical matrix of all εkl(u), following [9], p. 72. In
the simplest case the choice Gij(ε(u)) = Cijklεkl(u) leads
to the Hooke law with constant characteristics Cijkl (thus
time derivatives can be removed) generating a symmetrical
positive definite matrix (which still admits nonhomogeneous
and anisotropic materials).

Up to now, at least with empty Ξ (which may be the initial
case), we have only the standard problem of deformation of
linear (or similar) elastic body. Let us moreover suppose that
Ξ, representing a crack, consists of two identical parts Ξ+

and Ξ−, distinguished by the opposite orientation of n only.
The value of u on the crack tip, because of the irregularity
of such point, must be evaluated separately, using some J- or
K-nonlocal stress integrals; this can lead to the irreversible
enlargement of Ξ in time. Nevertheless, the 2-dimensional
simplifications are utilized in most computational tools –
cf. [7], p. 831.

The Neumann boundary condition analogous to Eq. 3 with
0 instead of gi could be considered on Ξ outside the cohesive
zone; To force the material nonpenetrability, for the notation
δui = u+i − u

−
i where u+i and u−i have to be understood in

the sense of traces of u from Ω then we should check also
δuini ≥ 0 (which is rarely done in practical algorithms).

Inside the cohesive zone the physical considerations are
more delicate: a new constitutive relation has to be introduced
on Ξ (active on its part), e. g. in the form presented in [9],
pp. 73 and 77,

τ̇i = γi(δu̇) on Ξ (5)

with some prescribed mapping γi where δu̇ can be introduced
in the similar way as δu and the discontinuity tractions τi
replace gi from Eq. 3. The most simple form of such relation
seems to be τ̇i = κδu̇ with certain tangent stiffness of the
traction separation law. One can observe very special forms,
as rectangular, (piecewise) linear, etc., of cohesive laws in
engineering practice (cf. [7], p. 816); for more details see the
following section and all relevant references.

Introducing the set of admissible displacements V as those
displacement from appropriate function spaces satisfying Eq. 1
(Lebesgue, Sobolev, Bochner, etc. spaces are exploited in most
cases to guarantee the formal correctness of all formulations
and the existence and uniqueness of variational or weak
solutions, at least for linear and selected semilinear problems),

applying the Green - Ostrogradskiı̌ theorem (on the integration
by parts), we are able to convert (2) and (3) to

(εij(v), σij)− (vi, ρüi) + 〈δvi, τi〉 (6)
= (vi, fi) + 〈vi, gi〉 ∀ v ∈ V ;

here (ψ, φ) mean the integrals of ψ(x)φ(x) over Ω (with
hidden Einstein sums), 〈ψ, φ〉 and 〈ψ, φ〉∗ then the simi-
lar integrals over Γ and Ξ+, respectively. Both constititive
relations Eq. 4 and Eq. 5 are supposed to be hidden in
Eq. 6. Consequently some integral equation of the type Eq. 6,
representing the Galerkin formulation of our model problem,
is applied in most numerical algorithms based on (classical
or extended) finite element techniques and occurs also in
derivation of numerous meshless algorithms, both dynamic and
quasistatic ones.

III. CRACK BEHAVIOUR OF SELECTED MATERIALS

A. Structural steels
The standard tensile experiments have been used to deter-

mine material curve for characterization of the elastoplastic
behaviour of tested material. The relation σe - εe was found,
but key problem is the validity of this relation after necking.
According to many experimental observations in [5] the new
approximate curve was received. For forged 42CrMo4 steel the
ductile fracture was predicted and J −∆a curve is calculated
by cohesive elements using Warp3D and Abaqus codes.

For the determination of the cohesive stress, T0 in the
case of normal fracture (mode I) a set of twelve experiments
for tensile notched bars was done. The mean value of the
cohesive stress T0 was determined from the above mentioned
set and from the computations for the material curve received
from the waisted tensile specimens; T0 is then 2000 MPa.
For determination of the stress-strain distribution the standard
FEM Abaqus package with CAX4 elements was used. The
standard CT specimens were used for J-integral determination
according the ASTM 1820-99a procedure (based on measure-
ment of the J − ∆a curve). The experimentally determined
value of Ji was found to be 115 MPa.mm. This value was
calibrated using numerical procedure using WarpD.

The numerical modelling was realized with all material
curves. The standard FEM package Abaqus has been utilized.
Set of computations were applied to the calibration of the
cohesive parameters used for J−∆a curve prediction. Various
combinations for T0 and Ji were tested. In Figure 2 the values
Ji are marked as Cohe1, Cohe2 and Cohe3 (Ji with values
110, 120, 130) and received data were compared with the
experimental values. The best correlation was found for first
value of Ji=110 MPa.mm. From the above analyses follows
the prime combination of the cohesive parameters (T0=2000
MPa, Ji=110 MPa.mm).

Single three point bend specimen SE(B) has been used for
experimental prediction of the J−R curve. Using the cohesive
parameters received on the notched specimens T0 and Ji on
the CT specimens the numerical simulation of the stable crack
growth was done and J −R curve was predicted – see Figure
3. The FE mesh consists from 8560 nodes and 7155 element
C3D8 (Abaqus). Owing to numerical instability more than
1000 loading steps were applied.
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Fig. 2. Ji calibration on CT specimen.

Fig. 3. J −R curve for SE(B) specimen.

B. Intermetallic alloy TiAl

Main goal of the experimental work was the evaluation
of the flexural strength tests in the temperature range from
room temperature up to 800 C for the intermetallic alloy TiAl
(see [36]). The materials used in this investigation had the
composition Ti-48Al-2Cr-2Nb-1B and Ti-46Al-0,7Cr-0,1Si-
7Nb-0,2Ni (marked I and F).

Fig. 4. J −R curve: K = 14 MPa.m1/2, K = 16.3 MPa.m1/2, K = 20
MPa.m1/2 (Chevron notch, σy = 200 MPa).

Fig. 5. J −R curve: K = 14 MPa.m1/2, K = 16.3 MPa.m1/2, K = 20
MPa.m1/2 (sharp notch, σy = 200 MPa).

The FEM mesh with two modifications was created for the
stress analysis. The first one had 10000 C3D8 elements and
second one 90000 elements. After some numerical test was
found that there is a very small discrepancy between them
and a mesh with smaller density of elements was used for
next computations. The cohesive 3D elements COH3D8 with
zero thickness were used for cohesive zone modelling using
FEM packages Abaqus and Warp3D.

The input parameters of the cohesive model with linear
damage development for alloy I were determined following
experiments for fracture toughness. In this way the fracture
energy was assigned expressing the area below the TSL.
Parameter T0 was evaluated from the values of fracture
stresses. The value δ0 was found using the area below the
TSL. Procedure for the exponential traction separation law
implemented in Warp3D was very similar. Obtained cohesive
parameters were used in FEM computation for 3PB test.
F -alloy modelling can be seen in Figure 4. J-integral in
Warp3D is continually computed ahead the crack tip and his
positions are changing during the element killing. Thereafter
the construction of the J − R curve can by constructed very
precisely.

According the experimental observation the J − R curve
reflects various types of microstructures. The flat curves rep-
resents the duplex microstructure, rapidly increasing curves
the lamelar microstructure and the curve between the nearly
lamelar microstructure. In the following Figure 5 and Figure
6 one can see the influence of the notch shape on the
microstructure damage processes.

C. Long fibre composites

The failure of composites has been investigated extensively
from the micromechanical point of view. When a crack prop-
agates in a composite material in a direction perpendicular
to that of reinforced fibres, the failure process typically in-
volves four basic mechanisms: matrix cracking, fibre/matrix
debonding, fibre breakage and fibre pull-out. Critical problems
in application of these materials are the interfaces between
matrix and reinforcing fibres. The interface is very strip area
with primary key property including the fracture toughness,
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Fig. 6. J −R curve: K = 14 MPa.m1/2, K = 16, 3 MPa.m1/2, K = 20
MPa.m1/2 (sharp notch, σy = 300 MPa).

strength and fracture behaviour. This interface plays the crucial
role in stress transferring between reinforcement and matrix
and so it determines the mechanical and fracture behaviour.
The separation is given by the common influence between
normal and tangential directions at the interface. Compound
materials consist of two or more constituents with different
properties complementing other. The degrading properties of
one constituent are leveled off by better properties of the
others. Damage evolution is sensitive to morphological pa-
rameters of the microstructure such as volume fraction, size
and spatial distribution of reinforcements, interfacial strength
and size defect.

For glass fibre composites, the interfacial properties are
controlled by the sizing, which is applied to the glass fibres
during manufacture. The change of sizing results in changes of
these properties. This leads to the influence to the mechanical
properties such as strength and fracture toughness. The con-
cept of strength is used for characterizing crack initiation in
composite design, while fracture toughness determines crack
growth and damage development. Bridging occurs during
cracking in mode I crack growth along the fibre direction.
This failure mode plays an important role during delamination
of fibre composites and cracks splitting around holes and
notches. The fibre bridging zone must be modelled as a
discrete mechanism on its own; failure is not just controlled
by the cracking at the crack tip. The failure process can be
described by a bridging law, which describes the relationship
between the crack opening displacement and the local bridging
tractions resulting from the bridging ligaments. This paper
derives the necessary basics and equations to implement these
laws into the commercial finite element code Abaqus with a
cohesive user element. Different numerical adjustments of the
bridging law will be discussed in detail in oral presentation.
Crack aspects, such as crack opening shape and the influence
of bridging law parameters, are studied based on the numerical
results.

Now consider the specimen having a crack with bridging
fibres across the crack faces near the tip. The bridging law is
then taken to be identical at each point along the bridging zone.
Since fibres will fail when loaded sufficiently, we assume the

Fig. 7. Traction separation (bridging) law modification.

existence of a characteristic crack opening δ0, beyond which
the closure traction vanishes. Shrinking the path of the J-
integral to the crack faces and around the crack tip gives

J =

∫ δ∗

0

σ(δ) dδ + JTIP (7)

where JTIP is the J-integral evaluated around the crack tip
(during cracking is equal to the fracture energy of the tip, J0).
The integral is the energy dissipation in the bridging zone and
δ∗ is the end-opening of the bridging zone at the notch root.
The bridging law can be determined by differentiating Eq. 7:

σ(δ∗) =
∂JR
∂δ∗

(8)

where JR is the value of J during crack growth. Initially,
the crack is unbridged. Thus in Eq. 8 crack growth initiates
when JR = JTIP = J0. As the crack grows, JR increases in
accordance with Eq. 7. When the end opening of the bridging
zone δ∗ reaches δ0, the overall R-curve attains its steady state
value Jss.

There are a variety of possible methods for implementing
cohesive laws within commercial finite element programs.
The most versatile is the development and programming of
cohesive elements. These elements are in most cases defined
with zero thickness and prescribe stresses based on the relative
displacement of the nodes of the element. Similar work has
also been undertaken with spring elements (force-opening
relation), although in this case there might be simplifications
required when calculating the equivalent nodal spring forces
from the surrounding elements. The procedure is not straight
forward when springs are connected to elements with non-
linear shape functions, such as 8-node elements.

The constitutive expression can be expressed either with
a linear displacement term for ∆u, or with a coupled form,
where ∆u is included with non-linear dependence. The pre-
ferred option depends on the form of the constitutive equation
Eq. 7 and its numerical implementation:

JR(δ∗) = J0 + ∆JSS

(
δ∗

δ0

)1/2
. (9)

Two points need to be addressed during the numerical ad-
justment: removal of the stress singularity at ∆u = 0 and
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Fig. 8. Image of the microstructure.

Fig. 9. Traction separation law after calibration procedure.

incorporation of the initial fracture strength J0 improved
traction separation law as can be seen in Figure 7. The material
used for the bridging stresses modelling was a commercially
available SiC Nicalon fibre reinforced borosilicate glass matrix
composite (see Figure 8). Properties of the glass matrix, SiC
fibres and composite were: Young modulus 63, 198, 118 GPa,
Poisson ratio 0.22, 0.20, 0.21, tensile strength 60, 2750, 600-
700 MPa.

For the crack growth modelling the following data deter-
mined experimentally were used: J0 = 6200 J/m2, Jss = 18500
J/m2, ∆uc = 0.1 mm, ∆u1 = 0.013 mm. Calibrated data and
the final shape of the bridging law can be seen on the following
Figure 9.

D. Ceramics

Ceramics such as silicon nitride (Si3N4) are acknowledged
as the first choice for modern bearing applications. However,
in addition to severe working conditions such as high tem-
peratures and corrosive environments, rolling where elements
are subjected to high cyclic contact stresses during service
[1]. It is well recognized that the properties of ceramics can
be profoundly enhanced by suitably tailoring the microstruc-
ture based on realistic application and working conditions.
Namely, the effects of tailoring the grain structure on the
fracture toughness of silicon nitride were demonstrated in [2].
Similarly, the influence of boundary phase manipulation and
the effect of grain bridging on the strength and toughness
were illustrated in [3]. In order to improve the lifetime of
ceramic components and realize cost and energy efficient

manufacturing processes, two main issues have to be ad-
dressed: i) materials with increased functionality and optimum
properties should be fabricated and tailored for a wide diversity
of requirements (materials design and optimisation); ii) the
progress of degradation processes should be predicted and
evaluated (damage analysis), focusing in particular on damage
mechanisms occurring under realistic working and loading
conditions. his knowledge leads to the design of materials with
superior performance in machine components.

Two directions were investigated (in the pressing direction
and perpendicular to this direction). The level of anisotropy
in elastic modulus values is relatively low: around 1 GPa, i. e.
EA = 293.07 GPa and EB = 293.83 GPa; Poisson ratio has
been determined to be 0.283.

The extended finite element method (XFEM) was first
introduced by [34]. It is an extension of the conventional
finite element method based on the conception of partition
of unity by [35]. The presence of discontinuities is ensured by
special enriched function. For purpose of fracture analysis,
the enrichment function typically consist of the near tip
asymptotic functions that captures singularity around the crack
tip and the discontinuous function that represents the jump in
displacements across the crack tip surfaces. The approximation
for displacement vector function u with the partition of unity
enrichment is

uXFEM =
∑
i∈I

Ni(x)ui +
∑
i∈J

Ni(x)H(x)ai (10)

+
∑
i∈K

[
Ni(x)

4∑
α=1

Fα(x)biα

]
where Ni(x) are the usual nodal shape functions; ui is nodal
displacement vector associated with the continuous part of the
finite element solution, the second term is product of the nodal
enriched degree of freedom vector ai, and associated with
discontinuous jump function H(x) across the crack surfaces,
the third term is the product of the nodal enriched degree of
the freedom vector biα and associated elastic asymptotic crack
tip function, Fα (x).

The formulae and laws that govern the behaviour of the
XFEM cohesive segments for crack propagation are very
similar to those used for cohesive elements with traction
separation law. The similarities extend to the linear elastic trac-
tion separation model, damage initiation criteria and similar
damage evaluation law. Input parameters used for modelling
using Abaqus are: the maximum principal stress criterion 1000
MPa, damage evolution K = 5.3 MPa.m1/2, Young modulus
293 000 MPa, Poisson ratio 0.283.

Saturation in the J −R curve has been reached for XFEM
modelling substantially later than for the cohesive zone ap-
proach. Usually the crack length was greater than 20 µm.
This observation is predicable because the XFEM model is
not incorporating the bridging mechanism into the cohesive
law. The expected behaviour of the J − R curve based on
the literature data should be different and the saturation is
expected for the crack lengths in the interval of 10-15 µm.
The discrepancy comparing literature with our results can be
seen in the different microstructure and / or due to numerical
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Fig. 10. Bridging law after calibration procedure.

Fig. 11. J-R curve prediction.

oscillation which can lead to the underestimation of K-values.

IV. CONCLUSION

The cohesive zone modelling has the capacity to investigate
the interplay between the local microstructure and the various
material properties (mainly fracture toughness). The shape of
the J−R curve is more determined by the material curve than
by the shape of the traction separation law and reflects the
material microstructure. Knowledge and practice experiences

Fig. 12. J-R curve prediction for XFEM and cohesive modelling.

how to use cohesive elements for the ductile and brittle
fracture has been obtained and the crack growth modelling
for heterogeneous materials has been tested too. Modelling
has been confronted with the classical fracture mechanics
concepts. Increased attention has been applied to intermetallics
and to the influence of the microstructure on the fracture
process. To determine the basic material characteristics of
intermetallic alloys is not the standard thing. Therefore for the
numerical modelling the parametric approach has been applied
to find the connection between fracture micromechanisms
and input data. Obtained results and running analysis of the
microstructure will enable to concentrate our future work for
crack prediction in dimension close to grain size.

For fibre composites in mode I crack growth in unidirec-
tional fibre composites is modelled; fibre cross-over bridg-
ing occurs during cracking along the fibre direction. Crack-
bridging mechanisms can provide substantial increases in the
toughness coupled with the strength in ceramics and saturation
in the J − R curve has been reached for XFEM modelling
substantially later than for the cohesive zone approach.
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