
                                                                                
   

 

 

 

  
Abstract— This research uses Neural Networks to determine two 

dimensional airfoil geometry using Bezier-PARSEC 
parameterization. Earlier, Ant Colony Optimization (ACO) 
techniques have been used to solve combinatorial optimization 
problems like TSP. This work extends ACO method from TSP 
problem to design parameters for estimating unknown 
Bezier-PARSEC parameters that define upper and lower curves of 
the airfoil. The efficiency and the performance of ACO technique 
was compared to that of GA. The work established that ACO 
exhibited improved performance than the GA in terms of 
optimization time and level of precision achieved. In the next phase, 
Neural Network is implemented using Cp as input in terms of Cl, Cd 
and Cm for learning and targeting the corresponding Bezier-PARSEC 
parameters. Neural Networks including Feed-forward back 
propagation, Generalized Regression and Radial Basis were 
implemented and were compared to evaluate their performance. 
Similar to earlier work with GA and Neural Nets, this work also 
established Feed-forward back propagation Neural Network as a 
preferred method for determining the design of airfoil since the 
technique presented better approximation results than other neural 
nets. 
 

Keywords— Airfoil Optimization, Ant Colony Optimization, 
Bezier-PARSEC, Cp, Neural Network 
 

I. INTRODUCTION 

irfoil design is one of the most challenging processes [1] 
in development of aircraft aerodynamic surfaces as it 

affects various aircraft performance parameters like lift, drag, 
spin-stall, cruise and turning radius [2]. Studies indicate that 
selecting the right design of airfoil with required 
characteristics reduces overall cost and improves the 
performance of air vehicle. Airfoil design largely depends on 
desire for high lift to drag ratio that is in conflict with the 
performance requirements [3]. 

There are two major techniques for designing an 
airfoil; direct and inverse [4]. First method involves designing 
a new or modifying an existing airfoil (UIUC Airfoil Database 
[5] and computing pressure distribution  
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across the surface to achieve desired set of parameters. This 
approach may limit the approximation for desired 
specifications due to inherent limitations in airfoil’s 
aerodynamics. For faster approximations, reduced degrees of 
freedoms are required but such reduction results in 
computational errors like round off, truncation and 
discretization error. In fact, determining the airfoil geometry 
should be based on requirements for aircraft’s performance. 
Thus later method involves using desired operational 
characteristics and performance parameters unless the airfoil 
geometry so generated meets the desired criteria. To reduce 
the computational time and meet the required design criteria 
various techniques including CFD, fuzzy logic, neural 
networks [6] and heuristics based algorithms like PSO [7] and 
GA [8] have been implemented to advantage the aerodynamic 
design process.  

This research, largely inspired by Saleem and Kharal 
[9], uses neural network based approach for airfoil generation 
exploiting Bezier-PARSEC 3434 parameterization rather than 
full coordinates for a given Cp. However, this research 
implements ACO to optimize Bezier-PARSEC unknown 
parameters instead of GA as in earlier work. 

II. ARITIFICIAL NEURAL NETWORK 

In machine learning and data mining, Artificial 
Neural Network is a set of learning algorithms modeled after 
neural network structure of the cerebral cortex and is used to 
approximate functions involving a larger number of the 
unknown input variables [10] Each neuron receives input from 
external sources or neighbors in the network, computes output 
and propagates to other neurons. Another function is the 
weight adjustments in the connections between neurons. 
Incremental learning is the technique by gathering information 
on cumulative error and consequently adjusting weight 
coefficients, wij. Mathematically, a Neural Network can be 
defined as a triple (N, C, w) where N is the set of neurons, C 
{(i, j)|i, j ∈  N} is a set of connections, and function w((i, j)), 
shortened as wij is called weights between neurons i and j. For 
every neuron, there is an external input ϑj and an activation 
function Fj to establish the new activation level based on 
effective input of a neuron Sj and is determined by following 
propagation rule in “(1)”. 
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Besides, a threshold is also introduced as linear, 
non-linear or sigmoidal function [11] that helps avoid the 
situation when training is not successful at ||σ||>0. A threshold 
function for each neuron is given by “(2)” 

 
A. Feed-forward Back propagation Neural Network 
A feed forward Back Propagation Neural Network (FFBP) 

contains a multi layered interconnected feed forward structure 
where every layer gets input from below and gives output to 
layer above it. Back propagation is a learning technique where 
output values are compared to a desired value to calculate the 
error using a pre-determined error function. This value of error 
is then fed back through the network repeatedly for minimizing 
through neural network algorithm by adjusting weights for 
each network connection until the network converges to a bare 
minimum acceptable level of error [12] Generally, a non-linear 
optimization method called gradient descent is implemented 
where derivative of the error function is determined w.r.t. 
weights, that are adjusted till the reduction of error. 

B. Radial Basis Function Neural Network 
A Radial Basis Function Neural Network (RBF) consists of 

an input layer, a hidden layer with non-linear Radial Basis 
activation function and an output layer. For Radial Basis 
Neural Network, the input is modeled as vector of real 
numbers (Rn) while output is a scalar function ϕ, given in “(3)” 
by [13] 

 
where n is number of neurons, ai is weight of neuron and ci is 

center vector. 
In Radial Basis Neural Networks, neurons respond to inputs 

close to their center in contrast with other neural networks. 
Although Radial Basis Neural Network requires more neurons 
for high dimensional input spaces, it can be trained faster than 
standard multi layered neural networks and have proven 
efficiency in regression and classification problems. 

C. Generalized Regression Neural Network 
A Generalized Regression Neural Network (GRNN) consists 

of one each input layer, pattern layer, summation layer and 
output layer. Training patterns are presented by neurons in 
pattern layer. In GRNN, pattern layer is connected to 
summation layer. Sum of weighted responses and un-weighted 
responses of pattern neurons are computed by two neurons in 
summation layers [9] The summation layer consists of both 
summation and single division units. Normalization of output 
is performed together both by summation and output layers. 
GRNN exhibit single pass learning algorithm with high 
parallel structure for estimating continuous variables and do 
not require iterative process as in multi-layered networks. 
GRNN converges to optimal regression even in noisy 
environments given a large number of sample data is available. 
Generalized Regression Neural Network is particularly 
advantageous with sparse data but as the training data increase, 
the error converges to zero. 

III. PARSEC PARAMETERIZATION & BEZIER CURVES 

PARSEC parameterization has the capability to 
describe the airfoil shape and its flow using engineering 
parameters [10] On the other hand, a Bezier curve is a 
parametric curve of degree n defined by polygon of n+1 vertex 
points called control points of nth order Bezier curve and is 
given by “(4)” 

 
where Pk is the kth control point while parameter t 

ranges from 0 to 1 with 0 at the zeroth control point and 1 at the 
nth control point. Eq. (5) gives Third order Bezier Curve 

 
 
Eq. (6) present fourth order Bezier Curve 

 
 

IV. BEZIER-PARSEC PARAMETERIZATION 

Bezier-PARSEC parameterization is a technique in which 
Bezier Curves are described using PARSEC parameterizations 
[14] and is further subdivided into BP3333 and BP3434. 

A. BP3333 Parameterization 
BP3333 Parameterization employs third order Bezier Curves 

for camber shape and thickness of airfoil [15] Twelve 
PARSEC parameters represent Bezier control points as shown 
in Fig 1. 

 

 
Fig 1 : BP3333 Bezier PARSEC Control Points and 

Respective Airfoil Geometry 
 
Main advantages of BP3333 include close relevance to 

airfoil aerodynamics parameters, faster optimization, 
continuity characteristics, reduced deviation of design process 
and avoidance of sharp leading edges. Disadvantage of this 
technique is reduced degree of freedom resulting in failure to 
parameterize airfoils having radical camber trailing edge 

B. BP3434 Parameterization 
BP3434 Parameterization depends on 10 PARSEC 

parameters and 5 Bezier parameters for airfoil shape 
representation. Here, camber and thickness leading edge of 
airfoil is defined by third order Bezier Curves while fourth 
order Bezier Curves are used to define camber and thickness 
trailing edge of airfoil shape [15] This allows increased degree 

(2) 

(3) 

(4) 

(5) 

(6) 
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of freedom for trailing edge parameterization of airfoil as 
shown in Fig 2. 

 
Fig 2 : BP3434 Bezier PARSEC Control Points and 

Respective Airfoil Geometry 
 

BP3434 proves to be efficient than BP3333 when airfoil 
camber becomes negative along any part of the chord length. 
However, the convergence speed for this method reduces due 
to greater number of variables as compared to BP3333. In 
presence of high computing numerical computers, the 
convergence speed of BP3434 can be compensated for 
effective application of the method. 

V. ANT COLONY OPTIMIZATION 

Ant Colony Optimization (ACO) is the meta-heuristic 
motivated from the working of natural ants that suggests that 
ants follow different paths to reach food source initially. Thus 
the ants with shortest path would reach the source in least time 
than the longer paths [16] Ant Colony Optimization is an 
algorithm where artificial ants are used to probabilistically 
construct solutions guided by higher pheromone trails and 
promising heuristic information [17] In actual, ants implement 
a randomized construction heuristics that differ from greedy 
heuristics by adding a probabilistic component to partial 
solution than a deterministic one. Generally, ACO algorithm 
consists of two phases. In first phase, artificial ants construct a 
solution where in second phase, pheromone trail is updated by 
first reducing by an evaporation factor to avoid unlimited 
accumulation followed by adding pheromone proportionate to 
quality of their solutions [18]. Thus most important is to 
update pheromone for generating quality solutions in future 
iterations of algorithm. ACO algorithms can be considered as 
competitive solution technique where previous solutions 
known to be part of good solutions are used to generate even 
better solutions in future cycles [19]. 

VI. METHODOLOGY 

In this research work, our methodology was quite similar to 
earlier work; however, ACO was preferred as a choice for 
optimization technique instead of GA to determine unknown 
Bezier-PARSEC parameters. 

 

A. Airfoil Representation 
A vector of 71 points is used to represent x-y coordinates of 

an airfoil where xi ranges from 1 to 0 for upper airfoil curve 
and lower airfoil curve, thus only values for y change which 
determine the shape of both curves. 

Mean Camber Line is a line at equal distance from both 
upper and lower surfaces of airfoil. Therefore, camber curve y 
points were obtained by taking average of upper and lower 
coordinates corresponding to the same x coordinate. These 
upper and lower coordinates were divided by chord length for 
non-dimensionalizing. The camber profile of an airfoil is 
calculated by “(7)”, “(8)”, “(9)” and “(10)” 

 
Thickness curve used to define the airfoil thickness is the 

difference between the camber curve and upper curve of the 
airfoil i.e. 

 
Next a two dimensional analysis of airfoil was carried out 

using Panel Method to obtain values for lift coefficient  
quarter-chord pitching moment coefficient and drag 
coefficient at ten angles of attack α. Thus the airfoil would 
be represented by , , , , . 

B. Calculating Bezier-PARSEC Parameterization 
Table 1 presents the required parameters for 

Bezier-PARSEC 
Table I : Known Bezier-PARSEC Parameters 

Parameters Caculations 

Maximum 
Thickness Point 

 

Maximum Camber 
Point 

 
Trailing Edge 
Vertical 
Displacement 

 
Trailing Camber 
Line Angle  
Trailing Wedge 
Angle  
Leading Edge 
Direction  
Leading Edge 
Radius  

While ten parameters are calculated using Bezier-PARSEC 
equations, there is no specific mathematical expression for 
finding remaining five parameters i.e., b0, b2, b8, b15 and b17 
and therefore are calculated by curve fitting. Since actual 
airfoil is known, Bezier Curves with correct five control points 
would suffice given a smallest Sum-of-Least-Square Error. 

(7) & (8) 

(9) & (10) 

(11) 
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Table II shows the four curves and corresponding unknown 
Bezier points. 

 
 
 

Table II : Unknown Bezier-PARSEC Parameters 

Curve Bezier Curve Orde
r 

Unknown Bezier 
Control Points 

Camber 
Leading Edge 3rd b0, b2 
Trailing Edge 4th b17 

Thickness 
Leading Edge 3rd b8 
Trailing Edge 4th b8, b15 

C. Optimization of Unknown Bezier Control Points Using 
ACO 

To determine optimal value of these unknown parameters, 
Ant Colony Optimization was implemented requiring fitness 
functions for each Bezier Curve that was equal to the 
difference between Bezier generated and actual airfoil. For this 
a Simple ACO code was written to determine each of these 
parameters i.e., b0, b2, b8, b15 and b17. In ACO, 6 ants were used 
to determine the optimal path to the destination and since the 
destination point was unknown; therefore, SSE for each curve 
was calculated for each generated point. Thus, a decrease in 
SSE over the path indicates that the ant is close to the 
destination point and vice versa. The pheromone is inversely 
proportional to the distance so the path with least distance or 
least SSE would have maximum pheromone. For each value of 
b0, a corresponding value of b2 is calculated through ACO. 
Thus a number of combinations (pair of b0 and b2 values) are 
made where pair with the least SSE is finally chosen. Same 
approach was used for b8 and b15 while value of b17 was 
calculated separately. Fig 3 present flow charts for the method 
used. 

 
Fig 3 : Ant Colony Optimization Methodology 

 

D. Error Calculation 
All 15 BP3434 parameters determined are used for 

generation of airfoil geometry. The error is calculated by 
comparing Bezier generated airfoil with actual airfoil. To 
calculate this error, at a certain x-value, y-value from 
parameterized and actual airfoils should relate to this x-value. 
The main challenge was to determine y-values of Bezier 
parameterized airfoil corresponding to these x-values. After 
generating x and y values of trailing and leading edge of 
thickness curve, these are arranged into a single set of x-y array 
in which first element corresponds to leading edge followed by 
trailing edge. Then cubic spline interpolation is used to fit a 
curve in the vector of x and y values which is then evaluated for 
36 x-values of actual airfoil. Same procedure was followed for 
camber curve. These thickness and camber curves can be used 
to determine the shape of airfoil. The airfoil geometries of 
parameterized and actual airfoils are then plotted against same 
axis for comparison. 
 

Fig 4 shows flow chart for SSE calculations while Fig 5 
presents results for Eppler 433 sailplane parameterized airfoil. 

E. Neural Networks Estimations 
Neural Networks of three types as discussed in Section 2 

were implemented in this research work. A 10X4 matrix of Cl, 
Cd, Cm at ten angles of attack for 500 heterogeneous airfoils 
was input to neural network while target was 15 
Bezier-PARSEC parameters for airfoil generation.  
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Fig 4 : SSE Calculations for Bezier-PARSEC Parameters 

 

 

 
Fig 5 : Bezier Parameterization Results for Eppler 433 Sailplane Airfoil 
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VII. RESULTS AND DISCUSSIONS 

A. Comparison of ACO Results with GA 
Implementation of ACO for finding unknown Bezier Curve 

parameters proved to be more efficient than Genetic 
Algorithm. We were able to achieve a precision level of 
≤1X10-5 as compared to GA based version of the program. 
Also time to optimize the missing BP3434 parameters was 
greatly reduced. For example, Eppler 433 Sailplane airfoil 
took 30.905144 seconds to optimize BP3434 missing 
parameters using ACO as compared to GA that took 
87.869966 seconds for optimization of said airfoil using 
2.7GHz Processor and 4GB RAM. Table III gives a 
comparison of ACO and GA optimizations for few airfoils for 
reference. 
Table III : Comparison of ACO and GA Optimization Results 

Airfoil 

Ant Colony 
Optimization Genetic Algorithm 

Time 
(Seconds) Level Time 

(Seconds) Level 

Eppler 
E433 30.905144 ≤1X10-5 87.869966 ≤1X10-4 

NACA 
65(4)-421 55.187357 ≤1X10-5 90.952194 >1X10-4 

Eppler 
E335 65.389595 ≤1X10-5 109.694796 >1X10-4 

Gottingen 
GOE426 44.489090 ≤1X10-5 82.259980 ≤1X10-4 

Eppler 
E399 55.089536 ≤1X10-5 94.445729 ≤1X10-4 

 
From Table III, we see that optimization time has 

remarkably been reduced to almost half for above airfoils. 

B. Results of Neural Networks 
As discussed above, three types of neural networks were 

implemented and tested against 500 airfoils for training and 
200 airfoils unknown to the neural nets. Consolidated results 
for these airfoils is shown in Table IV. 
The results from Table IV show that Feed Forward and Back 
Propagation has proved to be more promising in terms of 
better performance as indicated by increased fraction of both 
known and unknown airfoils within acceptable MSE values. 
On the other hand, GRNN and RBF showed improved 
efficiency with known airfoils than for the unknown airfoils. 
Comparison of Results for a known to network airfoil (Eppler 
399 airfoil) and an unknown to network airfoil (Gottingen 426 
airfoil) to the three types of neural networks is shown in Fig 6 

The plots for Gottingen 426 airfoil and Eppler 399 airfoil 
support application of Feed Forward Back Propagation Neural 
Network for solving this problem. However, results from RBF 
and GRNN largely favour known to network airfoils than 
unknown airfoils as is evident from RBF and GRNN plots for 
Gottingen 426 airfoil. Results for 200 airfoils unknown to 
network also support similar findings. MSE for GRNN and 

RBF is higher than FFBP with RBF performing the worst with 
a high MSE. 
Table IV : Comparison of Test Results for Three Neural Nets 
Artificial Neural 
Network 

≤1X10-5 ≥1X10-5 
Count %age Count %age 

 
Feed Forward and Back Propagation 

Known Airfoils (500) 273 54.6 227 45.4 
Unknown Airfoils 
(200) 113 56.5 87 43.4 

 
Radial Basis Neural Network 

Known Airfoils (500) 394 78.8 106 21.2 
Unknown Airfoils 
(200) 47 23.5 153 76.5 

 
Generalized Regression Neural Network 

Known Airfoils (500) 363 72.6 137 27.4 
Unknown Airfoils 
(200) 78 39.0 122 61.0 

C. Regression Analysis 
A post training regression analysis was performed to 

analyze the neural networks. In this analysis, the output of 
neural networks for known targets was compared. Thus neural 
network output would match the target values and would 
ideally be a straight line with 45° slope passing through the 
origin as shown in Fig 7. 

Fig 7 shows that performance of Feed Forward and Back 
Propagation is better than other two types of neural nets as 
indicated by the high regression values and low training 
R-values. On the other hand, both Generalized Regression 
Neural Network and Radial Basis Neural Network have higher 
R-values but shown poor results with test and validation data. 
The main reason is their architecture as both determine 
distance between input and weight vectors, which are 
incrementally multiplied by biased vectors. This would lead an 
input close to weight vector, produce an output close to unity 
while output would be close to zero if input is different from 
weight vector. 

VIII. CONCLUSION 

This work determines airfoil geometry for a given Cp using 
Neural Network and Bezier-PARSEC parameters. The main 
consideration of this paper is to use Ant Colony Optimization 
technique to optimize missing BP3434 parameters instead of 
complete set of airfoil coordinates. Further, three types of 
Neural Networks; Feed Forward and Back Propagation, Radial 
Basis and Generalized Regression were employed. Similar to 
earlier findings with GA based code, we proved that 
Feed-forward and Back Propagation exhibited greater 
efficiency than the other two types of Neural Networks. 
However, we were able to achieve higher precision with 
reduced time for optimization using ACO to determine missing 
BP3434 parameters. Besides, percentage of known and 
unknown airfoils with precision ≤1X10-5 has shown a slight 
increase. 
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(a) Feed Forward and Back Propagation Neural Network 

 
(b) Generalized Regression Neural Network 

 
(c) Radial Basis Neural Network 

Gottingen GOE426 Airfoil                 Eppler E399 Airfoil 
Fig 6 : Comparison of Results of Known to Unknown Airfoil to Neural Network 
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(a) Radial Basis Neural Network 

IX. FUTURE WORK 

We have implemented Simple ACO in this research work. 
Future works may consider implementation of other extensions 
of ACO techniques like Elitist AS, Ant-Q, Max-Min As, 
Hyper-cube AS and etc to achieve high performance in order 
to further reduce the optimization level and attain higher level 
of precision. 
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