
 

 

Abstract—Identification of patients who will die within, at least, 

one hour of withdrawal of life-sustaining treatment is the key to 

successful donation of organs after cardiac death. The accurate 

prediction of potential organ donation has a great importance, since the 

limited time window in which occur all the process demands that 

various tasks must be done quick and effectively. Through a set of 

known factors/diagnosis, it is possible to determine if a patient who 

suffers from irreversible brain damage may be a future candidate to 

organ donation with an associated degree of confidence. So in this 

work it was developed a prediction system, in terms of its knowledge 

and representation and reasoning procedures supported by a logic 

programming based approach to computing an artificial neural 

network. The factors defined and their relationships were used to 

identify potential organ donor. 

 

Keywords—Prediction of potential organ donation, Degree of 

Confidence, Artificial Neural Network. 

I. INTRODUCTION 

ver the last years, advances in immunosuppressive 

therapeutics, better patient selection and improved 

technical expertise (among other factors) have decisively 

contributed to the success of organ transplantation, which has 

proven to be a successful treatment for patients with end-stage 

organ failure[1].  

Despite its good results, this treatment has a problem with the 

lack of resources, i.e. organs, so that the demand far exceeds the 

number of available donors. The major source of organs is brain 

(steam) dead patients, but unfortunately (for potential organ 

recipients) this is not a common form of death. Furthermore, 

this is an undesirable outcome, since one of the goals of 

neurocritical care is preventing brain death from occurring [2, 

3]. These results in large waiting lists, increasing everyday and 

considering that transplantation is often the last resort for 

patients with end-stage organ dysfunction, increasing the 

potential pool of organ donors become critical [2]. One possible 

way to expand the donor’s group is by the use of organs from 

donation after cardiac death (DCD), also known as non-heart-

beating donors. In general, this kind of donors are patients 

whose deaths occur in the context of  

withdrawing life-sustaining treatment (WLST). 
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Therapeutic failure, meaningless outcome due to poor 

prognosis and patient’s autonomy/suffering are some of the 

most common reasons for WLST. The most frequent DCD 

candidates are patients who suffer from irreversible brain injury 

but do not meet criteria for brain dead diagnosis [4, 5]. 

Unfortunately, not all potential DCD became actual 

donations. The success DCD resides in the period between 

WLST and death. It is often associated with hypotension and 

poor organ perfusion that generally result in warm ischemic 

injury to the organs. According to British Transplantation 

Society and Intensive Care Society, functional warm ischaemia 

times vary by organ: [6] 

 - Liver: 30 minutes; 

- Pancreas: 30 minutes; 

- Lungs: 60 minutes; 

- Kidney: 120 minutes; 

 Consequently, most DCD protocols discard organ retrieval if 

the patient is still alive 60 minutes after WSLT. Therefore, it 

has become clear the need for a model able to identify the 

patients who are most likely to die within 60 minutes of WLST, 

because only those can lead to an increase in the absolute 

number of available donor organs. By the other hand, it is 

important to clarify that the identification of a potential organ 

donor does not discharge a physician from treating the patient 

in his best interest [2, 3]. 

 Among other benefits related to logistics and financial 

consequences (as reservation of operating theatre and surgical 

staff), a tool like this would avoid the potential organ recipient 

and his relatives having false expectations, situation that 

happens when the one hour deadline is not satisfied [4]. 

A few tools have been developed to predict this timing, but 

none is yet established as ‘standard’. Between them are those 

from the University of Wisconsin (UW) and the United 

Network of Organ Sharing (UNOS).  These two consist on 

having a numerical scale (to assign scores) and perform a trial 

of spontaneous respiratory rate and oxygenation when the 

patient is disconnected from mechanical ventilation. However, 

the lack information about the neurological status of the patient 

before WLST and the fact that they require temporary 

disconnection of the patient from the mechanical ventilator can 

be a problem. In some countries, any intervention during WLST 

is not directed at improving the palliative care provided is 

considered medically and ethically inappropriate [5]. In order 

to overcome this last limitation, new promising models have 

been developed. Coleman and her team [5] concluded that 

combining Glasgow Coma Scale (GCS), respiratory and 

haemodynamic parameters and intensivist opinion, it is possible 

the time from WLST to death accurately, although their results 

require validation in a large scale. 
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In other study, although not proposing any model, 

Suntharalingam et al [7] identified some factors that may 

influence the time to death. Cause of neurological injury, low 

blood pH, and use of inotropes prior to WLST were pointed, 

but younger age, higher FiO2 and mode of ventilation were the 

most important variables associated with shorter time to death. 

Rabinstein, Alejandro A., et al [8] build a model based on 

four clinical variables: absent corneal reflex, absent cough 

reflex, extensor or absent motor response, and higher 

oxygenation index. These were established as predictor 

variables, based on previous findings. After assigning a value 

to each of the variables, their sum creates a predictive score for 

cardiac death in patients in neurocritical state (DCD-N score). 

After an observational study, it was possible to translate that 

score in terms of probability death within 60 minutes. 

By analysing this variety of models and indicators, it is clear 

that the key to successfully predict death after WLST lies with 

the identification of the correct clinic variables. Yet, the 

identification of the set of factors that best can characterize this 

problem seems something that still needs further analysis. With 

this article, based on some of the most important variables 

described, we make a start on the development of a system that 

can predict the potential organ donation after irreversible brain 

damage. We will be centred on a logic programming based 

approach to knowledge representation and reasoning, 

complemented with a computational framework based on 

Artificial Neural Networks. 

This paper has five sections. Firstly the work and related 

concepts are introduced then in the second section is studied 

and analysed the quality of information versus the degree of 

confidence. In the following two section the knowledge 

acquired and their reasoning as also the artificial neural network 

are presented. Finally some conclusions are made and the future 

work presented. 

II. QUALITY-OF-INFORMATION VERSUS DEGREE OF 

CONFIDENCE 

Due to the growing need to offer user support in decision 

making processes some studies have been presented [9][10], 

related to the qualitative models and qualitative reasoning in 

Database Theory and in Artificial Intelligence (AI) research. 

With respect to the problem of knowledge representation and 

reasoning in Logic Programming (LP), a measure of the 

Quality-of-Information (QoI) of such programs has been object 

of some work with promising results [11], [12]. The QoI with 

respect to the extension of a predicate i will be given by a truth-

value in the interval [0,1], i.e., if the information is known 

(positive) or false (negative) the QoI for the extension of 

predicatei is 1. For situations where the information is 

unknown, the QoI is given by: 

 

𝑄𝑜𝐼𝑖 = 𝑙𝑖𝑚
𝑁→∞

1

𝑁
= 0       (𝑁 ≫ 0) (1) 

 

where N denotes the cardinality of the set of terms or clauses of 

the extension of predicatei that stand for the incompleteness 

under consideration. For situations where the extension of 

predicatei is unknown but can be taken from a set of values, the 

QoI is given by: 

 

𝑄𝑜𝐼𝑖 =
1
𝐶𝑎𝑟𝑑⁄  (2) 

 
where Card denotes the cardinality of the abducibles set for i, 

if the abducibles set is disjoint. If the abducibles set is not 

disjoint, the QoI is given by: 

 

𝑄𝑜𝐼𝑖 =
1

𝐶1
𝐶𝑎𝑟𝑑+⋯+𝐶𝐶𝑎𝑟𝑑

𝐶𝑎𝑟𝑑 (3) 

 

where 𝐶𝐶𝑎𝑟𝑑
𝐶𝑎𝑟𝑑 is a card-combination subset, with Card elements. 

The next element of the model to be considered is the relative 

importance that a predicate assigns to each of its attributes 

under observation, i.e., 𝑤𝑖
𝑘, which stands for the relevance of 

attribute k in the extension of 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖 . It is also assumed that 

the weights of all the attribute predicates are normalized, i.e.: 

 

∑ 𝑤𝑖
𝑘 =1≤𝑘≤𝑛 1, ∀𝑖  (4) 

 

where  denotes the universal quantifier. It is now possible to 

define a predicate’s scoring function 𝑉𝑖(𝑥) so that, for a value 

𝑥 = (𝑥1, ⋯ , 𝑥𝑛), defined in terms of the attributes of 

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖 , one may have: 

 

𝑉𝑖(𝑥) = ∑ 𝑤𝑖
𝑘 ×1≤𝑘≤𝑛 𝑄𝑜𝐼𝑖 (𝑥) 𝑛⁄  (5) 

 

It is now possible to engender all the possible scenarios of 

the universe of discourse, according to the information given in 

the logic programs that endorse the information depicted in Fig. 

2, i.e., in terms of the extensions of the predicates General Data, 

Full Outline of UnResponsive (FOUR), Glasgow Coma Scores, 

DCD-N and  Diagnosis. 

It is now feasible to rewrite the extensions of the predicates 

referred to above, in terms of a set of possible scenarios 

according to productions of the type: 

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖(( 𝑥1, ⋯ , 𝑥𝑛)) ∷ 𝑄𝑜𝐼 (6) 

 

and evaluate the Degree of Confidence (DoC) given by 𝐷𝑜𝐶 =
𝑉𝑖(𝑥1, ⋯ , 𝑥𝑛) 𝑛,⁄  which denotes one‘s confidence in a particular 

term of the extension o𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖. To be more general, let us 

suppose that the Universe of Discourse is described by the 

extension of the predicates: 

 

𝑎1(⋯ ), 𝑎2(⋯ ),⋯ , 𝑎𝑛(⋯ )         (𝑛 ≥ 0) (7) 
 

Therefore, for a given scenario, one may have (where  

denotes an argument value of the type unknown; the values of 

the others arguments stand for themselves): 
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{
 
 
 
 
 

 
 
 
 
 
¬𝑎1(𝑥1, 𝑦1, 𝑧1) ⟵ 𝑛𝑜𝑡 𝑎1(𝑥1, 𝑦1, 𝑧1)

𝑎1(⊥ ,   [10,20],   15) ∷ 0.5         
[5, 10]   [5,30]   [10, 20]⏟                             
attribute`s domains for 𝑥1,𝑦1,𝑧1                      

¬ 𝑎2(𝑥2, 𝑦2, 𝑧2) ⟵ 𝑛𝑜𝑡 𝑎2(𝑥2, 𝑦2 , 𝑧2)

 𝑎2([45,54],   [10, 12] ,   ⊥) ∷ 0.65

          [30, 60]    [6, 14]    [2000, 6000]⏟                    
attribute`s domains for 𝑥2,𝑦2,𝑧2

    

⋮

  

 

{
 
 
 
 
 

 
 
 
 
 
¬𝑎1(𝑥1, 𝑦1 , 𝑧1) ⟵ 𝑛𝑜𝑡 𝑎1(𝑥1, 𝑦1 , 𝑧1)                               

  𝑎1([5, 10], [10,20], [15, 15]) ∷ 0.5                                  

     [5, 10]   [5, 30]  [10, 20]⏟                
attribute`s domains for 𝑥1,𝑦1,𝑧1 

                                            

¬ 𝑎2(𝑥2, 𝑦2 , 𝑧2) ⟵ 𝑛𝑜𝑡 𝑎2(𝑥2, 𝑦2, 𝑧2)                      

𝑎2([45,54],   [10, 12],   [2000,6000]) ∷ 0.65         

           [30, 60]    [6, 14]    [2000, 6000]⏟                    
attribute`s domains for 𝑥2,𝑦2,𝑧2

                         

⋮

  

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
¬𝑎1(𝑥1, 𝑦1 , 𝑧1) ⟵ 𝑛𝑜𝑡 𝑎1(𝑥1, 𝑦1 , 𝑧1)                                            

𝑎1 ([
5−5

10−5
,
10−5

10−5
] , [

10−5

30−5
,
20−5

30−5
] , [

15−10

20−10
,
15−10

20−10
]) ≡                         

𝑎1([0,1], [0.2, 0.6], [0.5, 0.5]) ∷ 0.5                        

      [0, 1]      [0, 1]          [0, 1]⏟                
attribute`s domains for 𝑥1,𝑦1,𝑧1 

                                         

¬ 𝑎2(𝑥2, 𝑦2, 𝑧2) ⟵ 𝑛𝑜𝑡 𝑎2(𝑥2, 𝑦2 , 𝑧2)                                          

    𝑎2 ([
45−30

60−30
,
54−30

60−30
] , [

10−6

14−6
,
12−6

14−6
] , [

2000−2000

6000−2000
,
6000−2000

6000−2000
]) ≡       

𝑎2([0.5, 0.8], [0.5, 0.75], [0, 1]) ∷ 0.65                      

  [0, 1]       [0, 1]       [0, 1]⏟                
attribute`s domains for 𝑥2,𝑦2,𝑧2

                             

⋮

  

 

The Degree of Confidence (DoC) was evaluated using the 

equation 𝐷𝑜𝐶 = √1 − ∆𝑙2, as it is illustrated in Fig. 1. Here ∆𝑙 
stands for the length of the arguments’ intervals, once normalized. 

 

 
Fig. 1 Evaluation of Degree of Confidence 

 

Below, one has the expected representation of the universe 

of discourse, where all the predicates´arguments are nominal. 

They speak for one´s confidence that the unknown values of the 

arguments fit into the correspondent intervals referred to above. 

 

{
 
 
 
 

 
 
 
 
¬𝑎1(𝑥1, 𝑦1, 𝑧1) ⟵ 𝑛𝑜𝑡 𝑎1(𝑥1, 𝑦1, 𝑧1)                        

  𝑎1(0,      0.9,      1)        ∷       0.5                        
[0, 1]  [0, 1]  [0, 1]                                          

¬ 𝑎2(𝑥2, 𝑦2 , 𝑧2) ⟵ 𝑛𝑜𝑡 𝑎2(𝑥2, 𝑦2, 𝑧2)                      

𝑎2(0.9,    0.6,     0)            ∷        0.65                 
[0, 1] [0, 1] [0, 1]                                        

⋮

  

III. KNOWLEDGE REPRESENTATION AND REASONING 

Many approaches for knowledge representation and 

reasoning have been proposed using the Logic Programming 

(LP) paradigm, namely in the area of Model Theory [13]–[15], 

and Proof Theory [16], [17]. We follow the proof theoretical 

approach and an extension to the LP language, to knowledge 

representation and reasoning. An Extended Logic Program 

(ELP for short) is a finite set of clauses in the form: 

 

𝑝 ← 𝑝1, ⋯ , 𝑝𝑛 , 𝑛𝑜𝑡 𝑞1, ⋯ , 𝑛𝑜𝑡 𝑞𝑚  (8) 
 

? (𝑝1, ⋯ , 𝑝𝑛 , 𝑛𝑜𝑡 𝑞1, ⋯ , 𝑛𝑜𝑡 𝑞𝑚)  (𝑛,𝑚 ≥ 0) (9) 
 

Where? There is a domain atom denoting falsity, the pi , qj , and 

p are classical ground literals, i.e., either positive atoms or 

atoms preceded by the classical negation sign  [17]. Under this 

representation formalism, every program is associated with a 

set of adducibles [15][18], given here in the form of exceptions 

to the extensions of the predicates that make the program. Once 

again, Logic Programming (LP) has emerged as an attractive 

formalism for knowledge representation and reasoning tasks, 

introducing an efficient search mechanism for problem solving. 

Therefore, and in order to exemplify the applicability of our 

model, we will look at the relational database model, since it 

provides a basic framework that fits into our expectations [19], 

and is understood as the genesis of the LP approach to 

knowledge representation and reasoning. 

Consider, for instance, the scenario where a relational 

database is given in terms of the extensions of the relations or 

predicates depicted in Fig. 2, which stands for a situation where 

1st interaction: transition to continuous intervals

2nd interaction: normalization
Ymax - Ymin

Y - Ymin

1
Interval 

Lenght∆l

1

0

DoC
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one has to manage information about patients in a neurocritical 

state. Under this scenario some incomplete data is also 

available. For instance, in relation General Data the use of 

inotropes in the third patient is unknown, while in relation to 

Diagnosis values for pH of the first patient range in the interval 

[7.25, 7.35]. 

In relation General Data, Ventilation Mode can be: 0 – 

Pressure Support; Synchronised intermittent mandatory 

Ventilation-1; or Pressure Control/Volume Control/Pressure 

regulated Volume Control – 1. In what concerns to use of 

inotropes: 0 – not use; and 1- used. 

The relation FOUR is obtained by the sum of the row, which 

corresponds to each of its testable components (filled according 

to this scale). The relation GCS works in the same way, but 

don’t test brain steam reflexes and has a different scale. Despite 

this, it is still included on this model because it is the most 

commonly used. 

The DCD-N comes from the already mentioned Rabinstein, 

Alejandro A., et al model, because it provides a simple way to 

weight some of the most important factors: for the absence of 

cough reflex it is given 2 points, and for the absence of each of 

the other 1 point. 

Finally, in the relation Diagnosis, causes of neurological 

injury values correspond to: 3 – intracranial trauma; 2 – 

intracranial haemorrhage; 1 – hypoxia; 0 – other. 

Now, we may consider the extensions of the relations given 

in Figure 2 to populate the extension of the potentialdonor 

predicate, given in the form:  

 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑜𝑛𝑜𝑟: 𝐴𝑔𝑒, 𝐺𝐶𝑆, 𝐹𝑂𝑈𝑅𝑠𝑐𝑜𝑟𝑒 , 𝐷𝐶𝐷 − 𝑁𝑠𝑐𝑜𝑟𝑒 , 𝐼𝑛𝑜𝑡𝑟𝑜𝑝𝑒𝑠, 

𝐶𝑎𝑢𝑠𝑒 , 𝑝𝐻,𝑂𝑝𝑖𝑛𝑖𝑜𝑛, 𝐹𝑖𝑂2  →  {0,1} 
 

where 0 (zero) and 1 (one) denote, respectively, the truth values 

false and true. It is now possible to give the extension of the 

predicate 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑜𝑛𝑜𝑟, in the form: 

 

 
{ 

¬𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝐴𝑔𝑒, 𝐺𝐶𝑆, 𝐹𝑂𝑈𝑅, 𝐷𝐶𝐷 − 𝑁, 𝐼𝑛𝑜, 𝐶, 𝑝𝐻, 𝑂𝑝, 𝐹𝑖𝑂2) 
 

← 𝑛𝑜𝑡 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝐴𝑔𝑒, 𝐺𝐶𝑆, 𝐹𝑂𝑈𝑅, 𝐷𝐶𝐷 −𝑁, 𝐼𝑛𝑜, 𝐶, 𝑝𝐻, 𝑂𝑝, 𝐹𝑖𝑂2) 
 

 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(20, 3, 0, 5, 1, 3, [7.25 − 7.35], 2, 0.4) :: 1. 
        [3,75]  [3,15]  [0,16]  [0,5]  [0,1]  [0,3]  [7.25,7.40]  [0,2]  [0.15,0.5] 

 
 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(30, 4, 4, [0,1], 0, 0, ⊥, 0, 0.25) :: 1. 

[3,75]  [3,15]  [0,16]  [0,5]  [0,1]  [0,3]  [7.25,7.40]  [0,2]  [0.15,0.5] 
} 
 

In this program, the first clause denotes the closure of 

predicate 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑜𝑛𝑜𝑟 . The following clause corresponds to 

two terms taken from the extension of the 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑜𝑛𝑜𝑟 

relation. It is now possible to have the arguments of the 

predicates extensions normalized to the interval [0, 1], in order 

to compute one's confidence that the nominal values of the 

arguments under considerations fit into the intervals depicted 

previously. One may have: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 An extension of the relational database model.

 
 

{ 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙([0.24,0.24], [0,0], [0,0], [1,1], [1,1], [1,1], [0,0.67], [1,1] 
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[0.71,0.71]) ∷ 1. 
       [0,1]           [0,1]   [0,1]   [0,1]   [0,1]   [0,1]    [0,1]    [0,1]   
[0,1] 

   
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙([0.375,0.375], [0.83,0.83], [0.33,0.33], [0,0.2], [0,0], [0,0], 
[0,1], [0,0], [0.29,0.29]) ∷ 1. 

       [0,1]           [0,1]   [0,1]   [0,1]   [0,1]   [0,1]    [0,1]    [0,1]   
[0,1] 

} 
 

The logic program referred to above, is now presented in the 

form: 
 
{ 
¬𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐷𝑜𝐶(𝐴𝑔𝑒, 𝐺𝐶𝑆, 𝐹𝑂𝑈𝑅, 𝐷𝐶𝐷 − 𝑁, 𝐼𝑛𝑜, 𝐶, 𝑝𝐻, 𝑂𝑝, 𝐹𝑖𝑂2) 
 
← 𝑛𝑜𝑡 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐷𝑜𝐶(𝐴𝑔𝑒, 𝐺𝐶𝑆, 𝐹𝑂𝑈𝑅,𝐷𝐶 –𝑁, 𝐼𝑛𝑜, 𝐶, 𝑝𝐻, 𝑂𝑝, 𝐹𝑖𝑂2). 
 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐷𝑜𝐶(1, 1, 1, 1, 1, 1, 0.74, 1, 1) :: 1. 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐷𝑜𝐶(1, 1, 1, 0.98, 1, 1, 0, 1, 1) :: 1. 
}  

 

where its terms make the training and test sets of the following 

Artificial Neural Network(Figure 3).  

IV. ARTIFICIAL NEURAL NETWORKS 

The presented model works well to demonstrate how the 

information comes together to make a prediction, but it was 

built with the pure objective of demonstration. In order to find 

more reliable ways to assemble this information Artificial 

neural Networks (ANNs) and data mining tools can be used. 

Neves et al [18]–[20] demonstrated how ANNs could be 

successfully applied to model data and capture complex 

relationships between inputs and outputs. This kind of tool 

simulates the structure of the human brain being populated by 

multiple layers of neurons. As an example, let us consider the 

case of the third which is given in the form: 
 
{ 
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙: (𝐴𝑔𝑒, 𝐺𝐶𝑆, 𝐹𝑂𝑈𝑅,𝐷𝐶𝐷 − 𝑁, 𝐼𝑛𝑜, 𝐶, 𝑝𝐻, 𝑂𝑝, 𝐹𝑖𝑂2) 
                                        
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(59, 3, 1, 3,⊥,⊥, [7.30 − 7.40], 1, 0.3) ∷ 1.   
[3,75]  [3,15]  [0,16]  [0,5]  [0,1]  [0,3]  [7.25,7.40]  [0,2]  [0.15,0.5] 

                                        
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙([59,59], [3,3], [1,1], [ 3,3], [0,1], [0,3], [7.30

− 7.40], [1,1], [0.3, 0.3]) ∷ 1.   
                                        
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙([0.78, 0.78], [0,0], [0.06, 0.06], [0.6,0.6], [0,1], [0,1], 
[0.33,0.33], [0.5, 0.5] [0.43,0.43]) ∷ 1.     
                                        
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐷𝑜𝐶(1, 1, 1, 1, 0, 0, 1, 1, 1). 
} 
 

In Figure 3 it is shown how the normalized extremes and 

theirs DoC values work as inputs to the ANN. The output 

translates the chance of the patient death within one hour of 

WLST and DoC the confidence that one has on such a 

happening. In order to achieve good results, it is imperative to 

build a database of study cases that can be used to train and test 

the ANN.  

 

 
Fig. 3 ANN example for third patient 

V. CONCLUSIONS AND FUTURE WORK  

Identify the patients who will die in a period of 60 minutes 

after WLST as potential organ donors is a hard and complex 

task, which needs to consider many different factors with 

complex relations among them. All this characteristics 

highlight the benefits that the aid by AI techniques can bring to 

this field in order to achieve better prognostics. 

In this work, departing from the conclusions of some good 

existing models, it was presented the founding of a 

computational framework that uses powerful knowledge 

representation and reasoning techniques to set the structure of 

the information and the associate inference mechanisms. This 

representation is above everything else, very versatile and 

capable of covering every possible instance by considering 

incomplete, contradictory, and even unknown data.  

Future works, should study the assignment of different 

weights to different factors when calculating the Degree of 

Confidence, since the identification of the most important 

characteristics seems to be in the core of this problem. 
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