

Abstract—There may be several different platforms for

performance estimation of non-comparison based sorting algorithms.
Understanding the relative efficiencies of algorithms designed to do
the same task is very important in every area of computing. An
algorithm can be analyzed in terms of time efficiency or space
utilization. The efficiency, with which a sorting will be carried out,
often has a big impact on the effectiveness of the program as a whole.
Because platforms and surroundings are in progression and
permanent change, they always need to follow these parameters. The
goal of this paper is to review different non-comparison based sorting
algorithms. In this occasion three different environments and
computer performances are used and the obtained results are also
analyzed in this paper.

Keywords—algorithm, environment, non-comparison, platform,
sorting.

I. INTRODUCTION
ORTING is maybe the single most important algorithm
performed by computers, and certainly one of the most

investigated topics in algorithmic design. One of the
fundamental problems of computer science is ordering a list of
items. There is a plethora of solutions to this problem, known
as sorting algorithms. An algorithm can be analyzed in terms
of time efficiency or space utilization. The running time of an
algorithm is influenced by several factors: speed of the
machine [2] running the program and language in which the
program was written; Efficiency of the compiler that created
the program, the size of the input and the organization of the
input. Examples of sorting algorithms that run in linear time
are counting sort, radix sort and bucket sort are executed in
three platforms as CPU: Intel® Core i5™-M460 2.53GHz (2
Cores), RAM: 6GB, CPU: Intel® Core i3™-2100 3.10GHz (2
Cores), RAM: 4GB and also in Pentium® Dual Core – T4200
2.0GHz (2 Cores), RAM: 4GB and three environs as C++,
Python and Java.

II. NON-COMPARISON SORT

A. Bucket Sort
Bucket Sort is a sorting method that subdivides the given

data into various buckets depending on certain characteristic

order, thus partially sorting them in the first go. Then
depending on the number of entities in each bucket, it employs
either bucket sort again or some other ad hoc sort. Bucket sort
runs in linear time on an average. Bucket sort is stable. It
assumes that the input is generated by a random process that
distributes elements uniformly over the interval 1 to m. Bucket
sorting algorithm is a kind of sustainable, [1] it takes data
generated by a random process that distributes the same
elements in the interval O (n). Bucket sort divides the intervals
[0,1) in the same size intervals or bucket and then distributes
them in the data bucket. Once the data are distributed
uniformly and in the interval [0,1) we do not expect that each
number will enter the empty bucket-mails. To gain done
sorting scoring numbers in each bucket and then go to the
order of bucket’s listed the elements in the list.

B. Counting Sort
Counting sort is an algorithm used to sort data whose range

is pre-specified and multiple occurrences of the data are
encountered. It is possibly the simplest sorting algorithm. The
essential requirement is that the range of the data set from
which the elements to be sorted are drawn is small, compared
to the size of the data set [3]. Counting sort works by
determining how many integers are behind each integer in the
input array A. Using this information, the input integer can be
directly placed in the output array B. This type of sorting
works best when data distribution is uniform. An example of
efficient use of Counting Sort order can be 200 students on the
basis of their results by sorting 100 or 1500 employees in
connection with the filing of their birthday in a year. The
drawback may occur if range m >> n (where n is the number of
data while m is the range of data), the complexity will not be
linear in n and thus this sort will not remain useful longer. This
is because the chances of the appearance of gaps, during the
sorting for those elements which do not exist in the list will
cause a higher complexity of space. Because counting sort
algorithm is a straightforward algorithm is quite simple and
easy to be analyzed in the context of software complexity. The
worst case and the average performance of counting sort
algorithm is O (n + k). In order to ensure maximum efficiency,
"k" should not be higher than "n". Counting Sort When
compared with other sorting algorithms, appears to be easier to

Performance Estimation of Non-comparison
Based Sorting Algorithms Under Different

Platforms and Environments
Mentor Hamiti and Diellza Nagavci

S

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 400

implement and does not require any special structure of data to
store its elements.

C. Radix Sort
A radix sort is an algorithm that can rearrange integer

representations based on the processing of individual digits in
such a way that the integer representations are eventually in
either ascending or descending order. Integer representations
can be used to represent things such as strings of characters
(names of people, places, things, the words and characters,
dates, etc.) and floating point numbers as well as integers. So,
anything which can be represented as an ordered sequence of
integer representations can be rearranged to be in order by a
radix sort [4]. Most digital computers internally represent all
of their data as electronic representations of binary numbers,
so processing the digits of integer representations by groups of
binary digit representations is most convenient. Two
classifications of radix sorts are:

• Least significant digit (LSD) radix sort.
• Most significant digit (MSD) radix sort.
LSD radix sorts process the integer representations starting

from the least significant digit and move the processing
towards the most significant digit. MSD radix sorts process the
integer representations starting from the most significant digit
and move the processing towards the least significant digit.
The integer representations that are processed by sorting
algorithms are often called "keys," which can exist all by
themselves or be associated with other data. LSD radix sorts
typically use the following sorting order: short keys come
before longer keys, and keys of the same length are sorted
lexicographically. This coincides with the normal order of
integer representations, such as the sequence 1, 2, 4, 5, 6, 7, 8,
9. MSD radix sorts use lexicographic order, which is suitable
for sorting strings, such as words, or fixed-length integer
representations. A sequence such as b, c, d, e, g, h, i, j, ba
would be lexicographically sorted as b, ba, c, d, e, f, g, h, i, j.

If lexicographic ordering is used to sort variable-length
integer representations, then the representations of the
numbers from 1 to 10 would be output as 1, 10, 2, 3, 4, 5, 6, 7,
8, 9, as if the shorter keys were left-justified and padded on the
right with blank characters to make the shorter keys as long as
the longest key for the purpose of determining sorted order.

III. TESTING IN DIFFERENT PLATFORMS AND
ENVIRONMENTS

The three non-comparison algorithms that are tested for
different number of CPUs will enable finding the best ratio of
the volume of data to the number of cores. For example
Bucket sort is implemented in three platforms, Radix Sort and
Counting Sort in three platforms and in C++, Python and Java
environments.

A. Bucket sort implementation CPU platform: Intel® Core i5
(TM) 2.53GHz, 6GB RAM in C++ environment

To analyze an algorithm we should provide tools which are
used by an algorithm for functioning. In the general case these

tools are: space memory devices, generation communications
or computer hardware and execution time. Bucket sort
algorithm is implemented in C++ environment executed in
Visual Studio 2013.

Fig. 1. Results of Bucket sort execution time

The diagram shows bucket sort execution time by the

number of elements. With increasing the size and the number
also increases the execution time on this platform. The best
time exestuation is 0.003 seconds.

B. Bucket sort implementation CPU platform: Intel® Core i5
(TM) 2.53GHz, 6GB RAM in Python environment

Diagram for bucket sort in python environment presents
results that show the curve through the highest point of the
execution time in this case is thus 0.065 seconds in the range
of 10000 to 100000 numbers.

Fig. 2. Results of Bucket sort execution time in Python

C. Radix sort implementation CPU platform: Intel® Core i5
(TM) 2.53GHz, 6GB RAM in Java environment

Speed of radix sort largely depends on the inner basic
operations and if operations are not efficient enough radix sort
can be slower than some other algorithms such as quick sort or
merge sort.

Fig. 3. Radix Sort in different platforms in Java environment

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 401

These operations include the insert delete function of the
sub lists and the process of isolating the digit we want.

Based on this graphic we can conclude that radix sort in
25600000 elements had a worst case of exestuation, otherwise
the best case is 0.015 seconds in 100000 elements.

D. Counting sort implementation CPU platform: Intel® Core
i3 (TM)2100 3.10 GHz, 4GB RAM in Python environment.

Counting sort is implemented in Python environment, this
non-comparison algorithm is stable. The best case of
exestuation time is 0.009 seconds.

Fig.4. Counting Sort in different platforms in Python environment

E. Radix sort implementation CPU platform: Intel® Core i3
(TM)2100 3.10 GHz, 4GB RAM in Java environment.

Implementation of Radix Sort in Java environment with
CPU platform: Intel® Core i3, has different results, the best
case is 0.022 seconds. The Java was complied in Eclipse.

Fig. 5. Radix Sort in different platforms in Java environment

F. Bucket sort implementation CPU platform: Pentium®
Dual Core 2GHz, 4GB RAM in C++ environment.

Bucket sort algorithm is implemented in platform CPU:
Pentium® Dual Core 2GHz, in the C++ environment complied
in Visual Studio 2013. As we can see in the figure the worst
exestuation time is 27.852 seconds, but the best case is 0.434
seconds. We can conclude that the execution time depends in
the number of elements.

Fig. 6. Bucket Sort in different platforms in C++ environment

G. Radix sort implementation CPU platform: Pentium®
Dual Core 2GHz, 4GB RAM in Java environment.

Radix Sort is implemented in java environment and in
platform with Pentium® Dual Core 2GHz. The code is
compiled in Eclipse. Based in the figure we can conclude that
the best case of execution is 0.02, increasing the number of
elements the execution time will score 12.25 seconds.

Fig. 7. Radix Sort in different platforms in Java environment

IV. ANALYSIS OF THE RESULTS OBTAINED DIFFERENT
PLATFORMS AND ENVIRONMENTS

Non-comparison algorithm Bucket, Radix and Counting sort
are tested in configurations with various performance and by
that we conclude which algorithm is executed most quickly.
Also we can reach a point where we see the results obtained by
each algorithm without comparisons. These three algorithms
implemented in three programming languages selected for this
study will serve as a benchmark of the results obtained by
different configurations, including computers with processors
i5, i3 and Pentium dual-core.

A. Bucket Sort in different platforms in C++ environment
As we can in the Figure Bucket sort algorithm is

implemented in three different platforms featuring distinction
at the time of execution, depending on the characteristics of
the computer.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 402

Fig. 8. Bucket Sort in different platforms in C++ environment

B. Bucket Sort in different platforms in Python environment
As in the previous case, we conclude that the worst

implemented algorithm is in the Python programming language
in surroundings Pentium Dual Core where the duration of the
performance is 68.78 seconds against times significantly faster
computers with processors i3 and i5. Below is the report in
tabular and graphical form.

Fig. 9. Bucket Sort in different platforms in Python environment

C. Bucket Sort in different platforms in Java environment

Fig. 10. Bucket Sort in different platforms in Java environment

In the diagram above we can see the results showing the

best case and worst case. As best case is the platform with i5
processor which for a short time e executes all data elements in
the Java programming language and as a worst case according
to the results is the performance of the computer with Pentium
Dual Core processor. The best case then algorithm execution is
i5 processor.

D. Radix Sort in different platforms in C++ environment
Radix sort algorithm is implemented in the vicinity of

compiled C ++ in Visual Studio 2013 in various performance
processors i5, i3, and Pentium dual-core. Based on the results
that are obtained we can conclude which Radix sort algorithm
performance is better and which worse. Bellow is the results of
comparisons between different performances of Radix sort
algorithm.

Fig. 11. Radix Sort in different platforms in C++ environment

E. Radix Sort in different platforms in Python environment
Radix sort algorithm is implemented in the environment of

the compiled Python “Python GUI” in various performance i5,
i3, and Pentium dual-core. Based on the obtained results we
can conclude for the best and worst performance of Radix sort
algorithm. Below are the results of comparisons between
different performances of Radix sort algorithm.

Fig. 12. Radix Sort in different platforms in Python environment

F. Bucket Sort in different platforms in Java environment

Fig. 13. Bucket Sort in different platforms in Java environment

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 403

Bucket sort algorithm is implemented in three different
platforms i5 processor performance, and Dual-Core i3. Based
on these results it was concluded which of these algorithms is
most appropriate for the respective performance.

G. Counting Sort in different platforms in C++ environment
Counting sort algorithm is implemented in C ++

environment, which is compiled in Visual Studio 2013 in three
different platforms i5 processor performance, and Dual-Core
i3. Based on these results it was concluded which of these
algorithms is most appropriate for the respective performance.

Fig. 14. Counting Sort in different platforms in C++ environment

H. Counting Sort in different platforms in Python
environment

Counting sort algorithm is implemented in Python
environment which is compiled on the Python GUI and on
three different platforms i5 processor performance, and Dual-
Core i3. Based on these results it was concluded which of
these algorithms is most appropriate for the respective
performance.

Fig. 15. Counting Sort in different platforms in Python environment

I. Counting Sort in different platforms in Java environment
Counting sort algorithm is implemented in Java

environment which is compiled in Eclipse in three different
platforms i5 processor performance, and Dual-Core i3. Based
on these results it was concluded which of these algorithms is
most appropriate for the respective performance.

Fig. 16. Counting Sort in different platforms in Java environment

V. CONCLUSION
In this paper, we have studied and analyzed about non-

comparison based sorting algorithms. We analyzed the time
complexity of each algorithm with time taken by each step of
algorithm in different platforms and environments.

The main objective to analyze the performance of sorting
algorithms without comparisons focused on various localities,
including programming languages, such as C ++, Python, Java,
by analyzing the programs for taking their time for execution.
Initially, the description of the algorithm for ranking, then the
assessment of sorting algorithms, sorting algorithms
classification without comparisons, which represents the
complexity of algorithms without comparison, as variable
memory devices it increases the number of data. However the
essence of this work has been the performance estimation of
non-comparison based sorting algorithms under different
platforms and environments specifically the implementation of
algorithms Bucket, Counting and Radix Sort platforms with
processors i5, i3 and Pentium Dual-Core in various localities
such as C ++, Python and Java. From the results obtained we
can conclude that the algorithm ran in Python environment
Counting sort is the best in i5 platform, followed by sort and
bucket Radix sort algorithm as last. The obtained results in i3
platform, shows that the first algorithm for this platform is
Counting sort, followed by Radix sort and Bucket sort as last.
In Pentium Dual-Core platform best algorithm is Counting
sort, second is Radix sort and third is Bucket sort. For Java
environment in i5 platform the most appropriate algorithm is
Bucket sort, the second is the Counting sort and final is Radix
sort. For i3 performance in Java environment as first algorithm
is Bucket sort, the second is Counting sort and final remains
Radix sort. In Pentium Dual-Core performance in Java
environment, the best algorithm for this case is Counting sort,
second is Bucket sort and last is Radix sort. The results
obtained from the implementation of non-comparison
algorithms in different platforms have different results. But
what is most important is that non-comparison sorting
algorithm has the best rating in C++ environment compared
with sequential equivalent solutions on platforms Java and
Python. After platforms were tested implementations are
achieved where the execution time is faster in C++
environment than in Python and Java environment.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 404

REFERENCES
[1] Spirakis. (2013). Algorithms and Complexity.
[2] Introduction to Algorithms by Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, Second Edition 2012 (Prentice Hall of
India private limited), New Delhi-110001.

[3] Parag Bhalchandra, Proliferation of Analysis of Algorithms with
application to Sorting Algorithms, M.Phil

[4] Dissertation, VMRF, India, July 2011.
[5] Mishra, A. B., 2013. Comparison of Sorting Algorithms based on Input

Sequences International. Journal of Computer Applications.
[6] Soltys, M., 2012. An Introduction to the Analysis of Algorithms.

s.l.:s.n.
[7] Mahfooz Alam, A. C., 2014. Sorting Algorithm: An Empirical Analysis.

International
[8] Journal of Engineering Science and Innovative Technology (IJESIT).
[9] Comparison of Sorting Algorithms based on Input Sequences

International Journal of Computer Applications (0975– 8887)Volume
78 – No.14, September 2013.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 405

