Urban growth and LULC change from 1975 to 2015 through RS/GIS in Samara, Russia

M.S. Boori, A. Kupriyanov, V.A. Soifer, and K. Choudhary

Abstract—The main focus of this study is to know the changes in urban accumulation, population, land use and its correlation with the population, migration and urbanization led problems related with water and environmental degradation. This study illustrates the spatio-temporal dynamics of urban growth and land use changes in Samara city, Russia from 1975 to 2015. Landsat satellite imageries of five different time periods from 1975 to 2015 were used to know the changes. Supervised classification methodology has been employed using maximum likelihood technique in ArcGIS 10.1 Software. By applying classification methods to the satellite images four main types of land use were extracted: water, built-up, forest and grassland. Then, the area coverage for all the land use types at different points in time were measured and coupled with population data. The results demonstrate that, over the entire study period, population was increased from 1146 thousand people to 1244 thousand from 1975 to 1990 but later on first reduce and then increase again, now 1173 thousand population. Built-up area is also change according to population. The present study revealed an increase in built-up by 37.01% from 1975 to 1995, than reduce -88.83% till 2005 and an increase by 39.16% from 2005 to 2015, along with the increase in population, migration from rural areas owing to the economic growth and technological advantages associated with urbanization.

Keywords—Urban growth, land use/cover; remote sensing; change detection analysis and GIS

I. INTRODUCTION

The official foundation date of Samara is 1586. That time small fortress was built at the confluence of the Volga and Samara rivers. It was protecting the eastern borders of the Russian state from nomads. After building the quay, Samara settlement became the economic and diplomatic center of Russia. In 1780, the town became the capital of Simbirsk region. The economy of Samara was growing quickly at the end of the 19th and beginning of the 20th centuries (broad trading and milling business). The population of Samara at the beginning of the 20th century was about 100,000. It was large trade and industrial center of the Volga region of Russia [1].

During the World War II, it was chosen to be the USSR capital in case of Moscow fall. Here defense industry was developing fast after the World War II. Soon the city became so called “closed city” of the USSR. The spaceship of Yury Gagarin (first man in space) “Vostok” was built here. Now Samara is Russian large industrial and cultural center with multinational population and dramatic history. Samara is a large industrial center of the whole Volga river region. The city is among top Ten Russian Cities by industry volume. There are over 150 large and medium industrial plants in the city. About 25% of all bearings and 70% of all cables produced in Russia are made in Samara. It is producing various outer space vehicles and machinery, aircraft, power stations, refinery, cranes. Samara food industry is known for its chocolate, vodka “Rodnik” and “Zhiguli” beer. Samara is one of the largest transportation junctures in Russia; it is crossed by the shortest ways from central and Western Europe to Siberia, Middle Asia and Kazakhstan [1].

Urban sprawl is defined as an inefficient urban development often linked to sparse building density over rural areas [2, 3]. Only 3 present earth surface covered by urban area [4, 5] but due to urbanization, population growth, economic development and unplanned development are the main cause of environmental and social problems in modern cities. Urban areas are faced with distinctive, or ‘systemic’, issues arising from their unique social, environmental and economic characteristics [6]. Some glitches such as health risks including air pollution, occupational hazards, traffic injury, risks caused by dietary and social changes [7] as well as destruction of vegetation, agricultural lands, population of underground and surface water sources and climate change [8] are associated with urban expansion. These parameters are decreasing the quality of life in urban and rural societies. In developing cities, information about unplanned settlements is often unavailable. It is critically important to properly characterize urban expansion before developing a comprehensive understanding of urbanization processes [9, 10]. The unplanned and uncontrolled rapid growth has resulted in serious negative effects on the urban dwellers and their environment [11]. As all over the globe cities are growing very quickly so it is necessary to protect natural resources with urban growth [12]. More than ever, it is imperative that urban planning focus on evidentiary models and valid spatial data.

Earlier studies show that urbanization happens because problems move into urban areas to seek economic opportunities and to improve their standard of living. People in rural area have to depend on changeable environmental conditions and
in times of drought, flood or pestilence, survival becomes extremely problematic. This is very different in urban where all the facilities are well built to make human life more comfortable and the main attraction of urban is easy access to wealth [13, 14]. Usually land uses and urban growth in remote sensing involves the analysis of two registered, aerial or satellite multi-spectral bands from the same geographical area obtained at two different times. Such an analysis aims at identifying changes that have occurred in the same geographical area between the two times considered [15]. Satellite remote sensing is a potentially powerful means of monitoring land-use change at high temporal resolution and lower costs than those associated with the use of traditional methods [16]. Remote sensing data is very useful because of its synoptic view, repetitive coverage and real time data acquisition [17]. The digital data in the form of satellite imageries, therefore, enable to accurately compute various land cover/land use categories and help in maintaining the spatial data infrastructure which is very essential for monitoring urban expansion and land use studies [17, 18]. Land use/cover changes is a widespread and accelerating process, mainly driven by natural phenomena and anthropogenic activities, which in turn drive changes that would impact natural ecosystem [19, 20]. Understanding landscape patterns, changes and interactions between human activities and natural phenomenon are essential for proper land management and decision improvement.

To know the spatial patterns of Samara city urban growth over in a timeframe, city must be systematically mapped, monitored, and accurately assessed using satellite images with conventional ground truth verification data. This type of analysis work provides a scenario of where growth is occurring and helps to identify the environmental and natural resources threatened by such development and suggest the likely future directions and patterns of growth. The current study has three specific objectives: (1) investigate the growth pattern of Samara city during 1975 – 2015 by using remote sensing and GIS; (2) analyze the temporal and spatial characteristics of urban expansion in Samara from 1975 to 2015 and (3) detect and evaluate the land use and land cover change due to urbanization between 1975 to 2015; (4) analyze the main factors governing urbanization and land use and land cover change; (5) evaluate current local environmental and natural resource protection and development policies.

II. STUDY AREA

Samara region is situated in the South-East of the Eastern European Plain in the middle flow of the greatest European river, the Volga, which separates the region in two parts of different size, Privolzhye and Zavolzhye. Study area (fig. 1.) Samara known from 1935 to 1991 as Kuybyshev, is the sixth largest city in Russia and the administrative center of Samara Oblast. Geographical coordinates are 53°12’10”N, 50°08’27”E (fig. 1). The region occupies an area of 53.6 square kilometers (0.31% of the territory of Russia) and forms a part of the Volga Federal District. It is situated in its southern part. The Volga acts as the city's western boundary; across the river are the Zhiguli Mountains, after which the local beer (Zhigulyovskoye) is named. The northern boundary is formed by the Sokolyi Hills and by the steppes in the south and east. The region stretches form 335 km from the North to the South and for 315 km from the West to the East. The land within the city boundaries covers 46.597 hectares (115,140 acres). Population: 1,164,685 (2010 Census); 1,157,880 (2002 census); 1,254,460 (1989 Census). The metropolitan area of Samara-Tolyatti-Syzran within Samara Oblast contains a population of over three million. Formerly a closed city, Samara is now a large and important social, political, economic, industrial, and cultural center in European Russia. It has a continental climate characterized by hot summers and cold winters. In this research work we use 25km² radius from the city center of Samara.

![Fig. 1 The position of Samara in Mainland Russia.](image)

III. MATERIAL AND METHODS

A. Data

Landsat-TM images represent valuable and continuous records of the earth’s surface during the last 4 decades (USGS, 2014). Moreover, the entire Landsat archive is now available free-of-charge to the scientific public, which represents a wealth of information for identifying and monitoring changes in manmade and physical environments [21, 16]. Several studies acknowledged the importance of pre-processing (i.e., data selection, co-registration, radiometric calibration and normalization) in performing accurate and reliable change detection analysis [16]. A selection of multi-sensor, multi-resolution, and multi-temporal images was used for this study [22, 18]. The specific satellite images used were Landsat MSS (Multi-Spectral Scanner) for 1975, Landsat TM (Thematic Mapper) for 1985-1995, Landsat ETM+ (Enhanced Thematic Mapper plus) for 2005 and 2015, an image captured by a different type of sensor. According to [23, 24], the time interval between images for the investigation of Land Use/Cover changes Levels I and II [25] should be between 5 and 10 years and the spatial resolution should be 10m or larger, so that the selected images and sensors comply with these criteria. Another reason for selecting these images was their availability and cloud cover. All satellite and supporting data used for this study are identified in Table 1.

<table>
<thead>
<tr>
<th>Data</th>
<th>Pass & Year</th>
<th>Spatial resolution (m)</th>
</tr>
</thead>
</table>

TABLE I. Data used in this study.
Recent Advances in Communications

Supporting Data

- **Topographic map**
 - Date: 2000
 - Scale: 1:25000

- **Field data/GPS**
 - Date: 2015
 - Scale: 10

B. Image Preprocessing

Digital image processing was manipulated by the ArcGIS software. The scenes were selected to be geometrically corrected, calibrated and removed from their dropouts. These data were stratified into ‘zones’, where land cover types within a zone have similar spectral properties. Other image enhancement techniques like histogram equalization are also performed on each image for improving the quality of the image. Some additional supporting data were used in this study. Digital topographical maps, 1:50,000 scale, were used for image georeferencing for the land use/cover map and for increased accuracy of the overall assessment. The images obtained as standard products were geometrically and radiometrically corrected but, because of the different standards and references used by the various imaging supplying agencies, all images were georeferenced again at the preprocessing stage. At this stage, 20 points were selected as GCPs (Ground Control Point) for all images. Data sources used for the GCP selection were: digital topographic maps, GPS (Global Positioning System) acquisitions. Then, all five images were geometrically corrected up to orthorectified level. The data of ground truth were adapted for each single classifier produced by its spectral signatures for producing series of classification maps. Using ArcMap, we made a composite raster data of TM and ETM+ using ArcToolbox data management tools. Landsat images are composed of eight different bands, each representing a different portion of the electromagnetic spectrum. By combining all these bands, composite raster data are obtained. Table 2 shows all bands of MSS, TM and ETM+, which was used for band combination.

TABLE II. Band width of used data in this study.

<table>
<thead>
<tr>
<th>Satellite images</th>
<th>Date</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat MSS</td>
<td>183/023 June 1975</td>
<td>79</td>
</tr>
<tr>
<td>Landsat TM</td>
<td>169/023 Sept. 1985</td>
<td>30</td>
</tr>
<tr>
<td>Landsat TM</td>
<td>169/023 May 1995</td>
<td>30</td>
</tr>
<tr>
<td>Landsat ETM+</td>
<td>169/023 Aug. 2005</td>
<td>15-30</td>
</tr>
<tr>
<td>Landsat ETM+</td>
<td>169/023 March 2015</td>
<td>15-30</td>
</tr>
</tbody>
</table>

TABLE III. Description of Land Use/Cover classes.

<table>
<thead>
<tr>
<th>Land use class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-up</td>
<td>Residential, commercial & services, industrial, transportation & roads, mixed</td>
</tr>
</tbody>
</table>
D. Land use/cover change detection and analysis

For performing land use/cover change detection, a post-classification detection method was employed. A pixel-based comparison was used to produce change information on pixel basis and thus, interpret the changes more efficiently taking the advantage of ‘-from, -to’ information. Classified image pairs of two different decade data were compared using cross-tabulation in order to determine qualitative and quantitative aspects of the changes for the period of 1975 to 2015. A change matrix [26, 27] was produced with the help of ArcGIS software. Quantitative areal data of the overall land use/cover changes as well as gains and losses in each category between 1975 and 2015 were then compiled.

Observations of the Earth from space provide objective information of human activities and utilization of the landscape. The classified images provide all the information to understand the land use and land cover of the study area. Change detection analyses describe and quantify differences between images of the same scene at different times. The classified images of the five dates can be used to calculate the area of different land covers and observe the changes that are taking place in the span of data. This analysis is very much helpful to identify various changes occurring in different classes of land use like increase in urban built-up area or decrease in vegetation land and so on [28].

E. Annual urban growth rate

We use following formula to know the intensity of urban expansion called annual urban growth rate (AGR):

\[
AGR = \frac{UA_{n+i} - UA_i}{nTA_{n+i}} \times 100\%
\]

where \(TA_{n+i}\) is the total land area of the target unit to be calculated at the time point of \(i+n\); \(UA_{n+i}\) and \(UA_i\) the urban area or built-up area in the target unit at time \(i+n\) and \(i\), respectively and \(n\) is the interval of the calculating period (in years). Generally, the target calculating unit is set to the administrative district so as to link with administration or economic statistics. In this research, we preferred the geographical gridding unit since the administrative borders have been changed so frequently in this city. The maps were therefore gridded as 1 km ×1 km units and the annual urban growth rates of each unit were then calculated. Lastly the grid-based annual urban growth rates were clustered by using natural break method and mapped to evaluate the spatial features of the ‘expansion’.

IV. RESULTS AND DISCUSSION

This work provides a methodological framework by integrating RS-GIS, metric analysis and spatial analysis to facilitate the assessment of urbanization or urban growth and changing land use patterns. Remote sensing and GIS helped monitor urbanization process and assess the status of urban agglomeration. The temporal changes facilitate the investigation and characterization of impacts on land use/cover and surrounding environment from settlement sprawl associated with accelerating urbanization. In this study, time series data used are Landsat MSS, TM and ETM+ from 1975 to 2015. First unsupervised and later on supervised classification is done on satellite image series to analyze morphological growth. By comparing the area in square kilometer, the percentage increase in urban growth can be measured. Final maps produced are shown in Fig. 2–3. During this study, it was found that there is an increase in settlement by 6.48% (127.37 km²) from 1975 to 2015.

Fig. 2 Samara city growth in 1975, 1985, 1995, 2005 and 2015 map.

A. Land use/land cover images

The results obtained through the analysis of multi-temporal satellite imageries were diagrammatically illustrated in Figs. 2–3 and data are registered in Tables 4_. and Fig. 2 depicts total city growth status in different years. Fig. 3 depicts land use/cover change in different land use categories. Table 4 shows the land use for different purposes in Samara. This gives an idea to the planners about urban sprawl in Samara, a greater perception of problems, the available options to rectify and develop a better plan. In future analysis, a highly detailed structural analysis of the large-scale and heterogeneous inner structures of urban morphology using satellite data with higher geometric resolution (e.g., Ikonos or Quickbird) is expected to augment information for planning purposes [29]. Digital analysis techniques can be used for identification and classification of all land cover classes from other classes in an efficient manner. If large area is to be estimated, it is more effective and accurate by this technique. A brief account of these results is discussed in the following paragraphs.
B. Land use/land cover Status

Accuracy assessment of the land use/cover classification results obtained showed an overall accuracy is more than 90\% for all images. These data reveal that in 2015, about 31.38\% (616.14 km2) area of Samara block was under forest, 36.85\% (723.49 km2) under grassland, 8.30\% (162.91 km2) under water body and 16.99\% (333.50 km2) under built-up land. During 1975 the area under these land categories was found about 31.81\% (624.56 km2) under forest, 44.03\% (864.50 km2) under grassland, 7.17\% (140.85 km2) under water body and 16.99\% (333.50 km2) under built-up land. First urban area was increase till 1995 then reduce but later on again increase due to increased population. Initially forest area was decreased and later on increase due to governmental protection. Grassland class cover highest area in the study area, it was increase and highest in 2005 but in last radiuses. Water class is stable with small variation.

C. Land use/land cover Change

Table 5 shows land use land cover change matrix from 1975 to 2015. Data registered in Table 5 and Figs. 4 reveal that both positive and negative changes occurred in the land use/cover pattern of the Samara block. During the last four decades the grassland in the study area has decrease from 864.50 km2 in 1975 to 723.49 km2 in 2015 which accounts for -19.49\% of the total study area. The forest has slightly decreased from 624.56 km2 in 1975 to 616.14 km2 in 2015 which accounts for -1.36\%. The built-up area has increased from 333.50 km2 in 1975 to 460.87 km2 in 2015 which accounts for 27.63\%. The water body has been increased from 140.85 km2 in 1975 to 162.91 km2 in 2015. This increase in water body accounts for 13.54\%. To understand land encroachment for different land categories during the last four decades, a change detection matrix (table 5) was prepared which reveals that:

Cross tabulation is a means to determine quantities of conversions from a particular land cover to another land cover category at a later date. The change matrices based on post classification comparison were obtained and are shown in tables 5 and fig 4. Built up area covered 333.5 km2 in 1975 and 336.59 km2 in 1985, while the grassland covered an area of 792 km2 in 1985 and 629.68 km2 in 1995. 383.83 km2 of the forest area which was forest in 1995 was still forest cover in 2005. From 2005 to 2015 149.10 km2 grassland and 60.50 km2 forest convert in built-up. During the same period, 115.29 km2 grassland had been converted to forest area (table 5).

Figure 4 show that in 1975 to 1985, there are not any big changes. From 1985 to 1995 there is an around 40% change, forest and grassland have negative change but built-up area was increase around 36.37%. In the year of 1995 to 2005, there is dramatic negative change in built-up area. It’s show migration of population in another places. But during this period of time forest and grassland have positive change, which show less human interferation in the area. Final in 2005 to 2015, built-up area again increase (39.41%) and that’s why grassland was reduce (-28.69%).

D. Temporal Properties of the Urban Expansion

The urban area of Samara city expanded from 333.50 km² in 1975 to 460.87 km² in 2015 at annual average rate of 0.69 km²/year (table 6).

Last four decade Samara city experienced with high, low, positive and negative urban growth speed (fig.5). Satellite data correlate with historical maps or statistical data. From 1975 to 1985 there is small urban growth but from 1985 to 1995 a very high urban growth was fiend with 3.64 annual growth rate (table 6). Later on from 1995 to 2005, it was reducing dramatically around -8.88% per year. In last city was again increase with very high speed from 2005 to 2015 with 3.91 annual growth rates.
Industrial Profile: Samara Region has highly developed industry and a diversified economy structure. Industry accounts for about 40% of the gross regional product. It includes production and processing and energy sectors. The development of the region’s economy is based on high-tech processing industries with high added value: automobile manufacture, air and spacecraft manufacture, which account for up to 35% of the total volume of shipped production of processing industries; enterprises with high degree of processing: chemical and metallurgical. The region manufactures 30% of new passenger cars made in Russia; 31% of polymer materials for floor, wall and ceiling coatings, 23% of anhydrous ammonia, 16% of sanitary products made from ceramics, 13% of ceramic floor tile, 7.7% of automobile gasoline and 9% of diesel fuel, 8.5% of plastics in primary forms, 7.3% of beer, 5.0% of confectionery products and 4% of mineral fertilizers. Mining of minerals accounts for approx. 17% of industrial production. About 99% of them are fuel and energy raw materials. Production and distribution of energy resources makes up about 11% of regional economy [1]. That’s why industry is the main cause of urban growth and land use change.

Development of Agricultural Complex: The agricultural complex of Samara Region is one of the leading sectors in regional economics, having its strategic importance both in provision of food safety and in maintaining socioeconomic stability in the region. It is a diversified production and economy system of over 500 collective agricultural companies, 2.5 thousand farmer-ships, 267.2 thousands of private plots and about 1000 companies of food and processing and servicing industry. It accounts for 5-7% of the cost of the gross regional product and about 3% of the capital assets. Rural areas are inhabited by 631.6 thousand people, or 19.7% of the population of the Samara Region. Agricultural complex employs about 92 thousand people (over 6% of the regional workforce). Total land area in the Samara region is more than 4 million hectares, of which 3.8 million hectares are agricultural land (more than 7% of agricultural land in the Volga Federal District), including about 2.9 million hectares of arable land. The main agricultural productions are growing cereals, oilseeds and forage crops, potatoes, vegetables, fruits and berries, milk and meat production. Regional agribusiness produces 2% of agricultural output of the Russian Federation and 7% - of the Volga Federal District. In 2013 agriculture in the Samara Region showed high growth rates in the main indicators among the Russian regions [1]. The volume of gross agricultural production in all categories of farms in 2013 was estimated at 69.5 billion rubles, gross agricultural production index in comparison to the level of 2012 is estimated at 108.4 % (106.2 % countrywide). So requirement and production of agriculture is second leading cause of land use change and its effect of urban growth.

Transport and Communication: In 2010, the Concept of development of the regional transport and logistics system of the Samara region for 2011 – 2015 was approved. Construction of modern transport and logistics infrastructure at the junction of the main transport routes West – East and North – South in the Samara Region will allow to process export-import, domestic and international cargo flows on the basis of interaction of four transportation modes and to ensure entry into the system of handling the cargo flows of international transport corridors and the cargo flow in the direction China – Europe. In order to ensure the coherence and consistency of decision-making regarding the development of regional transport and logistics system, the Coordinating Council on the development of transport logistics cluster of the Samara region was formed under the Samara Region Government. Three major Russian gas pipelines cross the Samara region: Chelyabinsk – Petrovsk, Urengoy – Petrovsk, Urengoy – Novopokovsk, as well as oil and product pipelines included in the systems of OJSC "Transnefteprodukt" and JSC "Transneft", with the total length of over 5000 kilometers. Infrastructure of the communications industry is one of the most important resources of social and economic development as well as urban growth and effect on land use change [1].

International Trade and Foreign Investments: During the recent years, a significant number of large commercial investment projects were implemented in the region, including those involving foreign companies. Over 450 enterprises with the foreign capital participation are already operating; the largest of them are listed below:

- The Russian-American enterprise "GM-AvtoVAZ" – production of cars
- the Russian-American enterprise "PES / SCC" – production of wire harnesses for cars
- the Russian-Cypriot enterprise CJSC "Acom" – production of batteries
- the Russian-German enterprise "Henkel Plastic Automotive components" – manufacturing of plastic products
- the Russian-American enterprise "Samara Optical Cable Company" – production of cables
- the Russian-Chinese-Cypriot enterprise "Tomet" – production of fertilizers
- the Russian-American enterprise LLC "Combine of ceramic structures" – manufacturing of ceramic products
- the Russian-French enterprise "Tarkett" – production of flooring
- the Russian-French enterprise "Danone-Volga" – production of yogurt
- OJSC "Confectionery Association "Russia" – production of confectionery

The foreign companies are also active in the financial services sector. The offices of Raiffeisenbank, Citibank, Societe Generale Vostok Group and Barclays Group are operating on the territory of the region. In May 2007 an office of the European Bank for Reconstruction and Development was opened in Samara. These investments are major cause of attractions of people from surrounding and other parts of country for employment and in last its cause of urban growth and land use/cover change [1].
VI. CONCLUSION

This research work examined the urban growth of Samara city, which is the most important historical, cultural, industrial and commercial city of Russia. Satellite data and census data were used to monitoring the dynamic phenomena of urbanization with the help of remote sensing and GIS technology. Samara land expansion is based on Samara and Volga River and social factors such as population growth, migration and economic development. Despite the popular belief that Samara gardens and vegetation cover were destroyed and converted to built-up areas, this study demonstrated that development occurred mainly in available open spaces in the city and remaining lands between the buildings. Conversion of vegetation and orchards to built-up area, however, has been a more recent phenomenon. The study reveals that the major land use in the study area is vegetation (forest and grassland). The area under vegetation has decreased by 7.66% (149.43 km²) due to afforestation work during 1975 to 2015. The second major category of land in the study area is built-up area which was increased by 6.48% (127.37 km²) due to conversion in forest and grassland. Thus, the present study illustrates that remote sensing and GIS are important technologies for temporal analysis and quantification of spatial phenomena which is otherwise not possible to attempt through conventional mapping techniques. Change detection is made possible by these technologies in less time, at low cost and with better accuracy.

ACKNOWLEDGMENT

This work is financially supported by the Russian Scientific Foundation (RSF), grant no. 14-31-00014 “Establishment of a Laboratory of Advanced Technology for Earth Remote Sensing”.

REFERENCES

First A. Author Prof. Dr. Mukesh Singh Boori is Senior Scientist in Samara State Aerospace University, Russia (03/2015 - Present) and Assistant Professor in JECRC University India (01/2013 - Present). He was involved in European Union Project as well as Visiting Assistant Professor in Palacky University Olomouc, Czech Republic (04/2013 – 06/2015), Ruhr University Bochum Germany (09/2014 – 12/2014) and University of Leicester, UK (Honorary Fellow 2014) funded by European Union. He was Scientist in Satellite Climate Studies Branch (NOAA/NASA), selected by National Research Council (NRC), Central Govt. of USA, Washington DC, USA. At the same time he completed his Postdoc from University of Maryland, USA (10/2012). He has done PhD (EIA & Management of Natural Resources) from Federal University – RN (UFRN), Natal –RN Brazil (08/2011), funded by Brazil-Italy Govt. fellowship. He has done Predoc (Earth & Environmental Science) from Katholieke University Leuven, Belgium (08/2008), selected by Ministry of Human Resource Development (MHRD) New Delhi, India and funded by Govt. of Belgium. He has done MSc (Remote sensing & GIS) from MDS University Ajmer (2004) and BSc (Bio-group) from University of Rajasthan, Jaipur, India (2002). In early career, he was scientist in JSAC/ISRO (2006-2007) and before that Lecturer (PG) at MDS University Ajmer (2005-2007 Sessions). He received international awards/fellowships from UK, USA, Brazil, Italy, Indonesia, Belgium, Czech Republic, Germany, Russia and India. He known Six Language and visit four Continents for Awards, Meetings, Trainings, Field Trips and Conferences. He is an active Organizing Committee Member in Earth & Space Science Conferences, Co-Chaired a session and gave Conference Opening Ceremony Speech as Reynold Speaker (08/2012) at Chicago, USA. He is editor and member of more than 10 International Scientific Societies/Journals/Committees, related to Earth & Space Science, which include organize conferences. His prime research interest is “EIA and Management of Natural Resources through Remote Sensing & GIS Technology”. He has more than 50 International Publications including Books as a first author on Vulnerability, Risk Assessment and Climate Change.