
New Challenges in Smart Campus Applications
Attila Adamkó, Tamás Kádek, Lajos Kollár, Márk Kósa, János Pánovics

Faculty of Informatics
University of Debrecen

Kassai út 26, H-4028 Debrecen, Hungary
Email: {adamko.attila,kadek.tamas,kollar.lajos,kosa.mark,panovics.janos}@inf.unideb.hu

Abstract—Nowadays very common keywords are Big Data, IoT
(Internet of Things), crowdsourcing and ubiquitous computing.
All of them gained greater emphasis and our University Campus
is a great place where all of these areas could be investigated.
Wide ranges of data could be collected from the built-in sensors
of the building and naturally, from the users smartphones or
tablets resulting a huge amount of data.

On one hand, our paper includes a framework which could
provide value-added services for various people living or working
on the Campus. On the other hand, the Campus is a perfect place
where new algorithms could be developed and tested through
these services. Furthermore, the community could be involved
not just as subscribers for the services but also as providers of
the data, and in an optimal case, the crowd could prepare and
provide new information sources.

Index Terms—campus, smart, adaptive, intelligent systems,
crowdsourcing

I. I NTRODUCTION

OUR primary goal was to create an architectural frame-
work which allows various members of the community

to create and use services based on the data that is collected in
a university environment. These data include information on
course enrollments, timetable, exam dates, office hours, and
various deadlines along with community provided data. These
collected data can then be subject to analysis, based on which
they can either be fed back into the services, or we can provide
recommendations or offer new services for our users.

Future Internet research—which was appeared at least seven
years ago—aims at bridging the gap between both academic
and industrial community’s visionary research and large-scale
experimentation [11], [2].

One part of it is the Internet of Things (IoT) phenomenon
which highlights the opportunities lying in the sensors con-
nected through wireless connections. We have successfully
applied it one of our scenarios where the location of the users
is crucial. Moreover, these sensor data serve as an endless
source of environmental data which could drive a real-time
and/or a transactional analytical module. In our vision this
could be used to create trajectories and help users to find
nearby colleagues or friends based on historical presence data
and realtime sensor information.

The next piece of the trends is expressed by the term of
ubiquitous computing (ubicomp) which states that computing
could appear anywhere and everywhere. Borders are blurred
between computing devices including desktop computers,
notebooks, tablets and smartphones. Our framework currently

includes a mobile and a desktop version which makes available
the seamless and smooth usage of the system. Naturally, it is
not mean the interface is the only thing which need to be
available on the different devices. User profiles are created to
support context-aware and customized environments for the
ongoing research.

The third pillar of our framework is the crowd. Crowd-
sourcing could be applied in a University Campus as there are
lots of people (students and staff) with different interests and
different requirements for the services. However, they are not
only consumers of the information produced by the system,
they are producers—and content generators—as well. Lots of
data are generated while various applications are used by them.

II. SMART COMMUNITIES

In this paper, when we explain the concept of the smart
community we concentrate on the expectations connected with
the software operating in a community. In our approach, the
smart community is such a community that is served by smart
applications. Based on the definition of the “Apps for Smart
Cities Manifesto” for Smart Cities [7], the requirements of the
smart community applications are the following:

• sensible—the environment is sensed by sensors;
• connectable—networking devices bring the sensing infor-

mation to the web;
• accessible—the information is published on the web, and

accessible to the users;
• ubiquitous—the users can get access to the information

through the web, but more importantly in mobile any time
and any place;

• sociable—a user can publish the information through his
social network;

• sharable—not just the data, but the object itself must be
accessible and addressable;

• visible/augmented—make the hidden information seen by
retrofitting the physical environment.

An application itself, which satisfies partly or fully these
requirements, could not be called smart at all. The basic
requirement of a smart service to have information about
the community. First of all, we have to collect and publish
the available information. At the current level of technical
development, the collected information is very huge and het-
erogeneous. A smartphone with average performance is also
capable of GPS-based localization, light detecting, making
photos, detecting of mobile and wireless network devices, etc.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 44



Of course, the sensors are not always in the devices of the end
users, think about of, e.g., a handle for free parking spaces
for vehicles, a digital temperature sensor on buildings or an
electronic passing gate system using RFID cards. These are
all such kind of information which could be used to drive the
creation of new services.

In many cases, the problem is that we have too much
information. These information, temporarily, must be stored
on the device that collects the data. The goal is, of course, the
publishing of these data as soon as possible. The stage of the
publishing is the web. In this place, we do not explain that it is
practical to aggregate and to filter the collected data, moreover
sometimes this procedure is mandatory due to the supporting
of the anonymity [3]. Here let it be enough that the collected
data must be maintained in a centralized, or, moreover, in a
unified way, because of these data make the base of the smart
services up.

The smart community is not static, it is continuously
changing, and it is persistently on the move. The aspect and
the amount of the collected information is changing from
time to time. So, the evolution of the smart applications is a
neverending process. New applications could be created, and
their pure existence—the information about how we could use
them—also could improve the amount of the sensible things.
With this, we could collect new data about the working of the
community. From the new data, we could know something
about the behavior of the community, again, and these data
could be reused in the life of the community.

III. T HE EXTENSIBLE ARCHITECTURE

From the Smart Campus perspective, one of the main
challenges is to collect content from various sources where
the majority of them might be created at a later time. That
is why we need a highly extensible system which is designed
for change.

Such an extensible architecture has been designed and
published by the authors in [1]. It allows the extension of
the system with new elements on both the data producer and
consumer side. This is where the crowd could help us by
adding new sources and new services with the development
of their own information parsers.

According to [1], a Smart Campus environment has lots
of various (and most importantly, heterogeneous) data sources
including the following:

• an Education Administration System called Neptun that
contains information on course enrollments, timetable
information of courses, exam dates and times, etc.,

• faculty members offering office hours, consultations, etc.,
• Education Offices of the various faculties offering office

hours,
• Student Governments organizing events for students,
• the menus of the canteens located at the Campus,
• geolocation (e.g., GPS), WiFi or some other sensor data

collected by smartphones or similar devices,
• data gathered by environmental and building sensors

(temperature, humidity, air pressure, air pollution, etc.),
• a Library Information System that is able to tell whether

a given book is available or not,

• social media sites (like Facebook or Google+) containing
information on friends and ranges of interests of a person,

• professional sites (like LinkedIn) holding data on work
experience and professional achievements (however, this
is not necessarily the most important data source from
Smart Campus perspective),

• bibliographic databases (like Google Scholar, DBLP or
Scopus) that provide information of published journal
articles or conference papers of researchers,

• event hosts of actually any events (like public lectures,
concerts, exhibitions or whatever users might be inter-
ested in), and, which is essential,

• the crowd itself with the added value of the capability of
generating content that is interesting for a set of people
(or, to be more precise, consumers).

These are only examples of data sources not an exhaustive
list. These demonstrate that what kind of diversity in data
sources should a complex application face. Applications that
provide value-added services typically require integration of
some data coming from more of these data sources. That was
the reason of developing an architecture providing the ability
of accessing information from existing sources along with
making the addition of new sources possible and (relatively)
easy.

Some of the data can be collected in an automated way (e.g.,
sensor data), some others might require manual interaction
(like canteens’ menus or office hours of instructors); some
of the data sources offer Application Programming Interfaces
(APIs) to provide access to data (e.g., social media sites) while
others do not have APIs therefore web crawlers are needed to
gather and parse the data; some of the data sources provide
built-in notification mechanisms (e.g., an event feed of a social
network site) while others do not (for example, adding new
office hours or changing the daily menu).

We have chosen the Extensible Messaging and Presence
Protocol (XMPP) as the underlying communication proto-
col [9], due to its extensibility and publish/subscribe model.
Further considerations on the design of the architecture are
described in [1].

The power of our architecture as it does not limit the
possible data sources and also allows the collection of some
specific information. For example, if a couple of students
prefer to have a lunch at the small restaurant near the Campus
they can develop a connector that parses the restaurants web
page to provide information on the daily menu. The same
case can be also true for news feeds. When these sources
are became available the potential (interested) users could
be notified about it based on the preferences and the meta
information provided for the feeds.

The Smart Campus Central Intelligence (SCCI) component
in our architecture provides an interface between the infor-
mation sources including both the incoming events (XMPP
server) and the information stored in the database and the Web
services layer (Figure 1).

It provides a couple of unified data models related to some
of the most notable domains in a life of a Campus: educational
data, research data, social data (with friend of and classmate
of relationships), etc. SCCI layer also allows to define and

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 45



Fig. 1: Smart Campus Layers and Services

validate business rules and this is where the Analytics module
resides. Now we have only a couple of simple analysis that
does not exceed the scale of a medium-level database query
but deeper analytical capabilities are planned to be added as
this is how we can provide better value-added services.

An example where our services are created and used by
the Smart Campus is the Faculty’s portal which is based on
Liferay. Its architecture is composed of three layers: Enterprise
layer, Service layer and Persistence layer. While the Enterprise
layer is responsible to fulfill all the enterprise needs (content,
workflow, document, user, etc. management) the Service layer
is the core component. It contains the majority of the business
logic that perform enterprise needs. Liferay follows a Model
Driven Architecture and this is made possible by the imple-
mentation of Service Builder which is used to automate the
creation of interfaces and classes for database persistence and
a service layer. In Liferay Web services has two mostly used
and significant protocols: JSON Web Services and SOAP.

We have successfully implemented services in the portal
to serve the lecturers’ opening hours. One connector is used
inside the Educational part to periodically check the available
data. If there are changes the SCCI is notified. Based on the
actual data all the affected users are notified about the change.
Currently we are working on the extension of this portal
service to alter it to a fully functional XMPP client. After
that our portal service can directly notify the SCCI about the
changes and the requested operations could be done without
requiring the intermediate crawler.

An other ongoing development is the creation of a notifica-
tion portlet that is integrated to the Faculty portal where users
can see each other’s online presence and start conversations
without leaving the site. This is the advantage of the XMPP
protocol and the usage of LDAP. It is straightforward because
we can provide a platform where all the education-related
tasks could be done therefore users can experience the added
value of the services. Moreover, messages are not only sent
between two users, but as an extension it is possible to have
SCCI be a friend of all users. This gives the possibility of

notifying users within the portal system, without the need of
the execution of any third-party clients. It is similar to what we
have as push notifications on the mobile platform. The portal
changes its information provider role to an online collaboration
environment.

A. The life cycle of intelligent services

From our point of view, the basis of the intelligent com-
munity is to make the services online available. The first step
is to collect the useful information into one online accessible
database. First, it means a simple data service. For example,
it could be a simple collection of news, a schedule, or even a
timetable. In the second step, we have to pay attention on the
use of available information. Notice the most popular news
or columns, and then we can reorganize the information such
as order the most popular columns to the first page. It is still
not an intelligent service, but if we have a lots of application
working together, which can share the information in the
mentioned way, the service goes to be smarter and smarter.

IV. BASIC ELEMENTS FOR ADAPTION

Adaptive systems have gained increased popularity in the
last decade. The overall goal is to improve the usability of
the system and provide better user experience by applying
personalization based on the services discussed in the previous
section.

In a more technical view, we need to study and under-
stood the structure of the metadata (i.e. the semantics) at
the content’s side which could fuel the adaptation process
based on the user profile. Semantic markup included in the
whole process with machine-understandable representation of
the content. The work presented in this paper based on the
previously mentioned extensible architecture where the Data
Management layer contains the databases that are populated
with data gathered by connectors of the underlying layer (see
Figure 1). As of today, due to the characteristics of the data we
have both a relational and a graph database as a backend. Well-
structured information (e.g., course and timetable information)

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 46



are stored in a normalized relational database. However, for
semistructured or unstructured information the rigid structure
of relational tables are not appropriate, so we have selected
neo4j as a solution.

The result is a highly semi-structured system. It is not just
collecting large volume and variation of date but also under-
standing the relationship between entities by mapping their
connection into our system. With this method we established
a data store which can be easily extended. When a new—and
previously nonexistent—source is attached to the system the
only task we need to perform is to add the new nodes and
proper edges to the database.

In this context, following the Semantic Web initiative [10],
ontology-based annotation helps us to provide adaptive pro-
cesses, meaning that the incoming content enriched by seman-
tic data. One could imagine all of these as tags attached to the
data which could be a JSON message, an HTML fragment or
a Web Service call. We need to transform this data into triples.
The available prefixes are defined in the ontology into which
these triples are going to be imported. Traditional SPARQL
could be used to made queries, but we have found that graph
databases also could be applied for reasoning.

Along with the semantic tags, the next important piece
in our system are the groups. These groups modelling the
subscribers which are ground for the original architectural idea
that based on the publish/subscribe model. Groups are high
level entities and some of them are automatically created, like
the group for a user’s personal calendar or for the news feeds,
etc. As a member of a given group you will receive the events
published by that source, and naturally one user can join as
many he/she wants and one may create new ones too. The
visibility of the groups also could be controlled, there could
exist public and private groups where freely everybody or only
the invited members could join.

V. SMART CAMPUS APPLICATIONS

A. Adaptive Event Recommendation as a Personal Calendar

The first application which appeared in the concept of
the Smart Campus at University of Debrecen was a simple
data serving application gathering into one location all the
important events at the Faculty. The first principle—following
the outlines of the Intelligent application’s lifecycle—was only
to provide a uniform Web Service interface to made accessible
all of that data. It could open the way to all of the end-user
services, like reminding for important deadlines or browsing
the categorized events.

However, collecting the information from distinct informa-
tion systems and providing them through a standardized way
is a useful approach—but cannot be seen as an intelligent
one. On the contrary, the usage scenarios of the published
information could serve as a base for predicting their behavior.
Take the example, users could mark events as important to
create their personal calendar. The system could analyze these
marks and highlight the most frequent and important events.
While checking the marks the system could detect that some
of the events are closing to the physical limit of the room
where it is scheduled. In that case, searching for a greater room

is essential and required. Finally, the system could notify all
the attendees from the change of the location. Naturally, the
notification is based on the previously mentioned group-based
solution.

In that calendar we have developed the possibility to browse,
categorize and register for events. Hereafter, we made available
to rate those events. The service is available on the following
address: http://smartcampus.hu.

An Android application (see Figure 2) has also been im-
plemented to support easier access of those services. This
mobile application allows additional services to use. As we
have stated earlier, the base of an intelligent service is not
just the direct information posted by the users but may origin
from sensors as well. We investigated the possibilities in our
building and prepared an application for smartphones which
could determine with a very good approximation the position
of the user based on the WiFi network access points. When
connecting this data with the user’s personal calendar, we
could show the nearby events in the first place on the list. The
demonstration of this service is planned for a local conference
held in this autumn where the application will be used to show
the nearby sections program at first place.

Moreover, the event recommendation system is not based
just time and place attributes. The categorization made it
available to recommend events for the user based on its topics.
Imagine the situation when you mark important events and the
system recommends you upcoming possibilities based on the
categories—and (ontology based) related categories—of the
marked events.

B. Adaptive Meeting Planning

For the above mentioned calendar we have an ongoing
development to extend it with a meeting planning module.
That module will read all the participants calendar events and
try to suggest time slots which could be appropriate for all the
attendees.

The adaption is based on properties of the event which is
related to the user as well. It could be mandatory, optional
or rescheduleable—like a registration for an opening hour but
the meeting may be scheduled to the same time because one
can attend an other opening hour at a later time [6].

C. Managed Programming Contests

The basic goal of the ProgCont system was to support the
organization part of programming contests. The development
process started in 2011 with a web application and worker
services. The web application stores the exercises in a problem
catalogue and collects the submissions including not only the
solution source code, but the necessary information about the
competitors and contests. The worker services are used to
evaluate the submissions, they compiles them (if it is possible),
and validate the compiled algorithm by running several test
cases.

Of course the software itself could not be called smart at all,
even if most of the exercises were selected from international
programming contest for the purpose of exercising our stu-
dents. But the ProgCont system collects numerous additional

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 47



Fig. 2: Smart Campus Android application

data during its operation, which give us the ability to discover
extra knowledge for the users [8].

One trivial example based on the success rate of submis-
sions, more precisely the number of users who can solve the
exercise, and the number of trials before the first successful
solution. Everyone knows own success rate. The additional
information in that case means that we made the cumulated
results available.

Another useful information could be the quality measure of
the accepted solutions. It means, that we measure and rank the
accepted solutions using another criteria such as the length of
source code, the required amount of memory, the execution
time, the number of iterations, and so on.

There exists several another way to support our student
with the ProgCont system. A catalog of thematic exercises
are also available, giving the possibility to browse problems
with the same algorithmic background. ProgCont can provide
automatic suggestions if the necessary amount of information
is available about the user, in other words, when there is
enough evaluated submission to approximate the user skill.

One objective way to measure the worth of an exercise is to
calculate the rate of accepted and unsuccessful submissions.
But in the other hand, the users can also rate the exercises.
Both ways can serve useful information for further decisions
about how should the user continue the preparation process.

Nowadays the system also used in classroom test. The
collected data gives the ability to do statistical investigation
from the pedagogy point of view. Relative frequency histogram
and relative frequency of scores are available according to the
tested groups, and the connection between separate classroom
tests can be discovered using a diagram representing correla-
tion.

D. Assessment system for non-graded exercises

A Spring-based Web application with a JavaServer Faces
(JSF) frontend has been developed in order to help course in-
structors in offering optional exercises or assignments (which
do not count into the grade) for their students. In principle,
these exercises can be of any kind (programming, database,
math, etc.) but we primarily focused on programming exer-
cises. The primary difference from ProgCont is that unlike
ProgCont this system does not require any feedback from the
instructor side. It was designed in order to decrease the load on
instructors by asking the crowd (i.e., other students) to validate

submissions (that is why it is only used for optional exercises).
Unfortunately, there are some courses at our institute where
we have relatively few course instructors. Their number is
enough for creating and validating assignments that count into
the grade but short for doing the same for not graded exercises
(e.g., they did not have enough time for preparing appropriate
test cases in order to validate with ProgCont).

The Web application offers the following major functional-
ities. It is possible

• to define exercises,
• to submit solutions,
• to assess submissions,
• to comment and/or rate assessments.

Any registered user (i.e., even students) can define exercises.
Those who solve an exercise can submit the solution which can
be evaluated (assessed) by anyone else. Therefore practising
students can receive some feedback, even if these answers
cannot be trusted. To deal with false positive feedbacks, it is
important that not only the solutions but the people giving
feedbacks should also be rated. Later, those people’s ratings
who regularly give wrong answers will count less.

Similarly to ProgCont, the data gathered by this application
can (and should) also be analysed using data mining tech-
niques. Currently, assessments are created on a voluntary basis.
However, good assessments will come from qualified people
who understand several aspects of the submitted solution. It is
very hard to find suitable reviewers whose knowledge level and
experience is sufficient for providing valuable assessments.
After analysing the gathered data we can classify possible re-
viewers based on how valuable their assessments are therefore
the system will be able to offer a set of possible reviewers for
each task.

VI. A SAMPLE CALENDAR SERVICE PROBLEM

Some of the problems that arise concerning Smart Campus
applications might be solved using artificial intelligence meth-
ods. In this chapter, we present a sample problem related to
the calendar service. In order to define the problem, we first
introduce the Extended State-Space Model, then a state-space
representation of the problem is given. Later, we summarize
the Extended Breadth-First Algorithm (EBFS).

A. The Extended State-Space Model (ESSM)

The EBFS algorithm can be defined after introducing an ex-
tended state-space model [4], [5], which allows us to discover

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 48



the representation graph starting from several different states
and possibly in more than one direction. Using state-space
representation, solutions to problems are obtained by executing
a series of well-defined steps. During the execution of each
step, newer and newer states are created, which form the state
space. States are distinguished from one another based on their
relevant properties. Relevant properties are defined by the sets
of their possible values, so a state can be represented as an
element of the Cartesian product of these sets. Let us denote
this Cartesian product byS. Possible steps are then operations
on the elements ofS. Let us denote the set of operations by
F . The state space is often illustrated as a graph, in which
nodes represent states, and edges represent operations. This
way, searching for a solution to a problem can be done actually
using a path-finding algorithm.

We keep the basic idea (i.e., the concepts of states and
operations on states) also in the extended state-space model
(ESSM). The goal of this generalization is to provide the
ability to model as many systems not conforming to the
classical interpretation as possible in a uniform manner.

A state-space representation over state spaceS is defined
as a5-tuple of the form

〈K, initial, goal, F, B〉,

where

• K is a set of initially known (IK) states, such thatK ⊆ S

andK 6= ∅,
• initial ∈ {true, false}S is a Boolean function that selects

the initial states,
• goal ∈ {true, false}S is a Boolean function that selects

the goal states,
• F = {f1, f2, . . . , fn} is a set of “forward” functions,

fi ∈ (2S)S ,
• B = {b1, b2, . . . , bm} is a set of “backward” functions,

bi ∈ (2S)S .

The “forward” and “backward” functions represent the direct
connections between states. For more details, see [4].

Some notes:

• The number of initial and goal states is not necessarily
known initially, as we may not be able to or may not
intend to generate the whole setS before or during the
search.

• The n + m = 0 case is excluded because in that case,
nothing would represent the relationship between the
states.

• Although the elements of the setsF andB are formally
similar functions, their semantics are quite different. The
real set-valued functions inF are used to represent
nondeterministic operators, while there may be real set-
valued functions in setB even in case of deterministic
operators.

Let us now introduce a couple of concepts:

• Initial state: a states for which s ∈ S and initial(s) =
true.

• Goal state: a states for which s ∈ S and goal(s) = true.
• Known initial state: an initial state inK.
• Known goal state: a goal state inK.

• Edge: an 〈s, s′, o〉 ∈ S × S × (F ∪ B) triple where if
o ∈ F , thens′ ∈ o(s), and if o ∈ B, thens ∈ o(s′).

• Path: an ordered sequence of edges in the form

〈s1, s2, o1〉, 〈s2, s3, o2〉, . . . , 〈sk−1, sk, ok−1〉,

wherek ≥ 2.
General objective: determine a path froms0 to s∗, where

s0 is an initial state, ands∗ is a goal state.

B. A Problem

One of the first applications developed in Smart Campus is
a special service processing calendars that contain some events
marked by students as important. If some of these events con-
flict in time with each other, the calendar service may suggest
another schedule by replacing the time intervals of some events
with other possible intervals. Suppose the students designates
a schedule containingk events (E1, . . . , Ek), each with an
initial time interval (fromT1,1, . . . , T1,N1

to Tk,1, . . . , Tk,Nk
).

The problem, which can be solved with the use of EBFS, is
to determine a schedule of the same events such that no two
time intervals are in conflict.

1) State Space:In this state-space representation, a state of
the problem is represented by ak-tuple, the elements of which
describe the currently set time intervals of each event. The
IK states are arbitrarily chosen by the user and may contain
interference between the time intervals of the events. Our goal
is to eliminate this interference. In this model, initial states
have no significance.

E1 = {T1,1, . . . , T1,N1
}, . . . , Ek = {Tk,1, . . . , Tk,Nk

}

S = {〈t1, . . . , tk〉 ∈ E1 × . . .× Ek : tj ∈ Ej}

K = {〈t1, . . . , tk〉} ⊆ E1 × . . .× Ek

initial(〈t1, . . . , tk〉) = true

goal(〈t1, . . . , tk〉) =

{

true if ∀p∀q (p 6= q → tp ∩ tq = ∅)

false otherwise

2) Operators Over the State Space:

F =
{

update(l, r) ∈ (2S)
S
}

,

l ∈ {1, . . . , k}, r ∈ {1, . . . , Nl}

updatel,r(〈t1, . . . , tk〉) = 〈t′
1
, . . . , t′k〉

where t′j =

{

Tl,r if j = l

tj otherwise

B = F

C. The EBFS Algorithm

The EBFS algorithm extends the BFS algorithm with the
ability to run more than one breadth-first search starting from
more than one state (the initially known states).

The EBFS algorithm stores a subgraph of the representation
graph during the search. The main difference from BFS at this
point is that in case of EBFS, the relationship between the
nodes and each IK state is stored.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 49



The full pseudocode of the EBFS algorithm can be found
in [4]. The database of the algorithm stores for each node
the state represented by the node as usual, the forward and
backward status (open, closed, or not relevant), forward and
backward parents, forward and backward children of the node,
as well as the distance from and to each of the IK states.

VII. C ONCLUSION AND FUTURE WORK

In this paper we in traduced the intelligent services and
outlined that the development of smart applications is a nev-
erending process. The underlying service architecture are now
in a testing phase and several end-user application prepared
but several more need to be created before we could call our
system smart. The architecture fits well into the more general
publish/subscribe based architecture of Smart City and Smart
Campus applications as its extensible with new data sources
providing the capability of integration of heterogeneous data.
In the future, development of the Analytics module is a major
goal since providing good analysis of the collected data can
add more value to the services.

ACKNOWLEDGEMENTS

The publication was supported by the TÁMOP–4.2.2.C–
11/1/KONV–2012–0001 project. The project has been sup-
ported by the European Union, co–financed by the European
Social Fund.

REFERENCES

[1] Attila Adamkó and Lajos Kollár. Extensible data management architec-
ture for smart campus applications—a crowdsourcing based solution. In
WEBIST (1), pages 226–232, 2014.

[2] Y. Atif and S. Mathew. A social web of things approach to a smart
campus model. InGreen Computing and Communications (GreenCom),
2013 IEEE and Internet of Things (iThings/CPSCom), IEEE Interna-
tional Conference on and IEEE Cyber, Physical and Social Computing,
pages 349–354, Aug 2013.

[3] Mikel Emaldi, Oscar Pena, Jon Lazaro, Diego Lopez-de ipina, Sacha
Vanhecke, and Erik Mannens. To trust, or not to trust: highlighting the
need for data provenance in mobile apps for smart cities. InInternational
Workshop on Semantic Sensor Networks, Proceedings, pages 1–4, 2013.

[4] Tamás Kádek and János Pánovics. Extended breadth-first search algo-
rithm. International Journal of Computer Science Issues, 10(6):78–82,
2014.

[5] Tamás Kádek and János Pánovics. Some improvements of the extended
breadth-first search algorithm.Studia Universitatis Babeş-Bolyai, Infor-
matica, 59(Special Issue 1):165–173, 2014.

[6] Haim Kaplan, Ilia Lotosh, Tova Milo, and Slava Novgorodov. Answering
planning queries with the crowd.Proc. VLDB Endow., 6(9):697–708,
July 2013.

[7] Ingo Lütkebohle. The Apps for Smart Cities Manifesto. http://
www.appsforsmartcities.com/?q=manifesto, 2012. [Online; accessed 15-
December-2014].

[8] Adam Marcus, David Karger, Samuel Madden, Robert Miller, and
Sewoong Oh. Counting with the crowd.Proc. VLDB Endow., 6(2):109–
120, December 2012.

[9] P. Saint-Andre. RFC 6120: Extensible Messaging and Presence Protocol
(XMPP): Core., March 2011.

[10] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web
revisited. IEEE Intelligent Systems, 21(3):96–101, May 2006.

[11] Róbert Szabó, Károly Farkas, Márton Ispány, András A. Benczúr,
Norbert Bátfai, Péter Jeszenszky, Sándor Laki, Anikó Vágner, Lajos
Kollár, Csaba Sidló, Renató Besenczi, Máté Smajda, Gergely Kövér,
Tamás Szincsák, Tamás Kádek, Márk Kósa, Attila Adamkó, Imre
Lendák, Bernát Wiandt, Timon Tomás,Ádám Nagy, and Gábor Fehér.
Framework for smart city applications based on participatory sensing.
In Proceedings of the4th IEEE International Conference on Cognitive
Infocommunications, pages 295–300, Dec 2013.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 50




