
 

 

  
Abstract—This paper discusses a human-machine interaction 

paradigm based on an operator’s body gestures and voice commands 
for assistive applications. In the context of the humanoid robots 
already present on the market for the large public use, assistive 
robotics became a wide usage area to exploit the potential synergy of 
human-robot cooperation in order to extend and enable human 
activities that would otherwise be difficult or even not possible for 
the human alone. To enable these applications, simple and natural 
communication and interaction means are needed. The algorithms 
presented in this paper can be used for solving various assistive tasks 
and are based on Dynamic Time Warping (DTW) and Isolated Word 
Recognition (IWR). The system is tested successfully on the 
particular case of NAO humanoid robot, within an experimental 
scenario.  
 

Keywords—gesture recognition, voice commands, DTW, 
assistant robot, HRI. 

I. INTRODUCTION 
HE recent research in human-robot interaction is focused 
on creating domestic applications, with an increasing 

number of personal service robots that invade our homes or 
offices. Intelligent robots provide their support in many 
unpleasant, tedious human activities. These robots need to be 
capable of acquiring sufficient understanding of the 
environment, being aware of different situations, detecting and 
tracking people, as well as establishing a successful 
communication with humans in order to be able to cooperate 
with them [1]. 

An assistant robot should be able to interpret the verbally or 
non-verbally given instructions of the human [2]. In such 
context, researchers strive to find new simpler, more intuitive 
and human-like ways of interaction, that at the same time 
require less computational power and less sophisticated sensor 
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devices. Along with other more recent approaches, the use of 
body gestures still remains a natural and thus an attractive 
alternative to cumbersome interface devices for human-
computer interaction (HCI). Among various actions, the 
pointing gesture is natural, and perhaps, the most intuitive 
interaction paradigm, effective even in noisy environments and 
useful for commanding or simply messaging a robot [3].  

In this paper we focus on the development of natural 
human-robot communication by means of human speech and 
gesture commands. In particular, we focus on using Dynamic 
Time Warping (DTW) for gesture recognition. The resulting 
module is used in combination with voice recognition to create 
human-like capabilities and behavior of the assistant robot. 
Thanks to this approach the robot gathers a very powerful 
ability: that of moving in an indicated direction and perform a 
required task - a High Level Interaction (HLI) paradigm [4] 
that we refer hereinafter as “point-and-command”. Basically, 
this interaction metaphor is about indicating the robot a spatial 
location and a task to be performed there. 

II. BACKGROUND 
Robots have been used as research tools in a variety of 

applications [1], [5], [6]. Some of them focus on how robots 
are accepted in the current society [7], suggesting an 
increasing presence of intelligent robots in our daily life, 
provided natural interaction is enabled. Latest research points 
the use of gestures as a way of interacting with computers and 
robots, as a natural and intuitive way of communication or 
option selection [1], [8].  

There are many techniques used for gesture recognition [9], 
[10]. Commonly, these techniques are divided in two main 
categories: sensor-based and vision-based. While for the first 
category, the user is forced to bear different sensing devices 
attached to his body (gloves, magnetic trackers), in the vision-
based approach the user does not require to wear any contact 
devices. The technique uses a set of visual sensors and 
algorithms to recognize gestures [8]. At the same time, 
gestures can be static or dynamic. For detecting dynamic 
gesture recognition in real time, there are issues  in 
determining the start and the end points of a meaningful 
gesture pattern from a continuous stream [11]. While static 
gesture (pose) recognition can typically be accomplished by 
template matching and pattern recognition techniques, the 
dynamic gesture recognition problem involves the use of more 
advanced techniques [12].  

Given these observations, researchers have proposed 
various solutions to optimize recognition of gestures [3], [11]. 
In this paper we will refer only to those based on vision, 
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generally body gestures. As shown in [13], the most widely 
used techniques for recognizing body movements are Hidden 
Markov Model (HMM), Dynamic Time Warping (DTW), 
Finite State Machine (FSM) and Neural Networks (NN). 
HMM was used in [3] for recognizing pointing gestures in 
order to control a mobile robot. They used 3D particle filters 
and a cascade of two HMM to estimate the pointing direction, 
dealing both with large and small pointing gestures. In [14] a 
probabilistic model, dynamic Bayesian network (DBN) was 
used for hand gesture recognition, which includes HMMs and 
Kalman filters. Also, NN in combination with HMM was used 
in [15] for hand gesture recognition, but the algorithm involves 
high computational costs.  

Dynamic Time Warping was first used for speech 
recognition [16], but was extended also to other areas, 
including gesture recognition [17]. As we have seen above, 
there are several techniques used for detection and recognition 
of human gestures, but the most popular are HMM and DTW. 
Some papers have demonstrated that better results can be 
obtained with DTW instead of HMM both in voice recognition 
(animal vocalization) [18] and gesture recognition [12]. 

A. Gesture recognition with DTW 
In order to detect gestures with a video camera, pattern 

matching technique or other similar algorithms can be used. 
Pattern matching involves the use of recorded drawings of 
gestures that serve as templates against which detected 
gestures can be compared. An example of such a technique is 
DTW, a template matching algorithm. The patterns are in this 
case a time sequence of measurements. DTW computes the 
cumulative distance between each pair of values of both time 
sequences, giving a measure of similarity between the two time 
sequences. 

Various improvements have been made to the DTW 
algorithm, to make it more efficient, according to various 
authors. The methods used to make DTW faster fall into three 
categories [19]: constraints, data abstraction, indexing. In [20] 
a parallelisation of the original DTW algorithm is presented, in 
order to monitor multiple data streams using graphic processor 
units (GPUs). Lately, a probabilistic approach was proposed in 
[21]. Our technique combines data abstraction with lower 
bounding technique to improve performance.  

B. Voice commands recognition 
There are many studies on speech recognition with specific 

interest in commanding robots. The main goal of almost any 
work in this area is to achieve a natural-language 
communication with the robot assistant. 

Various algorithms are used to achieve speech recognition. 
One of them is the Dynamic Time Warping (DTW), which is 
based on pattern comparison, fairly similar to the one used in 
video processing [22]. Other studies use Hidden Markov 
Models (HMMs) [23], empowering statistics to handle a 
specific vocabulary. Artificial Neural Networks (ANNs) is 
another technique used one its own or combined i.e. with 
HMM for achieving speech recognition [24]. 

For this study, we use a vocabulary approach based on 
Microsoft Kinect speech recognition library. The algorithm 
behind the library is as follows: an audio stream taken from 

Kinect sensor is parsed and then vocal utterances are 
interpreted. If the engine recognizes some elements, they are 
sent to the processing unit. If the command is not recognized, 
it removes that part from audio stream.  

III. OVERVIEW OF THE PROPOSED SYSTEM 
To identify the human gestures we used a Kinect camera 

mounted in front of the user.  This corresponds to a human 
sitting at his desk situation (Fig. 1). The Kinect camera records 
the movements and listens for voice signals recognizing the 
words spoken by the user. As a result, it sends a 'wake up' 
command to the robot.  

The assistive robot is physically able to autonomously walk 
to a specified location, recognize an object and grab it. In 
order to be able to command the robot for performing these 
tasks, a vocabulary of words and gestures was designed. It 
consists of several arm movements and speech commands 
which may be combined in several ways. Since the 
environment can be noisy or with poor lighting conditions, 
some commands have been chosen for use in both modes of 
interaction (by gesture and voice). Thus, for starting the 
interaction with the robot, the users can perform an 
initialization gesture or can speak the robot name.  

The robot has a fixed initial position, which is marked with 
a NAOmark, as in Fig. 2. Objects are placed in different 
positions in the room. After the connection with the robot is 
established, the user can ask the robot to bring him an object 
indicated by pointing gesture (Fig. 8). The robot will move in 
the indicated direction, will identify the object and will grab it, 
then will move back to the user. If the robot encounters certain 

difficulties such as obstacles or can’t identify an object, it asks 
by voice or by a predefined gesture. In [4] this paradigm 
(name here “point-and-command”) was defined as a high-level 
command, which do not explicitly specify the target location, 
but help robots in autonomous target selection. 

A. Hardware and software prerequisites for theoretical 
and experimental studies 

Microsoft Kinect sensor was used in this work for both 
gesture and speech recognition. This sensor is a low cost 
capture device originally developed for the Xbox 360 video 
game console. It contains a RGB-D camera for image 
acquisition and an array of four microphones for capturing 

 
Fig. 1. Overall view of the system architecture 
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sound and locating its source. Due to its benefits, Kinect was 
used for research purposes, enabling touch-less interactions 
through voice and gesture. Users can move freely, without 
being constrained to wear other sensors or devices on their 
body. 

Kinect for Windows SDK was used, which is a toolkit that 
provides an interface to interact with the device. It provides 
API libraries for .NET and C/C++ applications that run on 
Windows platforms. 

Kinect SDK tracks 3D coordinates of 20 body joints in real 
time (30 frames per second) and the obtained joint positions 
are used to recognize the gesture or posture which will 
command the robot.  

A desktop PC is the main processing unit. As is illustrated 

in Fig. 1, on this computer runs the application that allows 
gesture recognition, voice recognition, a speech/gesture 
integrator system and the communication with the robot. The 
computer is equipped with an Intel core i7 X 990 CPU 3.47 
GHz, 12 GBs RAM.   

IV. METODS 

A. Human's gestures recognition  

In gesture recognition, a comparison between two sequences 
is essential. Dynamic gesture recognition typically contains 
two components: segmentation and recognition [25]. 
Segmentation is the process of locating a gesture from a frame 
sequence. We use DTW technique to assess the similarity 
between two video sequences obtained from Kinect sensor. 
The input data is compared with a predefined sequence; the 
two sequences are aligned in order to determine the minimum 
cost path. This minimum cost represents the optimal alignment 
between the two sequences, which means that the 
corresponding gesture is considered to be recognized. 

A problem that occurs is to know when to start the gesture 
recognition procedure, because if a gesture differs only in 
starting position from the predefined sequence, the result of 
the alignment with DTW technique will be very different. For 
this, we choose to use an initialization phase, which consists of 

a simple word spoken by the user, by which the robot is 
warned that the user wants to start a gesture interaction. When 
that predefined word is pronounced, the program automatically 
starts the gesture recognition process. The end of the gesture is 
considered when the hands stops moving.  

B. Structure of the proposed algorithm 
The flow diagram of the proposed algorithm is shown in 

Fig. 3. As it can be seen, the first stage is to detect the human. 
After that, features are extracted. The DTW algorithm is 
applied to the extracted vectors and if the gesture is 
recognized, then the robot will perform the requested action. 
Otherwise, it will initiate a speech interaction in order to ask 
for further details.   

The proposed gesture recognition algorithm involves 4 
steps: 1) automatic human detection, 2) feature extraction, 3) a 
gesture pattern stage, where gestures are compared with 
reference gestures, 4) gesture recognition (Fig. 3). 

The first stage of the algorithm is to detect the human body. 
This is facilitated by the Kinect sensor that can find the 
skeleton using a very fast and accurate recognition system that 
requires no setup, because a learning machine has already been 
instructed to recognize the skeleton. Joint positions are 
obtained like in Fig. 4. For this study, just the arm joints are 
relevant, especially hand, wrist and elbow joints. The 
coordinates of that joints form a feature vector.  

For simplicity, two assumptions were made: first, it was 
assumed that a single person is presented at a time in front of 
the sensor and second, that person has a sitting posture. The 
initiative of initiating an interaction with the robot belongs to 
operator. After the initialization stage, the system is ‘prepared’ 
to recognize the gesture performed by the user. The gesture 
should be performed quickly because is represented on 33 
frames. After the 33th frame, the feature vector is compared 
with sample gestures. Once a gesture is recognized, depending 
on its significance, the 
system will decide what 
task the robot should be 
performed.  

Feature extraction. 
The most important 
information about a 
body gesture is the 
motion of limbs. In this 
case, upper limbs are 
relevant because the 
system was designed for 
humans sitting on chair. 
The motion of an arm is 
described by its 
trajectory in space. This 
trajectory represents a 
time sequence of 
positions of the arm.  

The feature vector captured from Kinect contains the x, y 
positions of each arm joint. This vector is then preprocessed in 
order to prepare it for DTW computation. Preprocessing stage 
includes eliminating missing or redundant data and other 
variations and set vector length. The feature vectors that are 

 
Fig. 2. Layout of the testing room 

 
Fig. 3. Gesture recognition flow 

diagram 
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characteristic for a command gesture are extracted and then 
stored into a database. 

The minimum distance from the Kinect device for an 
accurate detection is 60 cm. The sensor is placed on a tripod, 
in front of the user’s desk (see Fig. 8).  

C. DTW Method 
Dynamic time warping (DTW) is a powerful technique in 

the time-series similarity search [26]. An overview of this 
method is given below. 

Given two time series sequences: x = x1, x2, … , xi, …., xn of 
length n and  y = y1, y2, …, yj, …, ym of length m, a n-by-m 
matrix can be obtained, where each element of the matrix 
represents the distance between two elements of the time 
series, named cost matrix. The optimal alignment between x 
and y needs to be found, such that the overall cost is minimal. 
A warping path w = w1, w2, …, wk, …, wp defines such 
mapping between the elements of the two time series (Fig. 5). 

DTW(x, y) = min   
The DTW warping path is constrained to follow some 

restrictions, like monotonicity, continuity, warping window, 
slope constraint and boundary conditions [27]. 

The cost for the optimal alignment is recursively obtained 
by:     

  As we said above, new versions of DTW algorithm were 
developed for improving speed, while others were developed 
for improving accuracy. The lower bound technique for DTW 
was first proposed in [28]. A lower-bound function for DTW 
is a function that always returns a value smaller than or equal 
to the actual DTW distance. The most cited lower bound is 
LB_Keogh, which uses the warping path to compute an 
envelope on the warping cost. Improved versions of the 
envelope technique were proposed in [29].  

The warping envelope of time series x is represented by the 
pair U(x) and L(x), where: 

U(x)i = maxk {xk | |k-i| ≤ γ} 

L(x)i = mink {xk | |k-i| ≤ γ },  i = 1, .., n, where γ is a local 
constraint 

The lower bounding function LB_Keogh is defined as: 

 
In order to satisfy the requirements of a robust gesture 

recognition system for interaction with a mobile robot, we 
propose an improved version of DTW, that combines several 
techniques, as will be shown below. 

The time complexity of DTW algorithm is O (n*m) for two 
sequences like those presented above, which makes the 
method not practice for longer time series. Although our 
sequences, represented by feature vector are small, we decide 
to use the algorithm presented in [19], which is O(n) both in 
time and space. The presented method, named FastDTW, uses 
a multilevel approach with three steps: coarsening, projection 
and refinement. First, the size of time series is reduced by 
averaging adjacent pairs of points, and then a warp path is 
calculated for this lower resolution, which will be used to find 
the warping path for higher resolutions. Finally, the warping 
path is refined, searching for the optimal path on each side of 
the projected path, according to a radius parameter, that 
indicates the number of cells to be evaluated.  

FastDTW was slightly modified. After the coarsening step, 
the minimum distance warping path was obtained using 
another technique, a lower bound function introduced in [29], 
that that offers a plausible speedup [30]. Given the time series 
presented in section 2.1, LB_Improved is defined as: 

LB_Improved (x,y) = LB_Keogh(x,y) + LB_Keogh(y, 
H(x,y)) , where H(x,y) is the projection of x on y: 

 , i = 1, 2,…,n 

DTW compares the sequence obtained for an unknown 
gesture to one or more reference templates. Having more 
reference templates, the recognition rate will be higher, but the 
computing time also increases. For this reason, an approach 
implemented in [31] for speech recognition is used. This 
algorithm, named Quantized DTW, stores one reference model 
for each gesture. This algorithm was adapted for gesture 
recognition.  

The Quantized DTW together with FastDTW and 
LB_Improved were combined in order to obtain a fast and 
accurate gesture recognition algorithm. 

V. HUMAN-ROBOT INTERACTION 
HRI inputs are diverse, but we focus in this paper on vision 

and speech. Computer vision was used to process human 
gestures and to detect objects, while speech was used to 
exchange information between human and robot. User can give 
instruction to the robot using both gesture and voice, in the 
same way as people communicate with each other.  

A. Gesture interaction 
A gesture is a bodily movement made intentionally by a 

human in conversation, in order to aid in better understanding 

 
Fig. 4. Kinect joints 
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of what he said. In human communication, hand, head and arm 
gestures play an important role.  

In HRI domain, since assistive robots interact with non-
expert users, natural interfaces are essential and therefore 
robots should be able to understand the modalities used by 
humans during interaction. The same as in human-human 
interaction, a gesture can provide information or to 
communicate intention to robot. A set of gestures was created, 
which represents the ‘command vocabulary’ for HRI. In Table 
1 are shown the defined gestures. Most of the gesture were 
inspired from [32]. 

Special attention was given to pointing gesture because is an 
easier way to draw robot’s attention indicating an object or a 
location in space and is useful for non-expert users. Once the 
gesture was been detected, the next step is to estimate the 
pointing direction. For this work, we need to calculate the 
angle between user’s arm and shoulder center. Three joints 
from the skeleton describe this gesture: shoulder center, 
shoulder and hand (Fig. 6). The estimated angle was calculated 
using the following formula:  

 
, where v1, v2 are 

two vectors: 
v1 = Shoulder – 

Hand 
v2 = 

Shoulder_Center - 
Shoulder   

The pointing 
gesture is used 
only when the 
robot is in the 
home position, 
knowing its 
orientation and the 
distance from 
Kinect. Otherwise, 
it does not know in 
which direction to 
go. 

All gestures are 
made with arms, 

excepting two: head nod and head 
shake. We choose to use these 
gestures because are the most 
commonly used in interpersonal 
communication when they accept or 
reject something. As simple head 
tracking algorithm was used, taking 
into account the head rotation on 
the sagittal or transverse plane. 

Some gestures have different 
meanings depending on the context.  
For example, when the user says 
‘Rotate left’ and robot is moving, it 
will change direction of walking to 
left with 15°. If the robot is not 
moving, the same command will 

refer to robot’ camera, and then it will rotate the head 15° to 
left.  

To make the 
interaction more 
realistic some 
basic behavior for 
humanoid robot 
were developed 
(like shrugging, 
confused - robot 
scratches its head.  

B. Speech 
interaction 
As for gesture interaction, a set of speech commands was 

created. In Table 2 are shown the basic verbal phrases used in 
interaction, but is not a complete table because some of them 
can be combined to form predefined utterances, as it will be 
shown in below. 

For starting the interaction with the robot, the user is 
required to say the robot’s name (“NAO”) in order to know 
that user is speaking with it.  

The voice command system was created using Kinect for 

 
Fig. 5. a) The alignment of two time series (x, y) by DTW; b) and the mapping between them – the 

warping path (with blue dots) 

Table I. Gesture vocabulary 

 

Fig. 6. Pointing angle 
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Windows SDK, combined with Microsoft Speech Recognition 
(MSR) API. Kinect SDK provides various audio capabilities 
and Microsoft Speech platform provides classes to work with 
speech recognition captured by Kinect sensor, converting 
spoken words to written text. The sensor can detect audio that 
is within ± 50 degrees in front of sensor and also supports up 
to 20 dB of ambient noise cancellation.    

Microsoft Speech Recognition has advanced grammar and 
vocabulary and it doesn't require any training for the models. 
The user should create his grammar with the desired keywords. 
A Kinect handler will initialize audio stream and will start the 
audio capturing. Once the speech recognition engine starts, 
user will load the grammar and from now the system is ready 
to listen from Kinect. Then, each recognized word has a 
confidence level, showing the reliability of the detection.  

C. Gesture/speech fusion 
Speech and gesture recognition modules are run 

simultaneously. After the command “Attention” (by gesture) or 
“NAO” (by voice), the system waits for another command that 
can be by gesture or by voice. There are four possibilities 
resulting from combination of interaction modalities: only 
gesture (G), gesture+voice (GV), voice+gesture (VG), only 
voice (V). Each command is sent to the decision system, which 
is based on different rules and, according to these rules, the 
task that have to be performed is identified. If the commands 
are GV or VG, the system decide if gesture command is 
congruent or not with voice command. The tasks or actions 
implemented are the following: navigation (N), fetching (F), 
grabbing (G), pushing (P), and teleoperation (T).  

The following rules constitute part of the knowledge base 
and express how the system has to react: 

If <gesture command> is C and <voice command> is GL 
then task is N 

If <gesture command> is Sp and <voice command> is B 
then task is F 

If <gesture command> is Ob and <voice command> is GO 
then task is G 

If <gesture command> is A and <voice command> is C then 
task is T 

If a gesture command is incongruent 
with the voice command, the robot will 
respond by predefined behaviors or by 
speech. Otherwise, the system decides 
the action given by one command only or 
both congruent commands.  

D. Robot tasks 
Programming of the robot consists 

of path planning according to the target. 
So a task in our work is defined as 
movement to a location plus a simple 
manipulation (two sub-programs). Each 
task has so need 2 essential inputs: 
location and handling. These two 
information are obtained by the robot 
through dialogue: the robot asks by voice 
and human answer by one of the 
mentioned metaphors. We choose to use 

some simple tasks that are commonly found in home 
environments: push, fetch.  

We choose also to use only the basic capabilities of the 
robot and not to enhance them. The system uses an external 
computer to perform all the computations concerning 
gesture/speech interaction, video processing, and so on.  

For grabbing an object task, an algorithm inspired from 
[33] was used for measuring the distance to the object with 
video camera and sonar sensors. 

For simplicity, we choose objects with known shapes: 
balls, cubes, and cones (Fig. 7). Each object has some 
particular properties or attributes that are shown in Table 3.  

Shape attribute refers to volumetric property of the object 
(2D form). The software associates the object name with a 
simplified representation of the object, corresponding to shape, 
color, and size properties. 

An image taken by the robot’s camera is first segmented 
using a color detection algorithm using OpenCV. In this 
operation, the 
robot tries to 
separate the 
object in the 
scene from the 
background. 
The shape of 
the objects is 
detected using 
edge detection 
algorithm [34]. 

VI. RESULTS 
In this section will be presented the experiment conducted 

with the aim to test the performance of the system and to 
evaluate operation and precision dialogue in global 
application. The experiments were conducted in our institute 
environment. The user asked NAO to follow his instructions 
given by means of multimodal requests. NAO is asked to go in 
a desired direction indicated with pointing gesture. The robot 
will navigate in that direction and will bring to the user an 

Fig. 7. The objects used for experiment 

Table II. Speech vocabulary 
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object whose name and properties are sent to robot by voice 
command.  

A simple dialogue between user (U) and NAO humanoid 
robot (N) is proposed. The experiment was conducted by 4 
persons for 3 times. The user asks NAO to bring him a red ball 
located in a certain position in the environment. Below is 
shown the whole dialogue. 

U: ‘NAO!’ 
N: ‘Yes, I hear you” 
U: ‘Please, give me the red ball from there!’ 
N: ‘Can you show me how the red color looks like?’  
(user show it a sample painted in red) 
N: ‘What about the shape of the object?’ 
U: ‘The ball has this shape’(user show it a circle drawn on a 
paper or by gesture – draw a circle in the air with his hand) 
(the robot walk in that direction – when it identify the red 
color, it will goes toward to identify the shape) 
N: ‘Is that the object?’ 
U: ‘No, I need a bigger one’ 
(the robot will continue looking until it find a bigger ball)  
U: ‘Grab the object!’ 
(the robot decide if it can grab the object with one hand or 
with both hands) 
U: ‘Bring it to me!’ 
(NAO is looking for NAO mark and go in that direction) 
U: ‘Leave it’ 
(NAO leave the object) 
U: ‘Thank you!’ 
N: ‘Do you want another thing?’ 
U ‘No’ 
(NAO will go to home position) 

During the experiment more gestures have been used in 
order to test the performance of recognition algorithm, 
especially for navigation task. The confusion matrix among 
gesture commands for 4 users is shown in Table 4.   

VII. DISCUSSION 
In this work we describe a framework for a natural and easy 

human-robot communication and interaction. While most of 
the multimodal HRI systems proposed in literature focus on a 
single modality, our system allows the users to express their 
instructions as combinations of gestures and speech inputs. 
The main strengths of our system are: the improved method of 

gesture detection, 
easy and natural 
interaction 
through gestures 
and voice 
commands, and 
the gestures and 
voice feedback 
provided by the 
robot.  

The purpose of 
the interface is to allow expert and non-expert users to 
cooperate and interact with an assistant robot operating in a 
domestic environment. A gesture and a speech vocabulary 
were implemented and the commands can be sent by one or 
both modalities. So, a first objective of our research was to 
provide the robot with social interaction capabilities, which are 
essential for assistive robots applications. 

Most of the work was focused on gesture interaction, 
specifically gesture recognition. An improved DTW method 
was implemented and tested, with good results both in 
accuracy and efficiency. The method increases the robot 
reactivity at the human requests enhancing the naturalness of 
the interaction. Combined with the speech/gesture capability 
resulted in a versatile interface that facilitates powerful 
interaction paradigms like the “point-and-commands” one.  

However, there are some problems or limitations that were 
encountered during the experiments and that still need to be 
addressed. The recognition accuracy is dramatically affected 
when there are poor lightning conditions or noise in the 
operation environment. On the other hand, when multiple 
humans appear in the visual range of sensor, the system has 
difficulties in identifying the right user. In some situations the 
robot was unable to identify markers and lose orientation. 
Also, some smaller obstacles were not detected and sometimes 
the robot falls.  

The above problems and others show that several further 
developments are needed to be addressed in our future 
research, as follows: 
- Expanding the gesture vocabulary by adding also hand 

gestures, that are more intuitive and which can express 
more of the user wishes. 

- Implementing a more advanced method to detect object with 
different shapes and colors and for object manipulation. 

- Considering the possibility 
that more users wish to 
interact with the robot in the 
same time. In this case, the 
system must be intelligent 
enough to select the user that 
will interact with the robot. 

- Developing more complex 
scenarios with a variety of 
tasks that have to be 
performed by the robot. 

Table III. Objects and their attributes 

 

Table IV. Confusion matrix for navigation task 
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Fig. 8. The testing room. The user indicates the location by pointing 

and verbally the task to be executed 
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