
 

 

  
Abstract — This paper presents an analytical solution of the 

MHD problem on a fully developed flow of a conducting fluid in a 
duct with the rectangular cross-section, located in a uniform external 
magnetic field, and under a slip boundary condition on side walls of 
the duct. The flow is driven by a constant pressure gradient. The case 
of perfectly conducting Hartmann walls and insulating side walls is 
considered. The solution is derived by using integral transforms. 
 

Keywords — Integral transforms, magnetohydrodynamic duct 
flow, slip boundary condition.  

I. INTRODUCTION 
FLOW of a conducting fluid in the presence of external 
magnetic field produces a variety of new effects, studied 

by magnetohydrodynamics (MHD), the discipline combining 
the classical fluid mechanics and electrodynamics.  The MHD 
effects are widely exploited both in technical devices (e.g., in 
pumps, flow meters, generators) and industrial processes in 
metallurgy, material processing, chemical industry, industrial 
power engineering and nuclear engineering. Channels, in 
particular rectangular and circular channels, are common parts 
of many MHD devices. Therefore, investigation of MHD 
phenomena in channels with conducting fluids is quite 
important.  

The motion of conducting fluid in external magnetic field is 
described by the system of MHD equations, containing 
Navier-Stokes equation for the motion of incompressible 
viscous fluid with the additional term corresponding to the 
Lorentz force and Maxwell’s equations (see [1]). In MHD the 
number of exact solutions, obtained analytically, is limited 
due to the nonlinearity of the Navier-Stokes equation. The 
exact solutions have been obtained only for very specific 
problems; however, numerical methods are widely used for 
solving MHD  
problems.  

The fully developed flows in rectangular ducts are well 
studied for different electric conductivities of the walls, but 
under “no slip” condition on the duct walls (for example, see 
[1]). Recently, in [2] three classic MHD problems are revisited 
on assuming a hydrodynamic slip condition at the interface 
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between the electrically conducting fluid and the insulating 
walls. One of the problems studied analytically in [2] is the 
problem on a fully developed flow in the rectangular duct with 
insulating walls and a slip condition on the Hartmann walls 
(the walls perpendicular to the magnetic field). 

 This paper presents an analytical solution of the MHD 
problem on a fully developed flow of a conducting fluid in the 
duct with the rectangular cross-section, located in a uniform 
external magnetic field, and under a slip boundary condition 
on side walls of the duct. The obtained solution seems absent 
in literature. 

The use of integral transforms or series expansion (see [3]) 
is one of the powerful method for obtaining analytical 
solutions of problems in mathematical physics. Also in MHD 
some problems with specific geometry of the flow and 
boundary conditions are well-solved by integral transforms 
(for example, see the author’s works [4] - [7]).  

The MHD problem of this paper is also solved by using 
integral transforms, but at first, the kernels of integral 
transforms has been derived and then used for solving the 
problem.  

II. PROBLEM FORMULATION 
Consider the MHD problem on a fully developed flow of a 

conducting fluid in the rectangular duct with the perfectly 
conducting Hartmann walls at 1z = ±  and non-conducting side 
walls at y d= ±  (the walls parallel to the external magnetic 
field) with the slip boundary condition on the side walls (see 
Fig.1).  
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Fig. 1 MHD duct flow with a slip boundary condition 
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The dimensionless MHD equations, describing the problem, 
have the form ([1], [2]):  
                                                      

2 2

2 2 1 0xbU U Ha
zz y

∂∂ ∂
+ + + =

∂∂ ∂
,                                                  (1) 

 
2 2

2 2 0x xb b UHa
zz y

∂ ∂ ∂
+ + =

∂∂ ∂
,                                                   (2) 

 
where ( , ) xV U y z e= ⋅

G

G   is the velocity of the fluid, 

           ( , )x xb b y z e= ⋅
G

G  is the induced  magnetic field, 
          0 /Ha B h σ ρν=  is the Hartmann number, which 
characterizes the ratio of electromagnetic force to viscous 
force;  σ, ρ, ν are the conductivity, the density and the 
viscosity of the fluid, respectively. 

The boundary conditions are 
 

1z = ± :   0U = ,     0xb
z

∂
=

∂
,                                                  (3) 

 

y d= ± : 0UU
y

α ∂
± =

∂
,   0xb = ,                                         (4) 

 
 where α  is the slip length. The slip condition is given by 

the 3rd kind boundary condition ([2]). 

III. PROBLEM SOLVING 
The problem is solved by using the integral transforms 

 
1

1
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−

= ∫ ,                                             (5) 
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−
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where 1( , )K zλ  and 2 ( , )K zλ  are unknown kernels.  

In order to find the unknown kernels, (1) is multiplied by 
1( , )K zλ , (2) by 2 ( , )K zλ , and integrated with respect to z. 
Thus, it yields 
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                                                                                               (8) 
Due to the boundary conditions (3), the following terms are 

equal to zero: 
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0
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The following additional conditions for the kernels are to be 

applied [3]: 
 

2
1 1( , ) ( , )K z K zλ λ λ′′ = − ,  1 2( , ) ( , )K z K zλ β λ′ = ,                 (10) 
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z z
K K

= = −
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The solution of (10) with the boundary conditions (11) has 

the form   
 

1( , ) cos( )nK z zλ λ= ,   2 ( , ) sin( )nK z zλ λ= ,                        (12) 
  
where  
 

, 0,1,2,
2n n nπλ π= + = …                                                 (13) 

 
Hence, the inverse integral transform for (5)-(6) has the 

form  
 

0

( , ) ( , ) cos( )n n
n
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∞
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0
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Then system (7)-(8), describing the problem, takes the 

form: 
 

2
2

2

2 ( 1) 0n
n n

n

d u u Ha b
dy

λ λ
λ
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2

2
2 0n n

d b b Ha u
dy

λ λ− − =                                                         (17) 

 
with the following boundary conditions, obtained from (4) by 
using the integral transform (5): 
 

y d= ± :   0duu
dy

α± = ,   0b = .                                       (18) 
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   The following ordinary differential equations for the 
unknown functions ( , )nu yλ  and ( , )nb yλ can be obtained 
from (16)-(17):  
 

( )21
n

n

u b b
Ha

λ
λ

′′= − ,                                                           (19) 

 

( )(4) 2 2 2 2 12 2( 1)n
n n nb b Ha b Haλ λ λ +′′− + + = − .                       (20) 

 
    The characteristic equation of the corresponding 
homogeneous equation of (20) is 
 

( )4 2 2 2 2 22 0n n nk k Haλ λ λ− + + = ,                                           (21) 

 
with the roots 
 

2
1,3 n nk i Haλ λ= ± + ⋅ ,     2

2,4 n nk i Haλ λ= ± − ⋅ .                   (22) 
 
    Taking into account that the function ( , )nb yλ  is even with 
respect to y, the solution of (20) takes the form 
                           

( ) ( ) ( )
1

1 2 2 2 2
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+
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Then it follows from (19) and (23) that  
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where the coefficients A and B are determined from the 
boundary conditions (18) and are equal to 
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∆

.               (26) 

 
   Applying the inverse integral transforms (14)-(15) to the 
(23)-(24), the solution of the problem (1)-(4) has the form:  
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( )
( ) ( )1 2

2 2 2
0

cosh cosh2( 1) sin( )
n

x n
n n n

A k y B k y
b Ha z

Ha
λ

λ λ

∞

=

⎛ ⎞+−
= −⎜ ⎟⎜ ⎟∆+ ⎝ ⎠
∑

� �
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where       
 

( ) ( ) ( )2 2 2cosh sinhnA Ha i k d Ha k k dλ α= + ⋅ + ⋅ ⋅� ,                   (29) 
 

( ) ( ) ( )1 1 1cosh sinhnB Ha i k d Ha k k dλ α= − ⋅ + ⋅ ⋅� ,                    (30) 
 

( ) ( ) ( ) ( )1 2 2 1 22cosh cosh cosh sinhk d k d k k d k dα∆ = + ⋅ +   
   

      ( ) ( )1 2 1cosh sinhk k d k dα+ ⋅ ,                                             (31) 
 

2
1 n nk i Haλ λ= + ⋅ ,       2

2 n nk i Haλ λ= − ⋅ .  
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