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Keynote Lecture 1 
 

New Developments in Clifford Fourier Transforms 
 
 
 

Sen. Ass. Prof. Dr. rer. nat. Eckhard Hitzer 
Department of Material Science 

International Christian University 
Tokyo, Japan 

E-mail: hitzer@icu.ac.jp 
 

Abstract: We show how real and complex Fourier transforms are extended to W.R. Hamilton's 
algebra of quaternions and to W.K. Clifford's geometric algebras. This was initially motivated by 
applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider 
range of applications in color image and signal processing. Clifford's geometric algebras are 
complete algebras, algebraically encoding a vector space and all its subspace elements, 
including Grassmannians (a vector space and all its subspaces of given dimension k). 
Applications include electromagnetism, and the processing of images, color images, vector field 
and climate data. Further developments of Clifford Fourier Transforms include operator 
exponential representations, and extensions to wider classes of integral transforms, like Clifford 
algebra versions of linear canonical transforms and wavelets. 
  
Brief Biography of the Speaker: http://erkenntnis.icu.ac.jp/ 
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Keynote Lecture 2 
 

Robust Adaptive Control of Linear Infinite Dimensional Symmetric Hyperbolic Systems with 
Application to Quantum Information Systems 

 
 
 

Prof. Mark J. Balas 
Distinguished Faculty 

Aerospace Engineering Department & 
Electrical Engineering Department 

Embry-Riddle Aeronautical University 
Daytona Beach, Florida 

USA 
E-mail: balasm@erau.edu 

 
Abstract: Symmetric Hyperbolic Systems of partial differential equations describe many 
physical phenomena such as wave behavior, electromagnetic fields, and quantum fields. To 
illustrate the utility of the adaptive control law, we apply the results to control of symmetric 
hyperbolic systems with coercive boundary conditions. 
Given a Symmetric Hyperbolic continuous-time infinite-dimensional plant on a Hilbert space 
and disturbances of known and unknown waveform, we show that there exists a stabilizing 
direct model reference adaptive control law with certain disturbance rejection and robustness 
properties. The closed loop system is shown to be exponentially convergent to a neighborhood 
with radius proportional to bounds on the size of the disturbance. The plant is described by a 
closed densely defined linear operator that generates a continuous semigroup of bounded 
operators on the Hilbert space of states. We will discuss the need and use of this kind of direct 
adaptive control in quantum information systems. 
  
Brief Biography of the Speaker: Mark Balas is presently distinguished faculty in Aerospace 
Engineering at Embry-Riddle Aeronautical University. He was the Guthrie Nicholson Professor of 
Electrical Engineering and Head of the Electrical and Computer Engineering Department at the 
University of Wyoming. He has the following technical degrees: PhD in Mathematics, MS 
Electrical Engineering, MA Mathematics, and BS Electrical Engineering. He has held various 
positions in industry, academia, and government. Among his careers, he has been a university 
professor for over 35 years with RPI, MIT, University of Colorado-Boulder, and University of 
Wyoming, and has mentored 42 doctoral students. He has over 300 publications in archive 
journals, refereed conference proceedings and technical book chapters. He has been visiting 
faculty with the Institute for Quantum Information and the Control and Dynamics Division at 
the California Institute of Technology, the US Air Force Research Laboratory-Kirtland AFB, the 
NASA-Jet Propulsion Laboratory, the NASA Ames Research Center, and was the Associate 
Director of the University of Wyoming Wind Energy Research Center and adjunct faculty with 
the School of Energy Resources. He is a life fellow of the AIAA and a life fellow of the IEEE. 
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Keynote Lecture 3 
 

Multidimensional Optimization Methods with Fewer Steps Than the Dimension: A Case of 
"Insider Trading" in Chemical Physics 

 
 
 

Prof. Paul G. Mezey 
Canada Research Chair in Scientific Modeling and Simulation 

Department of Chemistry and Department of Physics and Physical Oceanography 
Memorial University of Newfoundland 

Canada 
E-mail: pmezey@mun.ca 

 
Abstract: "Insider trading" in commerce takes advantage of information that is not commonly 
available, and a somewhat similar advantage plays a role in some specific, very high-
dimensional optimization problems of chemical physics, in particular, molecular quantum 
mechanics. Using a specific application of the Variational Theorem for the expectation value of 
molecular Hamiltonians, an optimization problem of thousands of unknowns does often 
converge in fewer than hundred steps. The search for optimum, however, is typically starting 
from highly specific initial choices for the values of these unknowns, where the conditions 
imposed by physics, not formally included in the optimization algorithms, are taken into 
account in an implicit way. This rapid convergence also provides compatible choices for "hybrid 
optimization strategies", such as those applied in macromolecular quantum chemistry [1]. The 
efficiency of these approaches, although highly specific for the given problems, nevertheless, 
provides motivation for a similar, implicit use of side conditions for a better choice of 
approximate initial values of the unknowns to be determined. 
[1]. P.G. Mezey, "On the Inherited "Purity" of Certain Extrapolated Density Matrices", Computational and 
Theoretical Chemistry, 1003, 130-133 (2013). 
  
Brief Biography of the Speaker: http://www.mun.ca/research/explore/chairs/mezey.php 
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Keynote Lecture 4 
 

MvStudium_Group: A Family of Tools for Modeling and Simulation of Complex Dynamical 
Systems 

 

 
 

Professor Yuri B. Senichenkov 
co-author: Professor Yu. B. Kolesov 

Distributed Computing and Networking Department 
St. Petersburg State Polytechnical University 

Russia 
E-mail: sen@dcn.icc.spbstu.ru 

 
Abstract: Designing of new version of Rand Model Designing under the name RMD 7 is coming 
to an end. It will be possible using dynamic objects, dynamic connections (bonds), and arrays of 
objects in the new version. These types are used for Simulation Modeling, and Agent Based 
Modeling. The first trial version will be available at year-end. 
The tools developed by MvStudium_Group are considered by authors as universal tools for 
automation modeling and simulation of complex dynamical systems. We are feeling strongly 
that at least nitty-gritty real system is multi-component, hierarchical, and event-driven system. 
Modeling of such systems requires using object-oriented technologies, expressive graphical 
languages and various mathematical models for event-driven systems. The last versions of 
Model Vision Modeling Language are intended for multi-component models with variable 
structure and event-driven behavior. 
  
Brief Biography of the Speaker: PhD degree in Numerical Analysis from St. Petersburg State 
University (1984). 
Dr. Sci. degree (Computer Science) from St. Petersburg Polytechnic University (2005). 
Author of 125 scientific publications-conference papers, articles, monographs and textbooks. 
A board member of National Simulation Society - NSS (http://simulation.su/en.html), and 
Federation of European Simulation Societies- EuroSim (http://www.eurosim.info/). 
A member of Scientific Editorial Board of "Simulation Notes Europe" Journal (http://www.sne-
journal.org/), and "Computer Tools in Education" Journal(http://ipo.spb.ru/journal/). 
Chairman and Chief-Editor of COMOD 2001-2014 conferences (https://dcn.icc.spbstu.ru/). 
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New Developments in Clifford Fourier Transforms
Eckhard Hitzer

Abstract—We show how real and complex Fourier transforms
are extended to W.R. Hamiltons algebra of quaternions and to
W.K. Clifford’s geometric algebras. This was initially motivated by
applications in nuclear magnetic resonance and electric engineering.
Followed by an ever wider range of applications in color image and
signal processing. Cliffords geometric algebras are complete algebras,
algebraically encoding a vector space and all its subspace elements.
Applications include electromagnetism, and the processing of images,
color images, vector field and climate data. Further developments of
Clifford Fourier Transforms include operator exponential represen-
tations, and extensions to wider classes of integral transforms, like
Clifford algebra versions of linear canonical transforms and wavelets.

Keywords—Fourier transform, Clifford algebra, geometric algebra,
quaternions, signal processing, linear canonical transform

I. INTRODUCTION

We begin by introducing Clifford Fourier transforms, in-
cluding the important class of quaternion Fourier transforms
mainly along the lines of [31] and [5], adding further detail,
emphasize and new developments.

There is the alternative operator exponential Clifford Fourier
transform (CFT) approach, mainly pursued by the Clifford
Analysis Group at the university of Ghent (Belgium) [5].
New work in this direction closely related to the roots of −1
approach explained below is in preparation [11].

We mainly provide an overview of research based on the
holistic investigation [28] of real geometric square roots of
−1 in Clifford algebras Cl(p, q) over real vector spaces Rp,q .
These algebras include real and complex numbers, quater-
nions, Pauli- and Dirac algebra, space time algebra, spinor
algebra, Lie algebras, conformal geometric algebra and many
more. The resulting CFTs are therefore perfectly tailored to
work on functions valued in these algebras. In general the
continuous manifolds of

√
−1 in Cl(p, q) consist of several

conjugacy classes and their connected components. Simple
examples are shown in Fig. 1.

A CFT analyzes scalar, vector and multivector signals in
terms of sine and cosine waves with multivector coefficients.
Basically, the imaginary unit i ∈ C in the transformation
kernel eiφ = cosφ+ i sinφ is replaced by a

√
−1 in Cl(p, q).

This produces a host of CFTs, an incomplete brief overview
is sketched in Fig. 2, see also the historical overview in [5].
Additionally the

√
−1 in Cl(p, q) allow to construct further

types of integral transformations, notably Clifford wavelets
[21], [37].

E. Hitzer is with the Department of Material Science, International Christian
University, Mitaka, Tokyo, 181-8585 Japan e-mail: hitzer@icu.ac.jp.

thanks
Manuscript received May 31, 2014; revised ...

II. CLIFFORD’S GEOMETRIC ALGEBRA

Definition 1 (Clifford’s geometric algebra [15], [36]). Let
{e1, e2, . . . , ep, ep+1, . . ., en}, with n = p + q, e2k = εk,
εk = +1 for k = 1, . . . , p, εk = −1 for k = p+ 1, . . . , n, be
an orthonormal base of the inner product vector space Rp,q
with a geometric product according to the multiplication rules

ekel + elek = 2εkδk,l, k, l = 1, . . . n, (1)

where δk,l is the Kronecker symbol with δk,l = 1 for k = l,
and δk,l = 0 for k 6= l. This non-commutative product and the
additional axiom of associativity generate the 2n-dimensional
Clifford geometric algebra Cl(p, q) = Cl(Rp,q) = Clp,q =
Gp,q = Rp,q over R. The set {eA : A ⊆ {1, . . . , n}}
with eA = eh1eh2 . . . ehk

, 1 ≤ h1 < . . . < hk ≤ n,
e∅ = 1, forms a graded (blade) basis of Cl(p, q). The grades
k range from 0 for scalars, 1 for vectors, 2 for bivectors, s
for s-vectors, up to n for pseudoscalars. The vector space
Rp,q is included in Cl(p, q) as the subset of 1-vectors. The
general elements of Cl(p, q) are real linear combinations
of basis blades eA, called Clifford numbers, multivectors or
hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ Cl(p, q).
The parts of grade 0 and k+ s, respectively, of the geometric
product of a k-vector Ak ∈ Cl(p, q) with an s-vector Bs ∈
Cl(p, q)

Ak ∗Bs := 〈AkBs〉0, Ak ∧Bs := 〈AkBs〉k+s, (2)

are called scalar product and outer product, respectively.
For Euclidean vector spaces (n = p) we use Rn = Rn,0

and Cl(n) = Cl(n, 0). Every k-vector B that can be written
as the outer product B = b1 ∧ b2 ∧ . . . ∧ bk of k vectors
b1, b2, . . . , bk ∈ Rp,q is called a simple k-vector or blade.

Multivectors M ∈ Cl(p, q) have k-vector parts (0 ≤ k ≤
n): scalar part Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vector
part 〈M〉1 ∈ Rp,q , bi-vector part 〈M〉2, . . . , and pseudoscalar
part 〈M〉n ∈

∧n Rp,q
M =

∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n . (3)

The principal reverse of M ∈ Cl(p, q) defined as

M̃ =
n∑
k=0

(−1)
k(k−1)

2 〈M〉k, (4)

often replaces complex conjugation and quaternion conjuga-
tion. Taking the reverse is equivalent to reversing the order
of products of basis vectors in the basis blades eA. The
operation M means to change in the basis decomposition
of M the sign of every vector of negative square eA =
εh1eh1εh2eh2 . . . εhk

ehk
, 1 ≤ h1 < . . . < hk ≤ n. Reversion,

M , and principal reversion are all involutions.
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For M,N ∈ Cl(p, q) we get M ∗ Ñ =
∑
AMANA. Two

multivectors M,N ∈ Cl(p, q) are orthogonal if and only if
M ∗ Ñ = 0. The modulus |M | of a multivector M ∈ Cl(p, q)
is defined as

|M |2 =M ∗ M̃ =
∑
A

M2
A. (5)

A. Multivector signal functions

A multivector valued function f : Rp,q → Cl(p, q), has 2n

blade components (fA : Rp,q → R)

f(x) =
∑
A

fA(x)eA. (6)

We define the inner product of two functions f, g : Rp,q →
Cl(p, q) by

(f, g) =

∫
Rp,q

f(x)g̃(x) dnx

=
∑
A,B

eAẽB
∫
Rp,q

fA(x)gB(x) dnx, (7)

with the symmetric scalar part

〈f, g〉 =
∫
Rp,q

f(x) ∗ g̃(x) dnx =
∑
A

∫
Rp,q

fA(x)gA(x) dnx,

(8)

and the L2(Rp,q;Cl(p, q))-norm

‖f‖2 = 〈(f, f)〉 =
∫
Rp,q

|f(x)|2dnx =
∑
A

∫
Rp,q

f2A(x) d
nx,

(9)

L2(Rp,q;Cl(p, q)) = {f : Rp,q → Cl(p, q) | ‖f‖ <∞}.
(10)

B. Square roots of −1 in Clifford algebras

Every Clifford algebra Cl(p, q), s8 = (p − q) mod 8, is
isomorphic to one of the following (square) matrix algebras1

M(2d,R), M(d,H), M(2d,R2), M(d,H2) or M(2d,C).
The first argument of M is the dimension, the second the
associated ring2 R for s8 = 0, 2, R2 for s8 = 1, C for
s8 = 3, 7, H for s8 = 4, 6, and H2 for s8 = 5. For even
n: d = 2(n−2)/2, for odd n: d = 2(n−3)/2.

It has been shown [27], [28] that Sc(f) = 0 for every
square root of −1 in every matrix algebra A isomorphic to
Cl(p, q). One can distinguish ordinary square roots of −1,
and exceptional ones. All square roots of −1 in Cl(p, q) can
be computed using the package CLIFFORD for Maple [1],
[3], [29], [38].

In all cases the ordinary square roots f of −1 constitute a
unique conjugacy class of dimension dim(A)/2, which has as
many connected components as the group G(A) of invertible
elements in A. Furthermore, we have Spec(f) = 0 (zero
pseudoscalar part) if the associated ring is R2, H2, or C. The
exceptional square roots of −1 only exist if A ∼=M(2d,C).

1Compare chapter 16 on matrix representations and periodicity of 8, as
well as Table 1 on p. 217 of [36].

2Associated ring means, that the matrix elements are from the respective
ring R, R2, C, H or H2.

For A = M(2d,R), the centralizer (set of all elements
in Cl(p, q) commuting with f ) and the conjugacy class of a
square root f of −1 both have R-dimension 2d2 with two
connected components. For the simplest case d = 1 we have
the algebra Cl(2, 0) isomorphic to M(2,R).

For A =M(2d,R2) =M(2d,R)×M(2d,R), the square
roots of (−1,−1) are pairs of two square roots of −1 in
M(2d,R). They constitute a unique conjugacy class with four
connected components, each of dimension 4d2. Regarding the
four connected components, the group of inner automorphisms
Inn(A) induces the permutations of the Klein group, whereas
the quotient group Aut(A)/Inn(A) is isomorphic to the group
of isometries of a Euclidean square in 2D. The simplest
example with d = 1 is Cl(2, 1) isomorphic to M(2,R2) =
M(2,R)×M(2,R).

For A =M(d,H), the submanifold of the square roots f
of −1 is a single connected conjugacy class of R-dimension
2d2 equal to the R-dimension of the centralizer of every f .
The easiest example is H itself for d = 1.

For A = M(d,H2) = M(d,H) × M(d,H), the square
roots of (−1,−1) are pairs of two square roots (f, f ′) of −1
inM(d,H) and constitute a unique connected conjugacy class
of R-dimension 4d2. The group Aut(A) has two connected
components: the neutral component Inn(A) connected to
the identity and the second component containing the swap
automorphism (f, f ′) 7→ (f ′, f). The simplest case for d = 1
is H2 isomorphic to Cl(0, 3).

For A =M(2d,C), the square roots of −1 are in bijection
to the idempotents [2]. First, the ordinary square roots of −1
(with k = 0) constitute a conjugacy class of R-dimension
4d2 of a single connected component which is invariant under
Aut(A). Second, there are 2d conjugacy classes of exceptional
square roots of −1, each composed of a single connected
component, characterized by the equality Spec(f) = k/d (the
pseudoscalar coefficient) with ±k ∈ {1, 2, . . . , d}, and their
R-dimensions are 4(d2 − k2). The group Aut(A) includes
conjugation of the pseudoscalar ω 7→ −ω which maps the
conjugacy class associated with k to the class associated with
−k. The simplest case for d = 1 is the Pauli matrix algebra
isomorphic to the geometric algebra Cl(3, 0) of 3D Euclidean
space R3, and to complex biquaternions [42].

C. Quaternions

Quaternions are a special Clifford algebra, because the
algebra of quaternions H is isomorphic to Cl(0, 2), and to
the even grade subalgebra of the Clifford algebra of three-
dimensional Euclidean space Cl+(3, 0). But quaternions were
initially known independently of Clifford algebras and have
their own specific notation, which we briefly introduce here.

Gauss, Rodrigues and Hamilton’s four-dimensional (4D)
quaternion algebra H is defined over R with three imaginary
units:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (11)
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Every quaternion can be written explicitly as

q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj , qk ∈ R, (12)

and has a quaternion conjugate (equivalent3 to Clifford con-
jugation in Cl+(3, 0) and Cl(0, 2))

q = qr − qii− qjj − qkk, pq = q p, (13)

which leaves the scalar part qr unchanged. This leads to the
norm of q ∈ H

|q| =
√
qq =

√
q2r + q2i + q2j + q2k, |pq| = |p||q|. (14)

The part V (q) = q − qr = 1
2 (q − q) = qii + qjj + qkk is

called a pure quaternion, and it squares to the negative number
−(q2i + q2j + q2k). Every unit quaternion (i.e. |q| = 1) can be
written as:

q = qr + qii+ qjj + qkk = qr +
√
q2i + q2j + q2k µ(q)

= cosα+ µ(q) sinα = eαµ(q), (15)

where

cosα = qr, sinα =
√
q2i + q2j + q2k,

µ(q) =
V (q)

|q|
=
qii+ qjj + qkk√
q2i + q2j + q2k

, and µ(q)
2
= −1.

(16)

The inverse of a non-zero quaternion is

q−1 =
q

|q|2
=

q

qq
. (17)

The scalar part of a quaternion is defined as

Sc(q) = qr =
1

2
(q + q), (18)

with symmetries

Sc(pq) = Sc(qp) = prqr − piqi − pjqj − pkqk,
Sc(q) = Sc(q), ∀p, q ∈ H, (19)

and linearity

Sc(αp+ βq) = αSc(p) + βSc(q) = αpr + βqr,

∀p, q ∈ H, α, β ∈ R. (20)

The scalar part and the quaternion conjugate allow the defini-
tion of the R4 inner product4 of two quaternions p, q as

Sc(pq) = prqr + piqi + pjqj + pkqk ∈ R. (21)

Definition 2 (Orthogonality of quaternions). Two quaternions
p, q ∈ H are orthogonal p ⊥ q, if and only if the inner product
Sc(pq) = 0.

3This may be important in generalisations of the QFT, such as to a
space-time Fourier transform in [19], or a general two-sided Clifford Fourier
transform in [24].

4Note that we do not use the notation p · q, which is unconventional for
full quaternions.

III. INVENTORY OF CLIFFORD FOURIER TRANSFORMS

A. General geometric Fourier transform

Recently a rigorous effort was made in [8] to design a
general geometric Fourier transform, that incorporates most
of the previously known CFTs with the help of very general
sets of left and right kernel factor products

FGFT {h}(ω) =
∫
Rp′,q′

L(x, ω)h(x)R(x, ω)dn
′
x,

L(x, ω) =
∏
s∈FL

e−s(x,ω), (22)

with p′ + q′ = n′, FL = {s1(x, ω), . . . , sL(x, ω)} a set of
mappings Rp′,q′ × Rp′,q′ → Ip,q into the manifold of real
multiples of

√
−1 in Cl(p, q). R(x, ω) is defined similarly,

and h : Rp′,q′ → Cl(p, q) is the multivector signal function.

B. CFT due to Sommen and Buelow

This clearly subsumes the CFT due to Sommen and Buelow
[7]

FSB{h}(ω) =
∫
Rn

h(x)
n∏
k=1

e−2πxkωkekdnx, (23)

where x, ω ∈ Rn with components xk, ωk, and {e1, . . . ek} is
an orthonormal basis of R0,n, h : Rn → Cl(0, n).

C. Color image CFT

It is further possible [16] to only pick strictly mutually com-
muting sets of

√
−1 in Cl(p, q), e.g. e1e2, e3e4 ∈ Cl(4, 0)

and construct CFTs with therefore commuting kernel factors
in analogy to (23). Also contained in (22) is the color image
CFT of [40]

FCI{h}(ω) =
∫
R2

e
1
2ω·xI4Be

1
2ω·xBh(x)

e−
1
2ω·xBe−

1
2ω·xI4Bd2x, (24)

where B ∈ Cl(4, 0) is a bivector and I4B ∈ Cl(4, 0) its
dual complementary bivector. It is especially useful for the
introduction of efficient non-marginal generalized color image
Fourier descriptors.

D. Two-sided CFT

The main type of CFT, which we will review here is the
general two sided CFT [24] with only one kernel factor on
each side

Ff,g{h}(ω) =
∫
Rp′,q′

e−fu(x,ω)h(x)e−gv(x,ω)dn
′
x, (25)

with f, g two
√
−1 in Cl(p, q), u, v : Rp′,q′ × Rp′,q′ → R

and often Rp′,q′ = Rp,q . In the following we will discuss a
family of transforms, which belong to this class of CFTs, see
the lower half of Fig. 2.
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E. Quaternion Fourier Transform (QFT)

One of the nowadays most widely applied CFTs is the
quaternion Fourier transform (QFT) [19], [26]

Ff,g{h}(ω) =
∫
R2

e−fx1ω1h(x)e−gx2ω2d2x, (26)

which also has variants were one of the left or right kernel
factors is dropped, or both are placed together at the right or
left side. It was first described by Ernst, et al, [14, pp. 307-
308] (with f = i, g = j) for spectral analysis in two-
dimensional nuclear magnetic resonance, suggesting to use
the QFT as a method to independently adjust phase angles
with respect to two frequency variables in two-dimensional
spectroscopy. Later Ell [12] independently formulated and
explored the QFT for the analysis of linear time-invariant
systems of PDEs. The QFT was further applied by Buelow,
et al [6] for image, video and texture analysis, by Sangwine
et al [43], [5] for color image analysis and analysis of non-
stationary improper complex signals, vector image processing,
and quaternion polar signal representations. It is possible to
split every quaternion-valued signal and its QFT into two
quasi-complex components [26], which allow the application
of complex discretization and fast FT methods. The split can
be generalized to the general CFT (25) [24] in the form

x± =
1

2
(x± fxg), x ∈ Cl(p, q). (27)

In the case of quaternions the quaternion coefficient space
R4 is thereby split into two steerable (by the choice of two
pure quaternions f, g) orthogonal two-dimensional planes [26].
The geometry of this split appears closely related to the
quaternion geometry of rotations [39]. For colors expressed
by quaternions, these two planes become chrominance and
luminance when f = g = gray line [13].

F. Quaternion Fourier Stieltjes transform

Georgiev and Morais have modified the QFT to a quaternion
Fourier Stieltjes transform [18].

FStj(σ1, σ2) =

∫
R2

e−fx1ω1dσ1(x1)dσ
2(x2)e

−gx2ω2 , (28)

with f = −i, g = −j, σk : R→ H, |σk| ≤ δk for real numbers
0 < δk <∞, k = 1, 2.

G. Quaternion Fourier Mellin transform, Clifford Fourier
Mellin transform

Introducing polar coordinates in R2 allows to establish a
quaternion Fourier Mellin transform (QFMT) [30]

FQM{h}(ν, k) =
1

2π

∫ ∞
0

∫ 2π

0

r−fνh(r, θ)e−gkθdθdr/r,

∀(ν, k) ∈ R× Z, (29)

which can characterize 2D shapes rotation, translation and
scale invariant, possibly including color encoded in the quater-
nion valued signal h : R2 → H such that |h| is summable over
R∗+ × S1 under the measure dθdr/r, R∗ the multiplicative
group of positive non-zero numbers, and f, g ∈ H two

√
−1. The QFMT can be generalized straightforward to a

Clifford Fourier Mellin transform applied to signals h : R2 →
Cl(p, q), p+ q = 2 [23], with f, g ∈ Cl(p, q), p+ q = 2.

H. Volume-time CFT and spacetime CFT

The spacetime algebra Cl(3, 1) of Minkowski space with or-
thonormal vector basis {et, e1, e2, e3}, −e2t = e21 = e22 = e33,
has three blades et, i3, ist of time vector, unit space volume
3-vector and unit hyperspace volume 4-vector, which are
isomorphic to Hamilton’s three quaternion units

e2t = −1, i3 = e1e2e3 = e∗t = eti
−1
3 , i23 = −1,

ist = eti3, i
2
st = −1. (30)

The Cl(3, 1) subalgebra with basis {1, et, i3, ist} is therefore
isomorphic to quaternions and allows to generalize the two-
sided QFT to a volume-time Fourier transform

FV T {h}(ω) =
∫
R3,1

e−etωth(x)e−~x·~ωd4x, (31)

with x = tet + ~x ∈ R3,1, ~x = x1e1 + x2e2 + x3e3, ω =
ωtet + ~ω ∈ R3,1, ~ω = ω1e1 + ω2e2 + ω3e3. The split (27)
with f = et, g = i3 = e∗t becomes the spacetime split of
special relativity

h± =
1

2
(1± ethe

∗
t ). (32)

It is most interesting to observe, that the volume-time Fourier
transform can indeed be applied to multivector signal functions
valued in the whole spacetime algebra h : R3,1 → Cl(3, 1)
without changing its form [19], [22]

FST {h}(ω) =
∫
R3,1

e−etωth(x)e−i3~x·~ωd4x. (33)

The split (32) applied to spacetime Fourier transform (33)
leads to a multivector wavepacket analysis

FST {h}(ω) =
∫
R3,1

h+(x)e
−i3(~x·~ω−tωt)d4x

+

∫
R3,1

h−(x)e
−i3(~x·~ω+tωt)d4x, (34)

in terms of right and left propagating spacetime multivector
wave packets.

I. One-sided CFTs

Finally, we turn to one-sided CFTs [25], which are obtained
by setting the phase function u = 0 in (25). A recent discrete
spinor CFT used for edge and texture detection is given in
[4], where the signal is represented as a spinor and the

√
−1

is a local tangent bivector B ∈ Cl(3, 0) to the image intensity
surface (e3 is the intensity axis).
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J. Pseudoscalar kernel CFTs

The following class of one-sided CFTs which uses a single
pseudoscalar

√
−1 has been well studied and applied [20]

FPS{h}(ω) =
∫
Rn

h(x)e−inx·ωdnx,

in = e1e2 . . . en, n = 2, 3(mod 4), (35)

where h : Rn → Cl(n, 0), and {e1, e2, . . . , en} is the
orthonormal basis of Rn. Historically the special case of
(35), n = 3, was already introduced in 1990 [32] for the
processing of electromagnetic fields. This same transform was
later applied [17] to two-dimensional images embedded in
Cl(3, 0) to yield a two-dimensional analytic signal, and in
image structure processing. Moreover, the pseudoscalar CFT
(35), n = 3, was successfully applied to three-dimensional
vector field processing in [10], [9] with vector signal convo-
lution based on Clifford’s full geometric product of vectors.
The theory of the transform has been thoroughly studied in
[20].

For embedding one-dimensional signals in R2, [17] consid-
ered in (35) the special case of n = 2, and in [10], [9] this
was also applied to the processing of two-dimensional vector
fields.

Recent applications of (35) with n = 2, 3, to geographic
information systems and climate data can be found in [47],
[46], [35].

K. Quaternion and Clifford linear canonical transforms

Real and complex linear canonical transforms parametrize
a continuum of transforms, which include the Fourier, frac-
tional Fourier, Laplace, fractional Laplace, Gauss-Weierstrass,
Bargmann, Fresnel, and Lorentz transforms, as well as scaling
operations. A Fourier transform transforms multiplication with
the space argument x into differentiation with respect to the
frequency argument ω. In Schroedinger quantum mechancis
this constitutes a rotation in position-momentum phase space.
A linear canonical transform transforms the position and
momentum operators into linear combinations (with a two-
by-two real or complex parameter matrix), preserving the
fundamental position-momentum commutator relationship, at
the core of the uncertainty principle. The transform operator
can be made to act on appropriate spaces of functions, and can
be realized in the form of integral transforms, parametrized in
terms of the four real (or complex) matrix parameters [44].

KitIan Kou et al [34] introduce the quaternionic linear
canonical transform (QLCT). They consider a pair of unit
determinant two-by-two matrices

A1 =

(
a1 b1
c1 d1

)
, A2 =

(
a2 b2
c2 d2

)
, (36)

with entries a1, a2, b1, b2, c1, c2, d1, d2 ∈ R, a1d1 − c1b1 = 1,
a2d2 − c2b2 = 1, where they disregard the cases b1 = 0,
b2 = 0, for which the LCT is essentially a chirp multiplication.

We now generalize the definitions of [34] using the fol-
lowing two kernel functions with two pure unit quaternions

f, g ∈ H, f2 = g2 = −1, including the cases f = ±g,

Kf
A1

(x1, ω1) =
1√
f2πb1

ef(a1x
2
1−2x1ω1+d1ω

2
1)/(2b1),

Kg
A2

(x2, ω2) =
1√
g2πb2

eg(a2x
2
2−2x2ω1+d2ω

2
2)/(2b2). (37)

The two-sided QLCT of signals h ∈ L1(R2,H) can now
generally be defined as

Lf,g(ω) =
∫
R2

Kf
A1

(x1, ω1)h(x)K
g
A2

(x2, ω2)d
2x. (38)

The left-sided and right-sided QLCTs can be defined corre-
spondingly by placing the two kernel factors both on the left
or on the right5, respectively. For a1 = d1 = a2 = d2 = 0,
b1 = b2 = 1, the conventional two-sided (left-sided, right-
sided) QFT is recovered. We note that it will be of interest to
”complexify” the matrices A1 and A2, by including replacing
a1 → a1r + fa1f , a2 → a2r + ga2g , etc. In [34] for f = i
and g = j the right-sided QLCT and its properties, including
an uncertainty principle are studied in some detail.

In [45] a complex Clifford linear canonical transform is
defined and studied for signals f ∈ L1(Rm, Cm+1), where
Cm+1 = span{1, e1, . . . , em} ⊂ Cl(0,m) is the subspace of
paravectors in Cl(0,m). This includes uncertainty principles.
Motivated by Remark 2.2 in [45], we now modify this defini-
tion to generalize the one-sided CFT of [25] for real Clifford
algebras Cl(n, 0) to a general real Clifford linear canonical
transform (CLNT). We define the parameter matrix

A =

(
a b
c d

)
, a, b, c, d ∈ R, ad− cb = 1. (39)

We again omit the case b = 0 and define the kernel

Kf (x,ω) =
1√

f(2π)nb
ef(ax

2−2x·ω+dω2)/(2b), (40)

with the general square root of −1: f ∈ Cl(n, 0), f2 = −1.
Then the general real CLNT can be defined for signals h ∈
L1(Rn;Cl(n, 0)) as

Lf{h}(ω) =
∫
Rn

h(x)Kf (x,ω)dnx. (41)

For a = d = 0, b = 1, the conventional one-sided CFT of [25]
in Cl(n, 0) is recovered. It is again of interest to modify the
entries of the parameter matrix to a→ a0+faf , b→ b0+fbf ,
etc.

Similarly in [33] a Clifford version of a linear canonical
transform (CLCT) for signals h ∈ L1(Rm;Rm+1) is formu-
lated using two-by-two parameter matrices A1, . . . , Am, which
maps Rm → Cl(0,m). The Sommen Bülow CFT (23) is
recovered for parameter matrix entries ak = dk = 0, bk = 1,
1 ≤ k ≤ m.

5In [34] the possibility of a more general pair of unit quaternions f, g ∈ H,
f2 = g2 = −1, is only indicated for the case of the right-sided QLCT,
but with the restriction that f, g should be an orthonormal pair of pure
quaternions, i.e. Sc(fg) = 0. Otherwise [34] always strictly sets f = i
and g = j.
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Fig. 1. Manifolds [28] of square roots f of−1 in Cl(2, 0) (left), Cl(1, 1) (center), and Cl(0, 2) ∼= H (right). The square roots are f = α+b1e1+b2e2+βe12,
with α, b1, b2, β ∈ R, α = 0, and β2 = b21e
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Fig. 2. Family tree of Clifford Fourier transformations.

IV. CONCLUSION

We have reviewed Clifford Fourier transforms which apply
the manifolds of

√
−1 ∈ Cl(p, q) in order to create a

rich variety of new Clifford valued Fourier transformations.
The history of these transforms spans just over 30 years.
Major steps in the development were: Cl(0, n) CFTs, then
pseudoscalar CFTs, and Quaternion FTs. In the 1990ies es-
pecially applications to electromagnetic fields/electronics and
in signal/image processing dominated. This was followed by
by color image processing and most recently applications in
Geographic Information Systems (GIS). This paper could only
feature a part of the approaches in CFT research, and only
a part of the applications. Omitted were details on opera-
tor exponential CFT approach [5], and CFT for conformal
geometric algebra. Regarding applications, e.g. CFT Fourier
descriptor representations of shape [41] of B. Rosenhahn, et
al was omitted. Note that there are further types of Clifford
algebra/analysis related integral transforms: Clifford wavelets,
Clifford radon transforms, Clifford Hilbert transforms, ...
which we did not discuss.
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Computing the distribution function via adaptive
multilevel splitting

Ioannis Phinikettos, Ioannis Demetriou and Axel Gandy

Abstract—The method of adaptive multilevel splitting is extended
by estimating the whole distribution function and not only the
probability over some point. An asymptotic result is proved that is
used to construct confidenc bands inside a closed interval in the tail
of the distribution function. A simulation study is performed giving
empirical evidence to the theory. Confidenc bands are constructed
using as an example the infinit norm of a multivariate normal
random vector.

I. INTRODUCTION
A powerful method for rare event simulation, is multilevel

splitting. Multilevel splitting, introduced in [8] and [11], has
become very popular the last decades. The main principle of
multilevel splitting, is to split the state space into a sequence
of sub-levels that decrease to a rarer set. Then the probability
of this rarer set is estimated by using all the subsequent
conditional probabilities of the sub-levels.
One of the main problems of multilevel splitting is how to

fi the sub-levels in advance. Several adaptive methods were
introduced by [3], [4], and [7]. The difference to this article
is that we are reporting all the hitting probabilities up to a
certain threshold i.e. constructing the distribution function.
[7] have shown that several properties for their probability

estimator hold. They have shown that their estimator follows a
certain discrete distribution. Using this distribution, they have
constructed appropriate confidenc intervals, shown that the
estimator is unbiased and have given an explicit form of the
variance. We extend their results by showing that the estimated
distribution function follows a certain stochastic process and
given this process, we construct appropriate confidenc bands.
We will apply adaptive multilevel splitting to construct the

confidenc bands for the infinit norm of a multivariate normal
random vector. The multivariate normal distribution is an
important tool in the statistical community. The most important
algorithm that is used for the computation of multivariate
normal probabilities is given in [5]. Another method, that is
designed to exploit the infinit norm is given in [9].
The article is structured as follows. In Section II, we

state and prove the main theorem and give the form of the
confidenc bands. In Section III, we apply the method to the
multivariate normal distribution and construct the appropriate
confidenc bands. A discussion is contained in Section IV.

II. METHODOLOGY

Suppose we want to estimate the hitting probability pc =
P(φ(X) > c), where X is a random element on some
a probability space (Ω,F ,P) with distribution function µ,
together with some measurable real function φ(X) : Ω → R

and c ∈ R. We apply adaptive multilevel splitting for the
estimation of the whole distribution function of φ(X) up to
a certain threshold and not only of the probability over that
point.

A. Algorithm

In this section, we present the algorithm for computing the
CDF of φ(X) via adaptive multilevel splitting using the idea
of [7]. The algorithm is given below:

Algorithm II.1 (Computing the CDF via adaptive multilevel
splitting).
1) Inputc ∈ R andN ∈ N. Setp = 1−1/N andc0 = −∞.
2) GenerateN i.i.d. random elementsX(1)

1 , . . . , X
(1)
N ∼

X. Setj := 1.
3) Let cj = mini φ(X

(j)
i ).

4) If cj ≥ c setcj = c and GOTO 7.
5) Let

X
(j+1)
i =

{
X

(j)
i if φ(X

(j)
i ) > cj

X̃i ∼ L(X|φ(X) > cj) if φ(X
(j)
i ) ≤ cj ,

where theX̃i are independent and also independent of
{X(j)

1 , . . . , X
(j)
N }.

6) Setj := j + 1 and GOTO 3.
7) The CDF is given by the step function

F̂ (k) =

j−1∑

i=0

(1− pi)I{ci ≤ k < ci+1}, k ≤ c. (1)

The critical part of this algorithm is the updating Step 5.
At each iteration the paths have to be independent and drawn
from the conditional law. Those particles that were over the
threshold cause no problem. The ones that were below have
to be killed and regenerate new particles, keeping the sample
size at each iteration constant.
Efficien ways to regenerate the particles have been studied

in [3], [4] and [7] . In [4] adaptive multilevel splitting was
considered for the estimation of very small entrance probabil-
ities in strong Markov processes using an almost surely finit
stopping time. The particles that were below the threshold
in Step 5 were killed. For each killed particle, a new particle
from the conditional law was generated by choosing uniformly
a survived particle and extending it from the firs point it
crossed the threshold until the stopping time. [3] and [7]
considered adaptive multilevel splitting in static distributions.
In this setting the particles could not be extended and some
transition kernel (e.g. a Metropolis kernel) was constructed to
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overcome this difficult . The new transition was accepted if
its corresponding value was over the threshold.
Before we move to the next section, let us introduce some

notation. We denote the random variable Mc = max{m ∈ N :
cm ≤ c}, which depends on the number of particles N. The
adaptive multilevel splitting estimator for P(φ(X) > c) = 1−
F (c), using the idea of [7], is then given by p̂c = (1−1/N)Mc .
Since we are interested in estimating the distribution function
F , we consider the stochastic process {Mc}c∈IF , where IF
denotes the support of F.

B. Construction of the confidence bands

We assume that the distribution function F of φ(X) is con-
tinuous and in addition that F is strictly increasing over some
closed interval I = [cmin, cmax], such that 0 ≤ F (cmin) <
F (cmax) < 1. The reason for introducing the interval I, is
that we want to construct confidenc bands over I in the tail
of the distribution function F.
We denote the survivor function and the integrated hazard

function of φ(X) by S(x) = 1−F (x) and Λ(x) = − logS(x),
respectively. We also defin the set Ĩ = {Λ(c) : c ∈ I}, which
is also a closed interval given by Ĩ = [Λ(cmin),Λ(cmax)].
The next proposition proves that {Mc}c∈IF is a Poisson

process of rate N, subject to the time transformation c →
Λ(c).

Proposition II.1. {Mc}c∈IF
d
= {M̃Λ(c)}c∈IF , where

{M̃t}t∈R≥0
is a Poisson process of rateN.

Proof: The proof is exactly the same as Corollary 1 of
[7], but with a different conclusion. The random variable Mc

can be written as

Mc = max{m : cm ≤ c}

= max{m : S(cm) ≥ S(c)}

= max{m : Λ(cm) ≤ Λ(c)}.

The random variables Λ(c1), . . .Λ(cm), . . . can be viewed as
the successive arrival times of a Poisson process of rate N,
as it has been proved in Theorem 1 of [7]. If we consider the
stochastic process {Mc}c∈IF , this is just the definitio of a
Poisson process subject to the time transformation c→ Λ(c).

Note that since Λ : IF → R≥0 might not be injective,
the process {M̃Λ(c)}c∈IF might not be a Poisson process of
standard form. But inside the interval I ⊂ IF it is injective
and as Λ(x) is continuous, {M̃Λ(c)}c∈I is a Poisson process
restricted to I subject to the time transformation c → Λ(c).
First, let us defin the stochastic process {Ac}c∈I , with

Ac = aN (log p̂c−log p̂cmin−N log(1−1/N)[Λ(c)−Λ(cmin)]),
(2)

where aN = 1√
N log(1−1/N)

. Also let {Bt}t∈R≥0
be a standard

Brownian motion. Convergence in distribution ( d→) always be
as N →∞. The next theorem proves an asymptotic result for
Ac, which can be used to construct confidenc bands for the
distribution function of φ(X)|φ(X) > cmin over the interval
I .
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Fig. 1. Plots of the acceptance probability of the transition kernel for each
step of the algorithm. We use a sample size N = 100, t = 1000 with c = 20
and for covariance matrix Σ2.

Theorem II.1. Let b = log(p̂cmin
)− log(p̂cmax

). Then

supc∈I |Ac|√
b

d
→ sup

0≤t≤1
|Bt|.

The proof of the theorem is based on the following
lemma. For the next lemma, the symbol d

→ denote conver-
gence in distribution in the set of cádlág functions endowed
with the Skorohod topology [?, ]Chapters 1 and 3]billings-
ley1999convergence.

Lemma 1. Define the process{Zt}t∈R≥0
by Zt = 1√

N
(M̃t−

Nt), whereM̃t is a Poisson process of rateN. The following
is true

{Zt}t∈R≥0

d
→ {Bt}t∈R≥0

.

Proof: To prove this lemma, we need to show the 3 suffi
cient conditions of Proposition 1 of [10]. A brief introduction
to Poisson process and martingale theory can be found in [1,
Section 2.2].
Firstly, we need to show that Zt is a local martingale. As

Nt is the compensator of M̃t, then Zt is a martingale and
therefore a local martingale.
Secondly, we have to show that the maximum of the jumps

of Zt converges to 0 as N →∞. As a Poisson process attains
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jumps of size 1, then Zt attains jumps of size 1/
√
N which

turns to 0 as N →∞.
Finally, we need the predictable variation process < . > of

Zt to converge in probability to an increasing function H. In
our case we must have H(t) = t.We have < M̃t−Nt >= Nt
and as < βDt >= β2 < Dt > for β ∈ R and any stochastic
process Dt, the third property holds. As the three sufficien
conditions hold, the result follows.

Using this lemma, we are now able to prove the theorem.
Proof of Theorem II.1: As log p̂c = Mc log(1− 1/N),

the process {Ac}c∈I is transformed to

Ac =
1
√
N

(Mc −Mcmin
−N(Λ(c)− Λ(cmin)))

d
=

1
√
N

(M̃Λ(c) − M̃Λ(cmin) −N(Λ(c)− Λ(cmin))), c ∈ I.

Consider the continuous time transformation c → Λ−1(t +
Λ(cmin)). We get the transformed process {Ãt}t∈Î , with

Ãt =
1
√
N

(M̃t+Λ(cmin) − M̃Λ(cmin) −Nt),

where Î = [0,Λ(cmax) − Λ(cmin)]. Since a Poisson process
is a Levy process, the process M̃t+Λ(cmin) − M̃Λ(cmin) is also
a Poisson process of rate N. So we can use Lemma 1 to say
{Ãt}t∈Î

d
→ {Bt}t∈Î .

As the map sup |.|, where the supremum runs over some
closed interval, is continuous between the set of cádlág func-
tions to the set of real numbers, by the continuous mapping
theorem [2, Theorem 2.7], we get the convergence

sup
t∈Î

|Ãt|
d
→ sup

t∈Î

|Bt|. (3)

Next, we use the result that {Bt}0≤t≤t̃/
√
t̃ is the same as

a standard Brownian motion on [0, 1] and also use Slutsky’s
lemma. [7] have proved that p̂c is an unbiased estimator of
S(c) for all c and also proved that var(p̂c) = p2

c(p
−1/N
c −

1). As var(p̂c) → 0 as N → ∞, by a standard result, we
get consistency i.e. p̂c

d
→ S(c). As the function log(x) is

continuous for all 0 < x < 1, we get − log(p̂c)
d
→ Λ(c) for

all c. We have that

supt∈Î |Bt|√
b

=
supt∈Î |Bt|√

Λ(cmax)− Λ(cmin)

√
Λ(cmax)− Λ(cmin)

√
− log(p̂cmax) + log(p̂cmin)

d
→ sup

0≤t≤1
|Bt|.

As supc∈I |Ac|
d
= supt∈Î |Ãt|, we get the required result

supc∈I |Ac|√
b

d
→ sup

0≤t≤1
|Bt|.

Next, we construct the confidenc bands for the conditional
integrated hazard function Y (c) = Λ(c) − Λ(cmin) and the
conditional survivor function W (c) = S(c)/S(cmin). Their
corresponding estimators are given by Ŷ (c) = Λ̂(c)− Λ̂(cmin)
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Fig. 2. Plots of the survivor function S(c) and the its estimate Ŝ(c) using
different sample sizes N and c ∈ [4, 4.5] for covariance matrix Σ1.

and Ŵ (c) = Ŝ(c)/Ŝ(cmin), where Ŝ(k) = p̂k and Λ̂(k) =
− log(p̂k).

Corollary 1. The conditionalintegrated hazard functionY (c),
with c ∈ I, hasα - confidence bands given by

Y ±(c) =
Ŷ (c)

zN
±
hα
√

b

aNzN
, c ∈ I, (4)

where zN = −N log(1 − 1/N) and hα is the α -quantile
for the distribution function ofsupt∈[0,1] |B(t)|. Equivalently,
we get confidence for the the conditional survivor distribution
W (c) by

W±(c) = exp(−Y ±(c)), c ∈ I. (5)

Proof: Use Theorem II.1 and solve appropriately.

III. COMPUTING THE DISTRIBUTION FUNCTION OF THE
INFINITY NORM OF A MULTIVARIATE NORMAL RANDOM

VECTOR

In this section, we apply Algorithm II.1 and construct
appropriate confidenc bands for both the integrated hazard
function and the distribution function together with their
conditional versions. As an example, we use the multivariate
normal distribution.
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Fig. 3. Plots of the survivor function S(c) and the its estimate Ŝ(c) using
different sample sizes N and c ∈ [14, 15] for covariance matrix Σ2.

Let X denote a zero mean multivariate normal random
vector with covariance matrix Σ. We want to estimate the
distribution function of ‖X‖∞, i.e. φ ≡ ‖.‖∞. This form
satisfie all of our assumptions from Section II-B. Actually
the distribution function is strictly increasing everywhere in
[0,∞). Of course, we can writeX = BZ where Σ = BBt and
Z is a standard multivariate normal random vector. There are
several choices for the matrix B i.e. one can use the Cholesky
decomposition or the singular value decomposition.
We have discussed in Section II-A several methods to

regenerate new paths in Step 5 of Algorithm II.1. For the
current example we use the transition kernel for the standard
multivariate normal distribution from [7] with a slightly mod-
ification Suppose the chain is at state xn. Then the proposed
transition is given by

xn+1 =
xn + σBZn√

1 + σ2
,

where Zn denotes a standard normal random vector. Then the
transition kernel of the algorithm is completed by accepting the
proposed transition if its infinit norm exceeds the threshold
of the corresponding step.
We test this algorithm in situations where we know the ex-

plicit solution of the distribution function. We use covariance
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Ŵ(c)

19.0 19.2 19.4 19.6 19.8 20.0

1
e

-0
6

3
e

-0
6

5
e

-0
6

N=5000

c

W(c)
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Fig. 4. Plots of the conditional survivor function W (c) and the its estimate
Ŵ (c) using different sample sizes N with cmin = 10 and c ∈ [19, 20] for
covariance matrix Σ2.

matrices Σ of the following diagonal form:
• Σ1 = diag(1, 1, 1),
• Σ2 = diag(7, 12, 11, 11, 12, 9, 11, 7, 10, 11).

Before we move to simulation results, we evaluate the ad-
hoc choice for the transition parameter σ. Figure 1 plots
the acceptance probability of the transition kernel for each
subsequent updating step of the algorithm for different values
of σ, using the covariance matrix Σ2 and t = 1000 transitions.
The usual rule of thumb for acceptance probabilities is around
0.3. Considering the plots, we notice that at the start, the
parameter σ should be higher and gradually decreased with
rarer events. We are not investigating this point further but
rather choose σ = 0.3 and continue with this value onwards.
We also use t = 50 kernel transitions.
We begin with Figures 2 - 4. These figure contain the

plots of the survivor function S(c) or the conditional survivor
function W (c) together with their corresponding estimates
Ŝ(c) and Ŵ (c) respectively. For convenience, we have used
certain closed intervals over their support. We have used both
covariance matrices Σ1 and Σ2 with different samples sizes
N. As the sample size increases, we notice the convergence of
the estimate to the true quantity. For N = 10000, the estimate
is mimicking the true quantity with high accuracy. But even
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Fig. 5. Confidenc bands for the conditional integrated hazard function Y (c)
and the conditional survivor function W (c) with covariance matrix Σ2. We
have different sample sizes N together with cmin = 14 and cmax = 16.

with a choice of the very small sample size N = 100, the
adaptive multilevel splitting estimator seems to outperform the
usual empirical distribution estimator. We also notice that the
estimator is most likely to be on one side of the true quantity
and especially for lower sample sizes.
We continue by testing the coverage probability of the confi

dence bands given in (4), i.e. we are estimating the probability
that the conditional integrated hazard function Y (c) lies inside
the confidenc bands Y ±(c), where c lies in the closed interval
I = [cmin, cmax]. We are using α = 0.95 - quantile of the
distribution function of supt∈[0,1] |B(t)| which is hα ≈ 2.24.
Each estimation is based on 1000 replications using different
sample sizes N ∈ {102, 103, 104}. For covariance matrix Σ1,
we have used I = [4, 6] and got the coverage probabilities
0.946, 0.946 and 0.955 for N = 102, 103, 104 respectively.
For the covariance matrix Σ2, we have taken I = [14, 20] and
we got 0.894, 0.916 and 0.942 respectively. In both cases, the
coverage probability seems to converge to the true value 0.95,
giving empirical evidence to the Theorem II.1.
In the remaining Figures 5 - 8, we are plotting confidenc

bands for the integrated hazard function and the survivor
function or their conditional versions. Each plot is based on
one run for sample sizes N ∈ {100, 1000}. As expected, the
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Fig. 6. Confidenc bands for the integrated hazard function Λ(c) and the
survivor function S(c) for c ∈ [0, 12] with covariance matrix Σ2. We have
used different sample sizes N.

confidenc bands get narrower with increasing sample size. In
all figures we notice that the true quantity always lies inside
the confidenc bands. The confidenc bands also mimics the
true quantity.

Remark 1. One can apply Algorithm II.1 for the estimation of
the multivariate t distribution. There are different versions of
the t distribution. One such form is given in [12]. [6] describe
this form and in their Section 2.1 construct a crude Monte
Carlo estimator. Considering the form of the estimator, it can
be seen, given some transition kernel for the variables, that
our algorithm can be easily fit to this example.

IV. DISCUSSION

We have extended the results of [7] by applying adaptive
multilevel splitting for the estimation of the whole distribution
function and not only for the probability over some point.
A simulation study was performed, using as an example

the infinit norm of a multivariate normal random vector.
Confidenc bands were constructed for both the distribution
function and the integrated hazard function together with their
conditional versions. A test for the coverage probability of the
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Fig. 7. Confidenc bands for the conditional integrated hazard function Y (c)
and the conditional survivor function W (c) with covariance matrix Σ2. We
have different sample sizes N and cmin = 14 with c ∈ [18, 20].

conditional distribution function, showed that the theoretical
results were consistent in practice.
In Theorem II.1 we got convergence in distribution of

(3) using the continuous functional sup |.|. Other continuous
functionals can be used that result to known distributions and
this is a topic for further research.
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Fig. 8. Confidenc bands for the integrated hazard function Λ(c) and the
survivor function S(c) for c ∈ [18, 20] with covariance matrix Σ2. We have
used different sample sizes N.
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Recovering of Secrets using the BCJR algorithm
Marcel Fernandez

Abstract—Chung, Graham and Leighton defined the guess-
ing secrets game in [1]. In this game, player B has to guess a
set of c > 1 secrets that player A has choosen from a set of N
secrets. To unveil the secrets, player B is allowed to ask a series
of boolean questions. For each question, A can adversarially
select one of the secrets but once his choice is made he must
answer truthfully. In this paper we present a solution to the
c = 2 guessing secrets problem consisting in an error correcting
code equipped with a tracing algorithm that, using the Bahl,
Cocke, Jelinek and Raviv algorithm as its underlying routine,
efficiently recovers the secrets.

Keywords—BCJR algorithm, coding theory, guessing secrets,
separating codes.

I. Introduction

In the original “I’ve got a secret” TV game show [2] a
contestant with a secret was questioned by four panelists.
The questions were directed towards guessing the secret. A
prize money was given to the contestant if the secret could
not be guessed by the panel. In this paper we consider a
variant of the game, as defined by Chung, Graham and
Leighton [1]. In this variant, called “guessing secrets”,
there are two players A and B. Player A draws a subset
of c ≥ 2 secrets from a set Π of N secrets. Player B asks
a series of questions in order discover the secrets. We will
follow the approach of Alon, Guruswami, Kaufman and
Sudan discussed in [3].

The game of guessing secrets is related to many different
topics in communications and security such as separating
systems [4], efficient delivery of Internet content [1] and
the construction of schemes for the copyright protection
of digital data [3]. As a matter of fact, our results can
be used as a tracing algorithm for the fingerprinting code
in [5].

A. Our contribution
We present a solution to the guessing secrets problem

consisting in a (2,2)-separating linear block code. We
also design a tracing algorithm that, from the trellis
representation of the code, recovers the secrets using the
Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [6] as
its underlying routine. The algorithm discussed consists of
several iterations of the BCJR algorithm that “corrects”
(in a list decoding flavor) ⌊ d−1

2 ⌋ + 1 errors, which is one
more error than the error correcting bound of the code.

This work has been supported in part by the Spanish Government
through project Consolider Ingenio 2007 CSD2007-00004 “ARES”
and TEC2011-26491 “COPPI”.

Marcel Fernandez is with the Department of Telematics Engineer-
ing. Universitat Politècnica de Catalunya. C/ Jordi Girona 1 i 3.
Campus Nord, Mod C3, UPC. 08034 Barcelona. Spain.

This result might be of independent interest.

The paper is organized as follows. Section II gives an
overview of the coding theory concepts used throughout
the paper. Section III presents a formal description of
the game of guessing secrets for the case of c = 2
secrets. In Section IV we show that dual binary Hamming
codes give a solution to the game of guessing secrets. We
present a new analysis of the Bahl, Cocke, Jelinek and
Raviv algorithm in Section V. In Section VI, a tracing
algorithm that allows to recover the secrets, using the
BCJR algorithm as its underlying routine, is discussed.
Finally, our conclusions are given in Section VII.

II. Background on coding theory
A. Binary (2,2)-separating codes

In this section we give a description of binary (2,2)-
separating codes.

Let IFn
2 be the vector space over IF2, then C ⊆ IFn

2 is
called a code. The field, IF2 is called the code alphabet. A
code C is called a linear code if it forms a subspace of
IFn

2 . The number of nonzero coordinates in x is called the
weight of x and is commonly denoted by w(x). The Ham-
ming distance d(a, b) between two words a, b ∈ IFn

q is the
number of positions where a and b differ. The minimum
distance d of C, is defined as the smallest distance between
two different code words. If the dimension of the subspace
is k, and its minimum Hamming distance is d, then we call
C an [n,k,d]-code. An error correcting code of minimum
distance d can correct up to can correct

⌊
d−1

2
⌋

errors.
A (n − k) × n matrix H, is a parity check matrix for the

code C, if C is the set of code words c for which Hc =
0, where 0 is the all-zero (n − k) tuple. Each row of the
matrix is called a parity check equation. A code whose code
words satisfy all the parity check equations of a parity
check matrix is called a parity check code.

For any two words a, b in IFn
q we define the set of

descendants D(a, b) as D(a, b) := {x ∈ IFn
q : xi ∈

{ai, bi}, 1 ≤ i ≤ n}. For a code C, the descendant code
C∗ is defined as: C∗ :=

∪
a∈C,b∈C D(a, b).

If c ∈ C∗ is a descendant of a and b, then we call a and
b parents of c.

A code C is (2, 2)-separating [4], if for any two disjoint
subsets of code words of size two, {a, b} and {c, d}, where
{a, b}∩{c, d} = ∅, their respective sets of descendants are
also disjoint, D(a, b) ∩ D(c, d) = ∅.

Next corollary from [7] gives a sufficient condition for a
linear code to be (2,2)-separating.

Corollary 1 ([7]): All linear, equidistant codes are (2,2)-
separating.
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B. Dual binary Hamming codes
In this paper we will make extensive use of dual binary

Hamming codes.
Dual binary Hammming codes are codes with param-

eters [n = 2k − 1, k, d = 2k−1], where n represents the
code length, k its dimension and d its minimum distance.
Moreover, N = 2k denotes the number of code words. Dual
binary Hamming codes are (2, 2)-separating, equidistant
codes. All code words except the all zero code words have
the same Hamming weight.

C. Trellis representation of block codes
The contents of this section are based on [8]. For a

binary linear block code, a trellis is defined as a graph in
which the nodes represent states, and the edges represent
transitions between these states. The nodes are grouped
into sets St, indexed by a “time” parameter t, 0 ≤ t ≤ n.
The parameter t indicates the depth of the node. The edges
are unidirectional, with the direction of the edge going
from the node at depth t, to the node at depth t+1. Each
edge is labeled using an element of IF2.

In any depth t, the number of states in the set St is at
most 2(n−k). The states at depth t are denoted by si

t, for
certain values of i, i ∈ {0, 1, . . . , 2(n−k) − 1}. The states
will be identified by binary (n − k)-tuples.

In the trellis representation of a code C, each distinct
path corresponds to a different code word, in which the
labels of the edges in the path are precisely the code
word symbols. The correspondence between paths and
code words is one to one, and it is readily seen from the
construction process of the trellis, that we now present.

The construction algorithm of the trellis of a linear block
code, uses the fact that every code word of C must satisfy
all the parity check equations imposed by the parity check
matrix H. In this case, the code words are precisely the
coefficients c1, c2, . . . , cn of the linear combinations of the
columns hi of H, that satisfy

c1h1 + c2h2 + · · · + cnhn = 0, (1)

where 0 is the all zero (n − k)-tuple.
Intuitively, the algorithm first constructs a graph, in

which all linear combinations of the columns of H are
represented by a distinct path. Then removes all paths
corresponding to the linear combinations that do not not
satisfy (1).

1) Initialization (depth t = 0):
S0 = {s0

0}, where s0
0 = (0, . . . , 0).

2) Iterate for each depth t = 0, 1, . . . , (n − 1).
a) Construct St+1 = {s0

t+1, . . . , s|It+1|
t+1 }, using

sj
t+1 = si

t + clht+1
∀i ∈ It and l = 0, 1.

b) For every i ∈ It, according to 2a:
• Draw a connecting edge between the node si

t

and the 2 nodes it generates at depth (t+1),
according to 2a.

• Label each edge θi,j
t , with the value of cj ∈

IF2 that generated sj
t+1 from si

t.

0 0 0 0 0 0 0 A
0 0 1 1 1 0 1 B
0 1 0 1 0 1 1 C
0 1 1 0 1 1 0 D
1 0 0 0 1 1 1 E
1 0 1 1 0 1 0 F
1 1 0 1 1 0 0 G
1 1 1 0 0 0 1 H

Fig. 1. The dual binary Hamming [7,3,4] code
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Fig. 2. Trellis for the dual binary Hamming [7,3,4] code

3) Remove all nodes that do not have a path to the
all-zero state at depth n, and also remove all edges
incident to these nodes.

According to the convention in 2b, for every edge θi,j
t , we

can define the function label of(θi,j
t ) that, given a code

word c = (c1, c2, . . . , cn), returns the cj that generated
sj

t+1 from si
t

There are 2k different paths in the trellis starting at
depth 0 and ending at depth n, each path corresponding
to a code word. Since the nodes (states) are generated by
adding linear combinations of (n − k)-tuples of elements
of IF2, the number of nodes (states) at each depth is at
most 2(n−k). As an example, and because we will use it
below, we take the dual binary Hamming [7,3,4] code. For
this code, we show in Figures 1 and 2, the complete set
of code words and the trellis representation respectively.
Note that there is a one-to-one correspondence between
both figures.

D. The Bahl, Cocke, Jelinek and Raviv Algorithm
We provide the basic facts of the Bahl, Cocke, Jelinek

and Raviv algorithm.
Given the trellis of a code, the BCJR algorithm outputs

the reliability of each symbol of the received word. More
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precisely it helps to compute the a posteriori probability
(APP) functions:

1) P (St = m|rn
1 ) (associated with each node in the

trellis) that indicates the conditional probability of
being in state m at time instant t given that the
received bit sequence is rn

1 .
2) P (St−1 = m′; St = m|rn

1 ) (associated with each
branch in the trellis) that indicates the joint
probability of being in state m′ at time t − 1 and in
state m at time t given that the received bit sequence
is rn

1 .
However it is simpler to obtain the joint probabilities
1) The function λt(m) is defined as the joint probability

of being in state m at time instant t and that the
received bit sequence (word) is rn

1 .

λt(m) = P (St = m; rn
1 )

2) The function σt(m′, m) is defined as the joint prob-
ability of being in state m′ at time instant t−1, and
in state m at time instant t, and that the received
bit sequence is rn

1 .

σt(m′, m) = P (St−1 = m′; St = m; rn
1 )

Note that since P (rn
1 ) = λn(0) the APP probabilities

are easily obtained through the following expressions

P (St = m|rn
1 ) = P (St = m; rn

1 )
P (rn

1 )
= λt(m)

λn(0)
(2)

P (St−1 = m′; St = m|rn
1 ) = P (St−1 = m′; St = m; rn

1 )
P (rn

1 )

= σt(m′, m)
λn(0)

(3)

III. Guessing two secrets with binary answers
In this section we present a formal description of the

game of guessing secrets for the case of c = 2 secrets.
In the first part of the game, player A draws exactly

two secrets S = {s1, s2}, from a set Π of N secrets.
Then, player B asks a series of boolean questions in
order discover the secrets. For each question asked, A can
adversarially choose a secret among the 2 secrets, but once
the choice is made he must answer truthfully.

We first note that there’s no way to guarantee that
player B can learn both secrets, since if all replies are
related to just one of the two secrets, then B cannot learn
nothing about the other.

Note also, that B can never assert that a certain secret
is one of A’s secrets, since A can always take three secrets
{s1, s2, s3} and answer using a majority strategy. In this
case, the answer that A provides will be feasible for the
three sets of secrets {s1, s2}, {s1, s3} and {s2, s3}.

Using the above reasoning, we see that for a given
answer we have the following possible configurations for
the sets of secrets: A star configuration, when all pairs
of secrets share a common element. A degenerated star

configuration, when there is a single pair of secrets. And
a triangle configuration, when there are three possible
disjoint pairs secrets.

The solution for the c = 2 secrets problem will then
consist, in finding the appropriate star or triangle config-
uration for a given sequence of answers. Also, we require
the strategy to be invertible [1], which means that, given
a sequence of answers, there exists an efficient algorithm
capable of recovering the secrets.

A. Explicit construction of the strategy
Following the discussion in [3], we denote the questions

in an oblivious strategy as a sequence G of n boolean
functions gi : {1, . . . , N} → {0, 1}. For a given secret x
the sequence of answers to the questions gi will then be
C(x) = ⟨g1(x), g2(x), . . . , gn(x)⟩.

Without loss of generality we suppose that log2 N is
an integer. In this case, using the binary representation
for {1, . . . , N} we can redefine C as the mapping C :
{0, 1}log2 N → {0, 1}n. From this point of view C can be
seen as an error-correcting code. From now on we will
refer to a given strategy G using its associated code C,
and to the sequence of answers to a given secret using its
associated code word.

The question now is: which properties an error-
correcting code must possess in order to solve the guessing
secrets problem?. Depending on the sequence of answers,
player B needs to recover a triangle or a star configuration.
In either case, he can use the following strategy. Use the
N = |Π| secrets as vertices to construct a complete graph
KN . The pair of secrets (s1, s2) can then be seen as an
edge of KN . Since we are considering each question as
function gi : {1, . . . , N} → {0, 1}, the answer induces a
partition Π = g−1

i (0) ∪ g−1
i (1). If the answer of player A

to question gi is a ∈ {0, 1} and the pair of secrets chosen
by A is (s1, s2), we have that (s1, s2) ∩ g−1

i (a) ̸= ∅. Now
player B can remove all edges within the subgraph of KN

spanned by g−1
i (1 − a). It follows that from the questions

gi (1 ≤ i ≤ n), that B asks, he must be able to remove
all edges until he is left with a subgraph “that contains no
pair of disjoint edges” [3].

We now show how the strategy described in the previous
paragraph can be accomplished using a certain code C. Let
C(s1), C(s2), C(s3) and C(s4) be the sequence of answers
associated with four distinct secrets s1, s2, s3 and s4. Note
that each sequence will correspond to a code word of
C. The questions that B asks, should have the following
property: for every two disjoint pairs of secrets, there is
a question gi that allows to rule out at least one of the
pairs. This implies that there should exist at least one
value i, i ∈ {1, . . . , n}, called the discriminating index for
which C(s1)i = C(s2)i ̸= C(s3)i = C(s4)i. A code with
a discriminating index for every two disjoint pairs of code
words, is called a (2,2)-separating code [4] and was defined
above in Section II. Moreover, such a code gives a strategy
that solves the c = 2 guessing secrets game. Thus, we have
proved the following lema.
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Lemma 1: [3] A (2,2)-separating code solves the c = 2
guessing secrets game.

IV. Solution to the Guessing Secrets Game.
Dual binary Hamming codes

We begin to discuss our work in this section.

Using Lemma 1 and the reasoning above we have the
following lemma whose proof is immediate.

Lemma 2: Let N be the number of secrets in the set of
secrets. Without loss of generality suppose that N = 2k

for a given k. Then a [n = 2k − 1, k, d = 2k−1] dual binary
Hamming code solves the c = 2 guessing secrets game.

Remark 1: Note that for a (2,2)-separating [n, k, d]
code solving the c = 2 guessing secrets game, n is the
number of questions, 2k is the number of secrets in the
set. Moreover, a descendant as defined in Section II is the
sequence of answers given by player B, and the parents
of this descendant are the secrets chosen by player A.

We now obtain some results on dual binary Hamming
codes related to the guessing secrets problem. For lack of
space we do not provide the proofs.

We first show that considering a dual binary Hamming
code C, a 2-coalition Γ cannot generate any descendant
that is closer (in the Hamming sense) to a code word w ∈
C − Γ than is to the coalition’s own code words, that is

min{d(x, y)|x ∈ Γ} ≤ (w, y), ∀w ∈ C − Γ.

According to Remark 1 this means that the code word of
one of the secrets chosen by player A, will as close to the
sequence of answers given by player B as any other code
word.

Proposition 1: Let C be a dual binary Hamming [n =
2k − 1, k, d = 2k−1] code. Let Γ = {u, v} ⊂ C be a
coalition, and let y be a descendant generated by Γ.

Then, we always have that

d(w, y) ≥ d

2
and min{d(x, y)|x ∈ Γ} ≤ d

2
,

where w is any code word, w ∈ C − Γ.
From Proposition 1 it follows that the worst situation

is when
d(y, w) = d(y, u) = d(y, v) = d

2
, (4)

for some w ∈ C − Γ.
Note that the (2, 2)-separability of the dual binary

Hamming codes, determines that there can only exist
a single code word w with this property. Moreover, for
this to happen, the descendant y must have exactly d/2
symbols from u and d/2 symbols from v where u and v
are different.

Next proposition gives the necessary conditions, for (4)
to be satisfied. This is precisely the triangle configuration
as defined in Section III.

Proposition 2: Let C be a dual binary [n = 2k−1, k, d =
2k−1] Hamming code. Let Γ = {u, v} ⊂ C be a coalition

and let y be a descendant generated by the coalition Γ.
Then

d(y, w) = d(y, u) = d(y, v) = d

2
, (5)

only if

d(y, u) = d(y, v) = d

2
,

where u and v are different, and therefore the Hamming
weight of the descendant y, denoted by w(y), satisfies w(y)
mod 2 = 0.

Note that in this case, in order to recover the secrets,
we exceed the correcting capacity of the code and we will
have to use tailor made decoding algorithms such as the
ones discussed below in Section VI.

V. The Bahl, Cocke, Jelinek and Raviv
Algorithm

We continue to present our work in this section where
provide a new analysis of the Bahl, Cocke, Jelinek and
Raviv algorithm described in Section II-D.

A. Computation of the joint probability function σt(m′, m)

For our purposes we will need the σt(m′, m) function.
From the definitions in Section II-D, and the analysis in
the Appendix, the σt(m′, m) function gives information
about the transitions (symbols) in the trellis at time t.
This transition information can be obtained by checking
what happens in the trellis before, after and at time t.
Intuitively σ gives us the probability of a given symbol in
a given position.

Therefore, if t represents each position in the code, 1 ≤
t ≤ n, we have that

Symbol 0∑
branch(m,m′)=0

σt(m, m′) =

1
2k

∑
c:ct=0

P (r1|c1) · · · P (rt|ct = 0) · · · P (rn|cn) (6)

Symbol 1∑
branch(m,m′)=1

σt(m, m′) =

1
2k

∑
c:ct=1

P (r1|c1) · · · P (rt|ct = 1) · · · P (rn|cn) (7)

Remark 2: We also note, that a for a given position,
say t = j, a code word indicates us to make a decision for
a given symbol if this symbol is precisely the label of the
edge of the path in the trellis corresponding to this code
word in t = j.
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B. Correcting 1 error

As a warmup, first suppose we are transmitting the all-
zero code word through a noisy channel, and that one error
occurs in the first bit, so rt

1 = (1, 0, 0, 0, 0, 0, 0).
Since the code is equidistant d = 4, by comparing rt

1 =
(1, 0, 0, 0, 0, 0, 0) with each code word (see Figure 1) we
have that there is 1 code word at exactly distance 1 (A),
4 code words at distance 3 (E, F, G, H) and 3 code words
at distance 5 (B, C, D).

We will use the following notation. Let rn
1 =

(r1, r2, . . . , r7) be the ‘received’ word. By using the labels
in Figure 1 and Figure 2, we can express P (rn

1 |A) as

P (rn
1 |A) := P (r1|0)P (r2|0)P (r3|0) · · · P (r6|0)P (r7|0)

Without loss of generality, we now turn our attention to
the 4th position. Then, for t = 4, we can express (6)
and (7) as:

Symbol 0

σ4(0, 0) + σ4(1, 1) + σ4(6, 6) + σ4(7, 7) =
1
8

(P (rn
1 |A) + P (rn

1 |D) + P (rn
1 |E) + P (rn

1 |H))

Symbol 1

σ4(0, 2) + σ4(11, 3) + σ4(12, 4) + σ4(13, 5) =
1
8

(P (rn
1 |B) + P (rn

1 |C) + P (rn
1 |F ) + P (rn

1 |G))

In this position, we have that code words A, D, E, H
point us towards making a decision in favor of symbol ‘0’
whereas code words B, C, F, G lead us to decide in favor of
symbol ‘1’. Since we are assuming that we have transmitted
the all-zero code word and that we have received rt

1 =
(1, 0, 0, 0, 0, 0, 0), we note that:

1) The closest code word to rt
1 = (1, 0, 0, 0, 0, 0, 0),

which is code word A leads us to decide in favor of a
‘0’, that intuitively says that there is NOT an error
in this position. The rest of the code words confirm
this intuition.

2) The code words that indicate us to go for a ‘0’ are
the ones that the label of the edges that the path of
these code words pass through is a ‘0’.

Now let

P (ri|s) =


1 + ϵ

2
if ri = s

1 − ϵ

2
if ri ̸= s

(8)

This is a reasonable assumption, since in fact we are saying
that there is a higher probability that the received symbol
is the one that has been sent.

By taking rt
1 = (1, 0, 0, 0, 0, 0, 0) and using (8), the

σ4(m′, m) expressions are:

Symbol 0

σ4(0, 0) + σ4(1, 1) + σ4(6, 6) + σ4(7, 7) =
1
8

P (r1|0)P (r2|0)P (r3|0)P(r4|0)P (r5|0)P (r6|0)P (r7|0)

+
1
8

P (r1|1)P (r2|0)P (r3|0)P(r4|0)P (r5|1)P (r6|1)P (r7|1)

+
1
8

P (r1|0)P (r2|1)P (r3|1)P(r4|0)P (r5|1)P (r6|1)P (r7|0)

+
1
8

P (r1|1)P (r2|1)P (r3|1)P(r4|0)P (r5|0)P (r6|0)P (r7|1)

(8)
=

1
8

1
27 ((1 + ϵ)6(1 − ϵ) + 2(1 + ϵ)4(1 − ϵ)3 + (1 + ϵ)2(1 − ϵ)5)

Symbol 1

σ4(0, 2) + σ4(11, 3) + σ4(12, 4) + σ4(13, 5) =
1
8

P (r1|1)P (r2|0)P (r3|1)P(r4|1)P (r5|0)P (r6|1)P (r7|0)

+
1
8

P (r1|0)P (r2|0)P (r3|1)P(r4|1)P (r5|1)P (r6|0)P (r7|1)

+
1
8

P (r1|1)P (r2|1)P (r3|0)P(r4|1)P (r5|1)P (r6|0)P (r7|0)

+
1
8

P (r1|0)P (r2|1)P (r3|0)P(r4|1)P (r5|0)P (r6|1)P (r7|1)

(8)
=

1
8

1
27

(
2(1 + ϵ)4(1 − ϵ)3 + 2(1 + ϵ)2(1 − ϵ)5

)
Therefore,
Pr 0
Pr 1

∣∣∣∣
t=4

= σ4(0, 0) + σ4(1, 1) + σ4(6, 6) + σ4(7, 7)
σ4(0, 2) + σ4(11, 3) + σ4(12, 4) + σ4(13, 5)

= 1 + ϵ2

(1 − ϵ)2 ≥ 1 for 0 ≤ ϵ ≤ 1 (9)

So the algorithm points us to the correct decision of
a ‘0’ in the 4th position. Note that the same reasoning
applies to positions 2, 3, 5, 6, 7.

We now evaluate the 1st position, which is the position
where the error has occurred.

Symbol 0

σ1(0, 0) =
1
8

(P (rn
1 |A) + P (rn

1 |B) + P (rn
1 |C) + P (rn

1 |D))

Symbol 1

σ1(0, 7) =
1
8

(P (rn
1 |E) + P (rn

1 |F ) + P (rn
1 |G) + P (rn

1 |H))

Again, since we are assuming that we have transmitted
the all-zero code word and that we have received rt

1 =
(1, 0, 0, 0, 0, 0, 0), we note that A, the closest code word to
rt

1 = (1, 0, 0, 0, 0, 0, 0), leads to a decision in favor of a ‘0’.
By taking rt

1 = (1, 0, 0, 0, 0, 0, 0) and using (8) again, the
σ1(m′, m) expressions are:
Symbol 0

σ1(0, 0) (8)= 1
8

1
27

(
(1 + ϵ)6(1 − ϵ) + 3(1 + ϵ)2(1 − ϵ)5)

Symbol 1

σ1(0, 7) (8)= 1
8

1
27 4(1 + ϵ)4(1 − ϵ)3

Therefore,
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Pr 0
Pr 1

∣∣∣∣
t=1

= σ1(0, 0)
σ1(0, 7)

= 1 − 2ϵ + 6ϵ2 − 2ϵ3 + ϵ4

(−1 + ϵ)2(1 + ϵ)2

≥ 1 for 0.3 ≤ ϵ ≤ 1 (10)

So the algorithm points us to the correct decision of a
‘0’ in the 1st position, and the error can be corrected.

C. Correcting beyond the error correcting bound. Identify-
ing the parents of a descendant

In this section we discuss a key property of the BCJR
algorithm. This property is essential for the results in this
paper. Intuitively, this property consists of the following
fact. Suppose we run the BCJR algorithm using as input a
descendant z of a certain coalition {u, v}. In the symbols
of the descendant z where the parents u and v agree the
BCJR algorithm returns a higher reliability.

This is better illustrated with an example. Suppose now
that we have the descendant rt

2 = (1, 1, 0, 0, 0, 0, 0). Note
that rt

2 can only be generated by the coalitions of code
words {A, G}, {A, H} and {G, H} (see Figure 1). Note
also that in the 6th position all three code words A, G, H
have a 0. On the other hand in the 4th position A and H
have a 0 and G has a 1. We will see that for the 0 in the 6th
position the BCJR algorithm outputs a higher reliability
than for the 0 in the 4th position. In other words we will
prove the following proposition.

Proposition 3: Let Γ = {u, v} be two code words of a
dual binary Hamming code. Let z be a descendant created
by {u, v}. Then:

1) For a star configuration (see Section III), the output
reliabilities of the symbols of z given by the BCJR
algorithm will correspond to u if d(u, z) ≤ d

2
−1 and

to v otherwise.
2) For a degenerated star configuration (see Sec-

tion III), the output reliabilities of the symbols of
z given by the BCJR algorithm will be larger for
symbols in which u and v agree, than in symbols
where they differ.

3) In case another code word say w forms a triangle
configuration with u and v (see Section III) then the
output reliabilities of the symbols of z given by the
BCJR algorithm are largest in the positions where
u, v and w agree.

For clarity, we prove Proposition 3 using an example.
1) Example. Proof of Proposition 3: Since the code is

equidistant d = 4. By by comparing rt
2 = (1, 1, 0, 0, 0, 0, 0)

with each code word we have that there are 3 code words
at exactly distance 2 (A, G, H), 4 code words at distance
4 (C, D, E, F ) and 1 code word at distance 6 (B)

Again without loss of generality, we turn our attention
to the 4th position. We have seen that in this position
Symbol 0

σ4(0, 0) + σ4(1, 1) + σ4(6, 6) + σ4(7, 7) =
1
8

(P (rn
1 |A) + P (rn

1 |D) + P (rn
1 |E) + P (rn

1 |H))

Symbol 1

σ4(0, 2) + σ4(11, 3) + σ4(12, 4) + σ4(13, 5) =
1
8

(P (rn
1 |B) + P (rn

1 |C) + P (rn
1 |F ) + P (rn

1 |G))

We have that code words A, D, E, H point us towards
making a decision in favor of symbol ‘0’ whereas code
words B, C, F, G lead us to decide in favor of symbol
‘1’. Since we are assuming that the descendant is rt

2 =
(1, 1, 0, 0, 0, 0, 0):

1) The closest code words to rt
2 = (1, 1, 0, 0, 0, 0, 0) are

A, G, H. A and H lead us to decide in favor of a ‘0’
while G leads us towards a ‘1’. This intuitively says
that the symbol in this position should be a ‘0’.

2) The other 2 code words that indicate us to make
a decision for a ‘0’, are D, E. They are at distance
4 of rt

2 = (1, 1, 0, 0, 0, 0, 0), which is the minimum
distance of the code.

By taking rt
2 = (1, 1, 0, 0, 0, 0, 0) and again using (8), the

σ4(m′, m) expressions are:
Symbol 0

σ4(0, 0) + σ4(1, 1) + σ4(6, 6) + σ4(7, 7) =
(8)
=

1
8

1
27

(
2(1 + ϵ)5(1 − ϵ)2 + 2(1 + ϵ)3(1 − ϵ)4

)
Symbol 1

σ4(0, 2) + σ4(11, 3) + σ4(12, 4) + σ4(13, 5) =
(8)
=

1
8

1
27

(
2(1 + ϵ)3(1 − ϵ)4 + (1 + ϵ)(1 − ϵ)6 + (1 + ϵ)5(1 − ϵ)2

)
Therefore,

Pr 0
Pr 1

∣∣∣∣
t=4

= σ4(0, 0) + σ4(1, 1) + σ4(6, 6) + σ4(7, 7)
σ4(0, 2) + σ4(11, 3) + σ4(12, 4) + σ4(13, 5)

= (1 + ϵ)2

1 + ϵ2 > 1 (11)

So the algorithm points us for a decision of a ‘0’ in
the 4th position. Note that the same reasoning applies to
positions 1, 2, 3, 5, 7.

We now evaluate the 6th position (which is the only
position where the 3 parents A, G, H have the same symbol
(‘0’)).
Symbol 0

σ6(0, 0) + σ6(1, 1) =
1
8

(P (rn
1 |A) + P (rn

1 |B) + P (rn
1 |G) + P (rn

1 |H))

Symbol 1

σ6(2, 0) + σ6(3, 1) =
1
8

(P (rn
1 |C) + P (rn

1 |D) + P (rn
1 |E) + P (rn

1 |F ))

In this position, we have that code words A, B, G, H point
us towards making a decision in favor of symbol ‘0’ whereas
code words C, D, E, F lead us to decide in favor of symbol
‘1’. Again, since we are assuming that the descendant is
rt

2 = (1, 1, 0, 0, 0, 0, 0), we note that:
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1) Now A, G, H, the closest code words to rt
2 =

(1, 1, 0, 0, 0, 0, 0), lead to a decision in favor of a
‘0’. Intuitively this indicates that the symbol in this
position is ‘strong’.

2) The other code word that indicates a ‘0’ decision is
B, which is the code word at a larger distance from
rt

2 = (1, 1, 0, 0, 0, 0, 0). This is a consequence of the
following:
We start with code words A and G

0 0 0 0 0 0 0 A
1 1 0 1 1 0 0 G

0 (*)
0 (**)

There exists a code word with a ‘0’ in the 6th
position at distance 4 from both A and G. Since A
and G disagree in 4 positions and the 6th position
is fixed, the only possibility is that this code word
is different from A and G where A and G agree,
and in the remaining 4 positions, agrees in two of
them with A and in two of them with G. We take
H to be this code word.

0 0 0 0 0 0 0 A
1 1 0 1 1 0 0 G
1 1 1 0 0 0 1 H

0 (**)

Now the also must exist a code word with a ‘0’
in the 6th position at distance 4 from A, G and
H. Since again the 6th position is fixed, there 6
available positions and this code word must agree
in two of them with A (and be different from A
in the remaining 4), in two of them with B (and
be different from B in the remaining 4) and in two
of them with C(and again be different from C in
the remaining 4). This is the same as saying that
it must be equal to A in the positions in with the
symbol of A is the minority of the symbols of A, G
and H.

0 0 0 0 0 0 0 A
1 1 0 1 1 0 0 G
1 1 1 0 0 0 1 H
0 0 1 1 1 0 1 B

1 1 0 0 0 0 0 rt
2

Summarizing, for the [7, 3, 4] dual binary Hamming
code a descendant rt

2 = (1, 1, 0, 0, 0, 0, 0) contains an
equal number of symbols from both A and G, and
forms a triangle configuration with code word H.
Moreover, if we take A, G and H then the descendant
can be seen as constructed according to a majority
decision. Since we found B according to a minority
decision, rt

2 = (1, 1, 0, 0, 0, 0, 0) and B only agree
in one position.

By taking rt
2 = (1, 1, 0, 0, 0, 0, 0) and using (8) again, the

σ6(m′, m) expressions are:

Symbol 0

σ6(0, 0) + σ6(1, 1)
(8)
=

1
8

1
27

(
(1 + ϵ)(1 − ϵ)6 + 3(1 + ϵ)5(1 − ϵ)2

)

Fig. 3. Symbol reliabilities

Symbol 1

σ6(2, 0) + σ6(3, 1)
(8)
=

1
8

1
27 4(1 + ϵ)3(1 − ϵ)4

Therefore,

Pr 0
Pr 1

∣∣∣∣
t=6

= σ1(0, 0)
σ1(0, 7)

= 1 + 2ϵ + 6ϵ2 + 2ϵ3 + ϵ4

(−1 + ϵ)2(1 + ϵ)2 > 1

for 0 ≤ ϵ ≤ 1 (12)

Finally, we compare (11) and(12). We note that always
Pr 0
Pr 1

∣∣∣∣
t=6

>
Pr 0
Pr 1

∣∣∣∣
t=4

(13)

This can also be shown in Figure 3. Therefore, the BCJR
algorithm returns a larger reliability for a symbol in a
position in which the parents of a descendant agree. This
proves Proposition 3.

VI. Efficient recovery of the secrets
We now approach the problem of how to efficiently

recover the secrets, when the strategy used is a dual binary
Hamming code. To recover the secrets we first need a way
to relate the word associated to a sequence of answers
given by A, with the code words corresponding to these
secrets. This was done in Remark 1. Now, if we denote by
z the word corresponding to the sequence of answers given
by player A, then according to Section III, Proposition 1
and Proposition 2 we have that:

1) In a star configuration, for the common secret, say
u, we have that d(u, z) ≤ d

2
− 1.

2) In a “degenerated” star configuration, for the single
pair of secrets, say {u, v}, we have that d(u, z) =
d(v, z) = d

2
.

3) In a triangle configuration, for the three possible
pairs of secrets, say {u, v}, {u, w} and {v, w}, we
have that d(u, z) = d(v, z) = d(w, z) = d

2
.

Therefore, we need an algorithm that outputs all code
words of a (2,2)-separating code within distance d/2 of z.
Since the error correcting bound of the code is ⌊ d−1

2 ⌋ we
have that in both cases, “degenerated” star and triangle,

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 39



we need to correct one more than the error correcting
bound of the code. As it is shown below, this can be
done by modifying the Bahl, Cocke, Jelinek and Raviv
algorithm.

A. Recovering secrets with the BCJR algorithm
In this section we use Proposition 3, to efficiently recover

secrets using the BCJR algorithm.
We first give an intuitive description of the algorithm.

Recall that given a sequence of answers z we need to find,
either the unique code word at a distance less or equal
than d

2 −1 of z, or the code word, or the two or three code
words at a distance d

2 of z.
Let z = (z1, z2, . . . , zn) be a descendant. We run the

BCJR algorithm with input z. Let Pr 0
Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n,

the output of the BCJR algorithm. According to Proposi-
tion 3 we know that in the positions where the parents
of z agree we will obtain a larger reliability towards a
given symbol. Since we wish to obtain the parents of
z we set the probability of these symbols to 1. In the
remaining positions the symbols of the parents differ from
each other. Note that if in one of these positions we
set the probability of one of the symbols to 1, we will
make the descendant ‘closer’ in Hamming sense to one
of the parents. Running again the BCJR algorithm with
these modified probabilities will yield this parent. Once
we obtain a parent, we search for a position in which this
parent and the descendant are different. By setting, in this
position, the probability of the symbol of the descendant
to 1, and running again the BCJR algorithm we will obtain
another parent.

In the following algorithm we will have occasion to use
the following rules.
Rule 1:

Symbol|t=j =


0 if Pr 0

Pr 1

∣∣∣∣
t=j

> 1

1 if Pr 0
Pr 1

∣∣∣∣
t=j

< 1

Rule 2:
1) Pr(rj |cj = 0) = 1 and Pr(rj |cj = 1) = 0 if

Pr 0
Pr 1

∣∣∣∣
t=j

> 1

2) Pr(rj |cj = 0) = 0 and Pr(rj |cj = 1) = 1 if
Pr 0
Pr 1

∣∣∣∣
t=j

< 1

Tracing BCJR Algorithm. (TBCJRA)

Input:
Dual binary Hammming code [n = 2k − 1, k, d = 2k−1]
A descendant z = (z1, z2, . . . , zn).

Output:
A list L containing the parents of z

Initialization: L := {∅}

1) First Steps: Run the BCJR algorithm using z and
obtain Pr 0

Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n.

a) t1 := Apply Rule 1 to Pr 0
Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n

b) if d(t1, z) < d/2 add t1 to L and exit.
c) else go to Iteration

2) Iteration:
a) Find the positions {j1, . . . , js} in which the

values of Pr 0
Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n are maximum.

b) Apply Rule 2 to these positions and run the
BCJR algoritm to obtain Pr 0

Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n,

j /∈ {j1, . . . , js}.
c) t2 := Apply Rule 1 to Pr 0

Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n

d) add t2 to L
e) Find a position jl, jl /∈ {j1, . . . , js}, in which

t2 and z disagree and set Pr(zjl
|cjl

= zjl
) = 1

and Pr(zjl
|cjl

! = zjl
) = 0

f) Run the BCJR algoritm to obtain Pr 0
Pr 1

∣∣∣∣
t=j

,

1 ≤ j ≤ n, j /∈ {j1, . . . , js} ∪ jl.
g) t3 := Apply Rule 1 to Pr 0

Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n

h) add t3 to L
i) Find a position jm, jm /∈ {j1, . . . , js} ∪ jl, in

which t3 and z disagree and set Pr(zjm |cjm =
zjm) = 1 and Pr(zjm |cjm ! = zjm) = 0

j) Run the BCJR algoritm to obtain Pr 0
Pr 1

∣∣∣∣
t=j

,

1 ≤ j ≤ n, j /∈ {j1, . . . , js} ∪ jl.
k) t4 := Apply Rule 1 to Pr 0

Pr 1

∣∣∣∣
t=j

, 1 ≤ j ≤ n

l) if t4 is different from both t2 and t3, then add
t4 to L

m) Output L and exit

B. Correctness of the algorithm
We have to show that the code words in the list L are the

parents of the descendant z. We first show the correctness
of Step 1b. If the output at Step 1b is not empty is
because all “errors” in the descendant have been corrected.
This means that one of the parents was at a distance less
than d/2 − 1 from the descendant. By Proposition 1 and
Proposition 3 this is the only traceable parent, and this
parent is precisely t1.

We now show that the output at Step 2m, contains
all the parents of z. In this case, this is true again from
Proposition 3 and Proposition 2. If the configuration is
a degenerated star configuration then t2 and t3 are the
parents of z. In the remaining case t2, t3 and t4 form a
triangle.

VII. Conclusions
In this paper we present an explicit set of questions that

solves the c = 2 guessing secrets problem together with
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an efficient algorithm to recover the secrets. The explicit
set of questions is based on a dual binary Hamming code.
The recovery of the secrets consists in the decoding of a
block code beyond its error correction bound. In order to
perform this decoding efficiently we present a modification
of the BCJR algorithm, that passing through the trellis
representing the block code, returns all the code words of
the code within distance d/2 of a given word.

Appendix

Given a trellis, to compute the joint probability func-
tions λt(m) and σt(m′, m) the following auxiliary func-
tions are used:

1) The before function αt(m)

αt(m) = P (St = m; rt
1)

that denotes the joint probability of being in state m
at time instant t and that the received bit sequence
before (up to) time t is rt

1.
2) The after function βt(m)

βt(m) = P (rn
t+1|St = m)

that denotes the probability of receiving the bit
sequence rn

t+1 after time t conditioned on being in
state m at time t.

3) The transition function γt(m′, m)

γt(m′, m) = P (St = m; rt|St−1 = m′)

that denotes the joint probability of being at state
m at time t and that the received bit at time t is rt

conditioned on being in state m′ at time t − 1.

A. Computation of the auxiliary functions αt(m), βt(m)
and γt(m′, m)

1) The transition function γt(m′, m): In the most gen-
eral case the transition function γt(m′, m), is computed
according to the following expression

γt(m′, m) =∑
x∈IF2

P (St = m|St−1 = m′) · P (x|St−1 = m′, St = m) · P (rt|x)

where
• P (St = m|St−1 = m′) is the probability of being in

state m at time t given that the state at time t − 1 is
m′.

• P (x|St−1 = m′, St = m) is the probability that the
code word symbol is x given that the transition is from
state m′ at time t − 1 to state m at time t.

• P (rt|x) is the transition probability of the discrete
memoryless channel, that is, the probability that the
symbol at the symbol at the channel output is rt given
that the symbol at the input is x.

2) The before function αt(m): The function αt(m) =
P (St = m; rt

1) denotes the joint probability of being in
state m at time instant t and that the received bit sequence
before (up to) time t is rt

1.
Therefore,

αt(m) =
∑
m′

αt−1(m′) · γt(m′, m)

Since we will always assume that at time t = 0 the state
of the trellis is m = 0, that is S0 = 0, then the boundary
conditions on alpha are

α0(0) = 1 (14)
α0(m) = 0 for m ̸= 0

3) The after function βt(m): The after function
βt(m) = P (rn

t+1|St = m) denotes the probability of
receiving the bit sequence rn

t+1 after time t conditioned
on being in state m at time t.

Therefore,

βt(m) =
∑
m′

βt+1(m′) · γt+1(m, m′)

Since we will always assume that at time t = n the state
of the trellis is m = 0, that is Sn = 0, then the boundary
conditions on beta are

βn(0) = 1 (15)
βn(m) = 0 for m ̸= 0

B. Computation of the joint probability functions λt(m)
and σt(m′, m)

1) Obtaining of λt(m): We first recall that λt(m) =
P (St = m; rn

1 ) indicates the joint probability of being in
state m at time instant t and that the received bit sequence
(word) is rn

1 .
Therefore,

P (St = m; rn
1 ) = P (St = m; rt

1) · P (rn
t+1|St = m) (16)

which is the same as

λt(m) = αt(m) · βt(m) (17)

Intuitively this says that λ gives information about the
states (nodes in the trellis) at time t, and that this in-
formation can be obtanided by watching what happens in
the trellis before and after time t.

2) Obtaining of σt(m′, m): We recall that the
σt(m′, m) = P (St−1 = m′; St = m; rn

1 ) function is
defined as the joint probability of being in state m′ at
time instant t − 1, and in state m at time instant t, and
that the received bit sequence is rn

1 .
Therefore,

P (St−1 = m′; St = m; rn
1 ) =

P (St−1 = m′; rt−1
1 ) · P (St = m; rt|St−1 = m′) · P (rn

t+1|St = m)

that again is the same as
σt(m′, m) = αt−1(m′) · γt(m′, m) · βt(m) (18)
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As an intuitive explanation we can say that σt(m′, m)
gives information about the transitions (symbols) in the
trellis at time t, and that this transition information can
be obtained by checking what happens in the trellis before,
after and at time t.

C. Graphical interpretation of the auxiliary functions
αt(m), βt(m) and γt(m′, m)

In Section VII-A1 we discussed the computation of the
probability function γt(m′, m) = P (St = m; rt|St−1 =
m′), obtaining the expression

γt(m′, m) =∑
x∈IF2

P (St = m|St−1 = m′) · P (x|St−1 = m′, St = m) · P (rt|x)

In the case that the trellis corresponds to the dual
Hamming binary code, we have that

• The probability P (St = m|St−1 = m′) is

P (St = m|St−1 = m′) =
{

1/2 if 2 edges depart m’
1 if 1 edge departs m’

• The probability P (x|St−1 = m′, St = m) is

P (x|St−1 = m′, St = m)
{

1 if edge from m’ to m = x
0 otherwise

This implies that

γt(m′, m) =


1
2

P (rt|x) if edge from m’ to m = x
and 2 edges depart from state m’

P (rt|x) if edge from m’ to m = x
and 1 edges departs from state m’

(19)

In Section VII-A2 we saw that the before function
αt(m) = P (St = m; rt

1) can be computed from the trellis
recursively using

αt(m) =
∑
m′

αt−1(m′) · γt(m′, m)

with the boundary conditions

α0(0) = 1 (20)
α0(m) = 0 for m ̸= 0

The value of γt(m′, m) is readily obtained from (19), and
therefore to obtain αt(m) we need αt−1(m′) so we will be
moving through the trellis from left to right, i.e. in the
forward direction.

In Section VII-A2 we saw that the after function
βt(m) = P (rn

t+1|St = m) can be computed from the trellis
recursively using

βt(m) =
∑
m′

βt+1(m′) · γt+1(m, m′)

with the boundary conditions

βn(0) = 1 (21)
βn(m) = 0 for m ̸= 0

Again, the value of γt(m′, m) is readily obtained
from (19), and therefore to obtain βt(m) we need βt+1(m′)
so we will be moving through the trellis from right to left,
i.e. in the backward direction.
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Efficient Numerical Method in the High-Frequency
Anti-Plane Diffraction by an Interface Crack

Michael Remizov and Mezhlum Sumbatyan

Abstract—In the problem of high-frequency diffraction by
interface cracks in linear elastic materials we propose a numerical
method which is based on a separation of the oscillating solution
and a certain slowly varying function. New effective approximate
factorization of the symbolic function is offered while using of
the Wiener-Hopf method for high-frequency asymptotic solution.
This technique described in literature for regular (Fredholm)
integral equations is applied here to hyper-singular equations
arising in diffraction by thin cracks on the boarder between two
different elastic media. The algorithm proposed is efficient for
both high and moderate frequencies.

Index Terms—diffraction, integral equation, high frequency,
numerical method.

I. INTRODUCTION

THE high-frequency regime is a field of the diffraction
theory where standard numerical methods encounter sig-

nificant obstacles since these require too huge discrete grids.
Various approaches have been proposed to overcome this
difficulty. Schematically, they may be classifies as analytical
(or purely asymptotic) and semi-analytical (i.e. combining
numerical treatments with some asymptotic properties of the
solution). The key ideas of asymptotic theories, well further
references, can be found in recent works [1]-[6]. Only few
works are devoted to semi-analytical approaches, and a good
representation of respective ideas is given in [7]. For volumet-
ric obstacles this is applied to the Fredholm boundary integral
equation. The main goal of the present work is to propose
a new numerical method in the anti-plane diffraction problem
for an interface crack, which is efficient for high and moderate
frequencies and based principally on the constructed explicit
high-frequency asymptotics.

II. ANTI-PLANE DIFFRACTION PROBLEM

Let us consider the SH- (anti-plane) problem on diffraction
of a plane incident wave by a straight finite-length crack
x ∈ (−a, a), y = 0 located on the boarder between two
different linear elastic isotropic spaces. The plane incident
transverse wave arrives from infinity in the upper (first)
medium, forming angle θ with respect to vertical axis y:
winc(x, y) = exp[−ik1s(x sin θ + y cos θ)], where k1s is the
transverse wave number for the upper half-plane (y ≥ 0)
and the time-dependent factor exp(−iωt) is hidden. Note
that in the anti-plane problem the displacement vector is
ūj(x, y, z) = {0, 0, wj(x, y)}, j = 1, 2 where functions wj

M. Yu. Remizov and M. A. Sumbatyan are with the Faculty of Mathematics,
Mechanics and Computer Science, Southern Federal University, Rostov-on-
Don, Russia e-mail: remizov72@mail.ru, sumbat@math.rsu.ru
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satisfy the Helmholtz equations for the upper (j = 1) and
lower (j = 2) half-planes respectively:

∂2wj

∂x2
+

∂2wj

∂y2
+ k2

j w = 0, kj = ω

√
ρj

µj
, (2.1)

where µj and ρj designate elastic shear modulus and mass
density for respective medium.

The boundary conditions correspond to stress-free faces of
the crack, and the continuity of the displacement and the stress
on the interface outside the crack. This implies:

y = 0 :
∂w1

∂y
=

∂w2

∂y
= 0 , |x| ≤ a ;

w1 = w2 , µ1
∂w1

∂y
= µ2

∂w2

∂y
, |x| > a . (2.2)

Let us represent the wave field in the upper medium
as the sum of the incident and the scattered ones: w1 =
e−ik1(x sin θ+y cos θ) + wsc

1 . By applying the Fourier transform
along x-axis: w1(x, y) =⇒ W1(s, y), w2(x, y) =⇒ W2(s, y),
one easily obtains from (2.1):

W1 =A1(s)e−γ1y + 2πδ(s− k1 sin θ)e−ik1y cos θ,

W2 = A2(s)eγ2y, γj =
√

s2−k2
j , (2.3)

where the following obvious relation (δ is Dirac’s delta-
function):

∞∫

−∞
e−ik1x sin θ eixs dx = 2πδ(s− k1 sin θ) (2.4)

has been used, and A1, A2 are two arbitrary functions of
Fourier parameter s. It should be noted that expressions (2.3)
automatically satisfy the radiation condition at infinity.

It follows from (2.2) that µ1∂w1/∂y = µ2∂w2/∂y, y = 0
for all |x| < ∞. This implies:

−µ1[γ1A1 + 2πik1 cos θ δ(s− k1 sin θ)] = γ2µ2A2. (2.5)

In order to obtain a second relation between two quantities
A1 and A2, let us introduce the new unknown function q(x),
as follows:

y = 0 : w1 − w2 = q(x), |x| < ∞ ;

q(x) = 0, |x| > a, (2.6)

where the trivial value of q(x) outside the crack follows from
the continuity of the displacement over the interface, see (2.2).
Therefore, if q(x) =⇒ Q(s), then

Q(s) = W1(s, 0)−W2(s, 0) = A1+2πδ(s−k1 sin θ)−A2 =
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=
(

1− ik1

γ1
cos θ

)
δ(s−k1 sin θ)−

(
1 +

µ2γ2

µ1γ1

)
A2, (2.7)

where the value of A1 in terms of A2 has been used, see
Eq. (2.5). Now, Eqs. (2.3) and (2.7) imply:

W2(s, y) = µ1

[
2π

γ1 − ik1 cos θ

µ1γ1 + µ2γ2
δ(s− k1 sin θ)−

− γ1Q(s)
µ1γ1 + µ2γ2

]
eγ2y ,

(2.8)

and the remaining still unused boundary condition in (2.2),
namely ∂w2(x, 0)/∂y = 0, |x| ≤ a, by applying the inverse
Fourier transform to Eq. (2.8), results in the basic integral
equation for the unknown function q(x):

ak1∫

−ak1

q(ξ)K(x−ξ)dξ=f(x), |x|≤ak1; (2.9)

K(x)=
1
2π

∞∫

−∞
L(s)e−ixsds=

1
π

∞∫

0

L(s)cos(xs)ds,

L(s) =
√

s2 − 1
√

s2 − k2

µ
√

s2 − 1 +
√

s2 − k2
, µ =

µ1

µ2
, k2 =

k2
2

k2
1

=
µ1ρ2

µ2ρ1
,

f(x)=

[
(
√

s2−1−icos θ)
√

s2−k2

µ
√

s2−1 +
√

s2−k2
e−ixs

]

s=sin θ

=Ae−ix sin θ,

A=
−2icos θ

√
sin2 θ−k2

√
sin2 θ−k2−iµcos θ

written in a dimensionless form.
First of all, let us notice that the denominator of the fraction

in function L(s) does not vanish. This follows from the
consideration of the three possible cases: (i) Both square roots√

s2 − 1 and
√

s2 − k2 are real-valued. In this case they both
are positive, hence the sum of two positive quantities cannot
possess the zero value; (ii) One of them is real-valued and
the other one is imaginary. In this case the sum of these two
square roots may vanish if and only if they both are trivial
that is impossible; (iii) Both these square roots are imaginary.
This case can be reduced to case (i), since the denominator is
the same quantity as in (i) multiplied by −i.

It is clear that kernel K(x) is even: K(x) = K(|x|).
Besides, the kernel is smooth: K(|x|) ∈ C1(0, 2ak1] outside
the origin. In order to estimate its behavior as x → 0, let us
extract explicitly the leading asymptotic term of function L(s)
at infinity: L(s) = |s|/(µ+1)+O(1/|s|), s →∞. Therefore,

K(x) =
1

π(µ + 1)

∞∫

0

s cos(xs) ds + K0(x) =

= − 1
π(µ + 1)x2

+ K0(x), (2.10)

K0(x)=
1
π

∞∫

0

[ √
s2 − 1

√
s2 − k2

µ
√

s2−1 +
√

s2−k2
− s

µ + 1

]
cos(xs) ds =

= O(ln |x|), x → 0.

It thus can be seen that the leading term of the kernel’s
expansion for small x is hyper-singular, and kernel K0(x) has
the weak (integrable) logarithmic singularity only. A stable
direct numerical algorithm to solve integral equations with
such kernels is described in [8].

III. ASYMPTOTIC ANALYSIS OF THE BASIC INTEGRAL
EQUATION

In the high-frequency regime the numerical treatment of
equation (2.9) becomes inefficient, because it is necessary to
keep a fixed number of nodes per wave length. As a result, this
leads to a huge size of the discrete mesh. For this reason, let
us construct an asymptotic solution of integral equation (2.9),
as ak1 → ∞. The method we use is allied to the classical
”Edge Waves” technique [4]. Let us represent the solution of
equation (2.9) as a combination of three functions:

q(x) = q1 (ak1 + x) + q2 (ak1 − x)− q0(x), (3.1)

satisfying, respectively, the following three equations:
∞∫

−ak1

q1(ak1+ ξ)K(x− ξ)dξ = f(x)+

+

−ak1∫

−∞
[q2(ak1− ξ)−q0(ξ)]K(x− ξ)dξ, −ak1 <x<∞, (3.2a)

ak1∫

−∞
q2(ak1− ξ)K(x− ξ) dξ = f(x)+

+

∞∫

ak1

[q1(ak1+ξ)−q0(ξ)]K(x−ξ) dξ, −∞<x<ak1, (3.2b)

∞∫

−∞
q0(ξ)K(x− ξ) dξ = f(x), −∞ < x < ∞ . (3.2c)

The equivalence of equation (2.9) and the system of three
equations (3.2) is easily proved if one applies the combination
(3.2a)+(3.2b)–(3.2c).

The leading asymptotic term of the solution can be con-
structed by rejecting the residual integrals in the right-hand
sides of (3.2a) and (3.2b). Under such a treatment, these
two equations contain integral operators only in their left-
hand sides, becoming the Wiener-Hopf equations on semi-
infinite intervals. As soon as they are solved, the correctness
of the hypothesis, that the rejected right-hand-side tails are
asymptotically small, can be checked by substituting the found
solutions into those tail integrals. Physically, this means that
the reciprocal wave influence of the edges to each other is
asymptotically small, in the first approximation.

It should be noted that the third equation (3.2c) is a simple
convolution integral equation on the infinite axis, and its
solution is easily obtained by the Fourier transform (f(x) =⇒
F (s)):

q0(x)=
1
2π

∞∫

−∞

F (s)
L(s)

e−ixsds = a

∞∫

−∞

δ(s−sin θ)
L(s)

e−ixsds =
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=
Ae−ix sin θ

L(sin θ)
=2 e−ix sin θ . (3.3)

It is very interesting to notice that q0(x) is the same as it could
be predicted by Kirchhoff’s physical diffraction theory [4].

The Wiener-Hopf equations (3.2a), (3.2b) discussed above,
after evident change of variables x′ = ak1 ± x, ξ′ = ak1 ± ξ,
can be rewritten in a more standard form, holding over interval
(0,∞):

∞∫

0

q1,2(ξ′)K(x′ − ξ′) dξ′ = f1,2(x′), 0 ≤ x′ < ∞ ;

f1,2(x′) = f [±(x′ − ak1)]. (3.4)

As usually, in solving the Wiener-Hopf equations let us des-
ignate for any function ϕ+(x′) = ϕ(x′), x′ ≥ 0; ϕ+(x′) = 0,
x′ < 0; ϕ−(x′) = ϕ(x′), x′ ≤ 0; ϕ−(x′) = 0, x′ > 0;
and Φ+(x′) (Φ−(x′)) are the values on the real axes of Φ(z),
analytic in upper (lower) half-planes of complex variable z.
Then (3.4) is rewritten as follows

Q+
j (s)L(s) = F+

j (s) + D−(s), (j = 1, 2);

F+
1,2(s) =

Ae± iak1 sin θ

i (± sin θ − s)
, (3.5)

where D−(s) is an unknown function.
The next step is a factorization of the symbolic function [9]:

L(s) = L+(s)L−(s). After that eq. (3.5) reads as follows:

Q+
j (s)L+(s) =

F+
j (s)

L−(s)
+ E−(s) , (3.6)

where E−(s) is another unknown function. Now, after the
obvious decomposition

F+
1,2(s)

L−(s)
=

Ae± iak1 sin θ

i (± sin θ−s)L−(s)
=

=
{

Ae± iak1 sin θ

i (± sin θ − s)

[
1

L−(s)
− 1

L−(± sin θ)

]}

−
+

+
[

Ae± iak1 sin θ

iL−(± sin θ)(± sin θ − s)

]

+

=

= H−(s) + H+(s) , (3.7)

relation (3.6) can be rewritten as follows:

Q+
j (s)L+(s)−H+(s) = H−(s) + E−(s) . (3.8)

Since the left-hand side here contains only functions analytical
in the upper half-plane and the right-hand side – only functions
analytical in the lower one, these two functions are in fact the
same unique entire function. The physical condition claims
that the solution, which is an opening of the crack faces, should
vanish when approaching the crack’s edges: q1,2 → 0, x →
0. A simple analysis shows that this implies that the entire
function above must identically be trivial. This defines the
solution of the Wiener-Hopf equation (3.4) in the form

Q+
1,2(s) =

H+(s)
L+(s)

=

=
Ae± iak1 sin θ

iL−(± sin θ)(± sin θ − s)L+(s)
, (3.9)

which after application of the inverse Fourier transform gives
the solution to equation (3.4) and, as a consequence, the
leading term (3.1) of the high-frequency analytical solution
to the whole problem.

IV. EFFICIENT FACTORIZATION OF FUNCTION L(S) AND
A CLOSED-FORM SOLUTION

It is obvious from the previous section that the key point of
the method proposed is the factorization of the symbolic func-
tion L(s). The representation of this function in its exact form
(2.9) unlikely admits any explicit-form factorization. There
are known some complex analytical formulas for factorization
of arbitrary function, expressed in quadratures [9], however
in practice calculation of such integrals turns out very hard
problem.

In the present work we give an efficient approximation of
function L(s) which admits an evident simple factorization.
Let us notice that the structure of L(s) (2.9) is a combination
of four square roots (

√
s + 1 )+ , (

√
s + k )+ , (

√
s− 1 )− ,

(
√

s− k )− , two of them being analytical in the upper half-
plane, and the other two – in the lower half-plane (for more
detail, see [9]). obviously, the factorization of the numerator
in (2.9) is attained in a simple way:

√
s2 − 1

√
s2 − k2 =(√

s + 1
√

s + k
)
+

(√
s− 1

√
s− k

)
−.

Let us approximate the denominator of L(s) as follows:

µ
√

s2−1 +
√

s2−k2 ≈ (4.1)

≈ µ + 1
(B + 1)2

(
B
√

s + 1 +
√

s + k
)

+
·
(
B
√

s−1 +
√

s−k
)
−

.

It is obvious that the approximating function has the same
asymptotic behavior as s → ∞. Besides, this keeps all
qualitative properties of the initial function, having the same
branching points s = ±1, ±k. The introduced parameter
B = B(µ, k) > 0 may be chosen, for given values of
parameters µ and k, to provide better approximation uniformly
over all finite real-valued values of variable s ∈ (−∞,∞).
It is also obvious that in the case when µ1/µ2 = ρ1/ρ2

parameter k = 1, hence the approximation is absolutely
precise with B = 0. By calculating the maximum relative error
ε, between exact and approximating complex-valued functions,
for s ∈ (−∞,∞), a numerical investigation shows that the
worst precision takes place for opposite values of relations
µ1/µ2 and ρ1/ρ2, i.e. when the former is extremely large (or
small) and at the same time the latter is extremely small (or
large). For example, in the case µ1/µ2 = 1/10, ρ1/ρ2 = 10
the relative error can be attained ε = 7% only, with B = 0.2.
in the case µ1/µ2 = 1/5, ρ1/ρ2 = 5 the value ε = 4% can
be attained with B = 0.31.

However, it should be noted that the cases with rough ap-
proximation described above are not realistic from the physical
point of view. Indeed, if one material is more rigid than the
other one, then in practice its both elastic modulus and mass
density are greater than respective parameters of the second
material. If we leave such unrealistic cases aside, keeping
only the cases when both the relations are simultaneously
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less or greater than the unit value, then the precision of the
approximation becomes considerably better. By allowing the
materials’ parameters to differ maximum by one order only:
1/10 ≤ µ1/µ2, ρ1/ρ2 ≤ 1, the worst case is µ1/µ2 = 1,
ρ1/ρ2 = 1/10 with ε = 2% attained for B = 0.77. In
practice, staying far from the extremal values of the physical
parameters, the maximum relative error is always less than
1–2%.

With the introduced approximation (4.1) the efficient fac-
torization of symbolic function L(s) is taken in the form

L(s) =
[

(B + 1)
√

s + 1
√

s + k√
µ + 1 (B

√
s + 1 +

√
s + k)

]

+

×

×
[

(B + 1)
√

s− 1
√

s− k√
µ + 1 (B

√
s− 1 +

√
s− k)

]

−
= L+(s)L−(s). (4.2)

Omitting some transformations, one comes to the following
expression of Fourier transforms Q+

1,2(s)

Q+
1,2(s) =

A(µ + 1)e± iak1 sin θ

(B + 1)2(± sin θ − s)
× (4.3)

×
(

1√
1∓ sin θ

+
B√

k ∓ sin θ

)(
1√

s + 1
+

B√
s + k

)
.

The Fourier inversion of this function may be performed
by passing to inverse Laplace transform, with the change
is = −p, s = ip, where p is the Laplace parameter. Expression
(4.3) contains elementary functions with tabulated Laplace
inversions [10]:

1
(α− s)

√
s + β

=
eπi/4

(p + iα)
√

p− iβ

⇐=
ie−iαx′

√
α + β

Erf
[
e−πi/4

√
(α + β)x′

]
, (4.4)

where Erf(z) is the probability integral. Since x′ = ak1 ± x,
the inversion of (4.3) gives

q(1,2)(ak1 ± x) =
A(µ + 1)i
(B + 1)2

×

×
(

1√
1∓ sin θ

+
B√

k ∓ sin θ

)
e∓ix sin θ×

×




Erf
[
e−πi/4

√
(1± sin θ)(ak1 ± x)

]
√

1± sin θ
+

+
B Erf

[
e−πi/4

√
(k ± sin θ)(ak1 ± x)

]
√

k ± sin θ



 . (4.5)

For large argument the probability integral tends to 1, then
one can see that

q+
1,2(ak1 ± x) ∼ A(µ + 1)i

(B + 1)2
e∓ix sin θ(

1√
1∓ sin θ

+

+
B√

k ∓ sin θ
)×

(
1√

1± sin θ
+

B√
k ± sin θ

)
=

=
Ae−ix sin θ

L(sin θ)
=2 e−ix sin θ = q0(x), x → ±∞ . (4.6)

The second term of this asymptotic estimate (not writ-
ten here for the sake of brevity) shows that the difference
q+
1,2(ak1± x)− q0(x) not only tends to zero as x → ±∞ but

also is integrable at infinity. This guarantees the right-hand-
side tails in Eq. (3.2) to be asymptotically small as ak1 →∞,
that justifies the basic hypothesis permitting rejection of the
tails.

Finally, we note that similar problems have been studied in
[11] where a polynomial approximation form is applied to the
factorization problem, and in [12] where a numerical treatment
of factorization is performed. The principal distinctive feature
of the factorization proposed in the present work is that
it catches all qualitative properties of the basic branching
complex-valued symbolic function, in the way permitting the
explicit-form solution of the posed problem. It also provides
any desired level of precision, by obvious combination of the
proposed factorization (4.1) with the ideas presented in [11].

V. THE ESSENCE OF THE PROPOSED NUMERICAL METHOD

The basic idea of the proposed method is to seek the basic
unknown function q(x) as a product of the high-frequency
asymptotic representation (3.1) and a certain slowly varying
function G(x), namely

q(x) = [q1 (ak1 + x) + q2 (ak1 − x)− q0(x)] G(x),

ak1 →∞. (5.1)

Physically, for extremely high frequencies function G must
tend to an identically unit value. For moderately high fre-
quencies the new unknown function G(x) is a certain slowly
varying one, playing the role of modulating amplitude for
the rapidly oscillating component. One thus may take a small
number of nodes, to find this function from the main integral
equation, uniformly for all high frequencies. The substitution
of (5.1) into Eqs. (2.9) rewrites it in the form

1
2π

∫ ak1

−ak1

[q1 (ak1 + ξ) + q2 (ak1 − ξ)− q0(ξ)]G(ξ) dξ×

×
∫ ∞

−∞
L(s)eis(ξ−x) ds = f(x), |x| ≤ ak1. (5.2)

It should be noted that functions q(1,2)(x) in (4.5) can be
rewritten in terms of Fresnel integrals S2(x), C2(x) of real-
valued arguments:

q(1,2)(x) = D1,2e
∓ix sin θ[C2(a1,2x) + iS2(a1,2x)]+

+E1,2e
∓ix sin θ[C2(b1,2x) + iS2(b1,2x)];

D1,2 =
B1,2e

−i 3π
4
√

2√
a1,2

; a1,2 = ks ± sin θ;

E1,2 =
b1,2e

− 3π
4
√

2√
b1,2

; b1,2 = 1± sin θ. (5.3)

In discretization of Eq. (5.2) let us choose N equal sub-
intervals over full interval (−a, a), where N is the same for
all large values of parameter ak1. Then, assuming that the
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unknown function G(ξ) is almost constant over each small
sub-interval, we deduce (Gm = G(ξm)):

I =
1
2π

∫ ak1

−ak1

G(ξ)[q1 (ak1 + ξ)+ (5.4)

+q2 (ak1 − ξ)− q0(ξ)]dξ

∫ ∞

−∞
L(s)eis(ξ−x) ≈

≈ 1
2π

N1∑
m=1

Gm

∫ (
xm+

hk1
2

)
(
xm−hk1

2

) [q1 (ak1 + ξ)+

+q2 (ak1 − ξ)− q0(ξ)]dξ

∫ ∞

−∞
L(s) eis(ξ−xn) ds;

N∑
m=1

GmInm = fn, (5.5)

Inm =
1
2π

∫ (
xm+

hk1
2

)
(
xm−hk1

2

) [D1e
−i(ak1+ξ) sin θ×

×{C2 (a1 [ak1 + ξ]) + iS2 (a1 [ak1 + ξ])}+

+E1e
−i(ak1+ξ) sin θ×

×{C2 (b1 [ak1 + ξ]) + iS2 (b1 [ak1 + ξ])}+

+D2e
i(ak1−ξ) sin θ(C2 (a2 [ak1 − ξ])+

+iS2 (a2 [ak1 − ξ])) + E2e
i(ak1−ξ) sin θ ×

×{C2 (b2 [ak1 − ξ]) + iS2 (b2 [ak1 + ξ])}−

−2e−iξ sin θ]dξ

∫ ∞

−∞
L(s)eis(ξ−xn) ds;

fn = f(xn) = Ae−ixn sin θ, h = 2a/N, n = 1, N.

Let us estimate the efficiency of the proposed algorithm,
say for ak1 = 200. The standard numerical treatment means
to solve a certain 1200× 1200 LAS (linear algebraic system).
The proposed method requires to find slowly varying function
G(x), hence it is quite sufficient to take N = 120 nodes,
i.e a certain 120 × 120 LAS, whose dimension is smaller in
10 times. Since the number of arithmetic operations in the
standard Gauss elimination algorithm is proportional to the
third power of dimension, the gain is 103 = 1000 times. Ob-
viously, for larger N the gain becomes even more significant.

It should be noted that the algorithm proposed works well
for all high, moderate, and low frequencies. Really, in the
cases of high and moderate frequencies it is discussed above.
In the case of low frequencies the full solution as well
as extracted oscillating exponential function become slowly
varying functions, hence a small quantity of nodes is again
required in this case for the numerical treatment.
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 

Abstract— Given a linear continuous-time infinite-

dimensional plant on a Hilbert space and disturbances of known 

and unknown waveform, we show that there exists a stabilizing 

direct model reference adaptive control law with certain 

disturbance rejection and robustness properties. The closed 

loop system is shown to be exponentially convergent to a 

neighborhood with radius proportional to bounds on the size of 

the disturbance. The plant is described by a closed densely 

defined linear operator that generates a continuous semigroup 

of bounded operators on the Hilbert space of states. 

Symmetric Hyperbolic Systems of partial differential 

equations describe many physical phenomena such as wave 

behavior, electromagnetic fields, and quantum fields. To 

illustrate the utility of the adaptive control law, we apply the 

results to control of symmetric hyperbolic systems with coercive 

boundary conditions. 

 

Keywords: infinite dimensional systems, partial differential 

equations, adaptive control. 

I. INTRODUCTION 

Many control systems are inherently infinite dimensional 
when they are described by partial differential equations. 
Currently there is renewed interest in the control of these 
kinds of systems especially in flexible aerospace structures 
and the quantum control field [1]-[2]. It is especially of 
interest to control these systems adaptively via finite-
dimensional controllers. In our work [3]-[6] we have 
accomplished direct model reference adaptive control and 
disturbance rejection with very low order adaptive gain laws 
for MIMO finite dimensional systems. When systems are 
subjected to an unknown internal delay, these systems are 
also infinite dimensional in nature. The adaptive control 
theory can be modified to handle this situation [7]. However, 
this approach does not handle the situation when partial 
differential equations describe the open loop system. 

This paper considers the effect of infinite dimensionality 
on the adaptive control approach of [4]-[6]. We will show 
that the adaptively controlled system is globally stable, but 
the adaptive error is no longer guaranteed to approach the 
origin. However, exponential convergence to a neighborhood 
can be achieved as a result of the control design. We will 
prove a robustness result for the adaptive control which 
extends the results of [4].   

 
M.J. Balas is with the Aerospace Engineering Department, Embry-

Riddle Aeronautical University , Daytona Beach, FL 32119 

(balsam@erau.edu).  

S.A. Frost is with the Intelligent Systems Division, NASA Ames 

Research Center, Moffett Field, CA 94035(susan.frost@nasa.gov). 

Our focus will be on applying our results to Symmetric 
Hyperbolic Systems of partial differential equations. Such 
systems, originated by K.O. Friedrichs and P. D. Lax,  
describe many physical phenomena such as wave behavior, 
electromagnetic fields, and the theory of relativistic quantum 
fields; for example, see [15]-[18]. To illustrate the utility of 
the adaptive control law, we apply the results to control of 
symmetric hyperbolic systems with coercive boundary 
conditions. Other closely related work on compensators for 
infinite dimensions from a different viewpoint can be found 
in [21]. 

II. ROBUSTNESS OF THE ERROR SYSTEM 

We begin by considering the definition of Strict 
Dissipativity for infinite-dimensional systems and the general 
form of the “adaptive error system” to later prove stability. 
The main theorem of this section will be utilized in the 
following section to assess the stability of the adaptive 
controller with disturbance rejection for linear diffusion 
systems. 

Noting that there can be some ambiguity in the literature 
with the definition of strictly dissipative systems, we modify 
the suggestion of Wen in [8] for finite dimensional systems 
and expand it to include infinite dimensional systems. 

Definition 1: The triple (Ac, B, C) is said to be Strictly 

Dissipative if  cA  is a densely defined ,closed operator on 

XAD c )(  a complex Hilbert space with inner product 

),( yx  and corresponding norm  ),( xxx   and 

generates a 0C  semigroup of bounded operators )(tU , 

and ),( CB  are bounded finite rank input/output operators 

with rank M where 
mm RXCXRB  : and : . In 

addition there exist symmetric positive bounded operator P 

on X  such that 
2

max

2

min ),( xpxPxxp  , i.e. P is 

bounded and coercive, and 

2

*

1
Re( , ) [( , ) ( , )]

2
c c cPA e e PA e e e PA e

e

PB C




 


 






 (1) 

where 0   and ( )ce D A . 
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We also say that ( , , )A B C  is Almost Strictly 

Dissipative (ASD) when there exists a 
*

mxmG   such that 

( , , )cA B C  is strictly dissipative with CBGAAc * . 

Note that if P I  in (1),by the Lumer-Phillips Theorem 

[11], p405, we would have  ( ) ; 0t

cU t e t  . 

The following theorem shows that convergence to a 
neighborhood with radius determined by the supremum norm 

of  is possible for a specific type of adaptive error system. 

In the following, we denote 
1

2
tr( )TM M M  as 

the trace norm of a matrix M where 0 .
 

Theorem 2: Consider the coupled system of differential 
equations 

 

T

( )

( ) ( )

c

G

y

y

e
A e B G t G z

t

e Ce

G t e z aG t










   







  



 
(2) 

where , ( ), m

Ce v D A z R   and 
mxmXxRX

G

e









  

is a Hilbert space with  

inner product  1 2 1

1 2 1 2

1 2

, ( , ) tr
e e

e e G G
G G

 
    

     
    

, 

norm  
1

2 1 2tr( )
e

e G G
G

  
  

 
 and where )(tG  is 

the mxm adaptive gain matrix and   is any positive definite 

constant matrix, each of appropriate dimension. Assume the 

following: 

i.) ( , , )A B C  is ASD with CBGAAc *  

ii.) there exists 0GM   such that 

* *tr( )T

GG G M  

iii.) there exists 0M   such that 




 Mt
t

)(sup
0

 

iv.) there exists  0    such that 

max

a
p


 , where 

maxp  is defined in Definition 1 

v.)  the positive definite matrix   satisfies 

2

1tr( )
G

M

aM

   
  
 

, 

then the gain matrix, G(t), is bounded, and the state, e(t) 

exponentially with rate 
ate

 approaches the ball of radius  

 
M

pa

p
R

min

max

*

1


 
Proof of Theorem 2:  

First we note that if see [10] Theo 8.8 p 151. Consider 
the positive definite function, 

 T1tr
2

1
),(

2

1
GGePeV  

 (3) 

where 
 GtGtG )()(  and P  satisfies (1). Taking the 

time derivative of (3) (we assume this can be done in X ) 
and substituting (2) into the result yields 

1 T

1
[( , ) ( , )] ( , )

2

tr ( , )

c cV PA e e e PA e PBw e

G G Pe v 

  

     

 

 

where w Gz  . Invoking the equalities in the definition of 

Strict Dissipativity in (1), using x
T
y = tr[yx

T
], and 

substituting (2) into the last expression (with 

weweCewePBw yy

*,),(),(   ), we obtain 

 

1 T

,

2 1 T

2 1 T

1 T

min

1 T

Re( , ) ,

tr

( ) ( , )

tr ( )

( , )

tr

tr ( , )

2 1
( , )

2

1
2 tr

2

tr

y

c y

T T

y

e w

V PA e e e w

a G G

tr e z G Pe v

e a G G G

Pe v

e a G G

a G G Pe v

Pe e
p

a G G

a G





 











 



 





 

    

  

        



       

     

 
 

  
 

       

  1 T

1 T

( , )

2 tr ( , )

G Pe v

aV a G G Pe v



 

























    


        

 

Now, using the Cauchy-Schwartz Inequality 

   tr
22

*T1 GGGG   
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And  

),(),( ),( 2

1

2

1

ePevPePPvPe    

We have 

 
1

2

*

max22

*

max22

1

22*

max 22

2 ( , )

( ) ( , )

1 1
2 ( , )

2 2

V

V aV a G G p ν Pe e

a G G p M Pe e

a G p M Pe e G





    

   

 
    

 

 

Therefore, 

 *

max1 2
2

2
2

V aV
a G p M

V




   

Now, using the identity    CABABC trtr  , 

   

    

 

1

2

1 1

* * 1 * * * 12 2

2

1

21
* * * * 1 1 2

1 1
* * 12 2

tr ( ) tr ( )

tr ( ) ( ) tr( )

tr ( ) tr( )

T T

T T

T

G

G

G G G G G

G G G G

G G

M M
M

aM a

 

 

 



 

 



    
   

 
 
 
 

      

  

 

which implies

 

 max1

2

2
1 2

V aV
p M

V




 

 (4) 

From
 

 

1

2
1

2

max

2
(2 )

1 2

at at

at

d V aV
e V e

dt
V

e p M




   

Integrating this expression we have: 

   11
)0()(

max2/12/1 


 atat e
a

Mp
VtVe


 

Therefore,

 

 
 

max1/2 1/2
1

( ) (0) 1at at
p M

V t V e e
a

 


  
 

(5) 

The function ( )V t  is a norm function of the state ( )e t  and 

matrix ( )G t . So, since 
1/2( )V t  is bounded for all t , then 

( )e t  and ( )G t  are bounded. We also obtain the following 

inequality: 

 
2/1

min )()( tVtep 
 

Substitution of this into (5) gives us an exponential bound on 

state e(): 

 
 

1/2

min

max

min

( ) (0)

1
1

at

at

e
e t V

p

p M
e

a p










 

 (6) 

Taking the limit superior of (6), we have  

 
*

min

max1
)(lim RM

pa

p
te 








   

 (7) 

End of Proof. 

III. ROBUST ADAPTIVE REGULATION WITH DISTURBANCE REJECTION 

In order to accomplish some degree of disturbance 
rejection in a MRAC system, we shall make use of a 
definition, given in [7], for the persistent disturbance: 

Definition 2: A disturbance vector 
q

D Ru   is said to be 

persistent if it satisfies the disturbance generator equations: 

 
)()(

)()(
or 

)()(

)()(

















tLtz

tztu

tFztz

tztu

DD

DD

DD

DD






 

 

where F  is a marginally stable matrix and )(tD  is a 

vector of known functions forming a basis for all the possible 
disturbances. This is known as “disturbances with known 
waveforms but unknown amplitudes”. 

Consider the Linear Infinite Dimensional Plant with 
Persistent Disturbances given by: 

( ) ( ) ( ) ( )D

x
t Ax t Bu t u t

t



  

  (8a) 





m

i

iiubBu
1

 (8b) 

mitxcytCxty ii ...1)),(,(),()( 
 (8c) 

where 0(0) ( )x x D A  , )(ADx  is the plant state, 

)(ADbi   are actuator influence functions, )(ADci   

are sensor influence functions, , mu y  are the control 

input and plant output m-vectors respectively, Du  is a 
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disturbance with known basis functions D . We assume the 

columns of   are linear combinations of the columns of B 

(denoted Span( )  Span(B)). This can be relaxed a bit by 
using ideal trajectories, but we will leave that to another 
time.

 
The above system must have output regulation to a 

neighborhood:
 

),0( RNy
t

  (9) 

Since the plant is subjected to unknown bounded signals, we 
cannot expect better regulation than (9). The adaptive 
controller will have the form: 















DD

T

DD

ee

T

e

DDe

aGyG

aGyyG

GyGu










 (10) 

 Using Theorem 1, we have the following corollary 
about the corresponding direct adaptive control strategy: 

Corollary 1: Assume the following: 

i.) There exists a gain, 
*

eG  such that the triple 

),,( * CBCBGAA eC   is SD, i.e. 

ASD, is ),,( CBA  

ii.) A  is a densely defined ,closed operator on 

XAD )(  and generates a 0C  semigroup of 

bounded operators )(tU , 

iii.) Span( )  Span(B) 

 

Then the output ( )y t  exponentially approaches a 

neighborhood with radius proportional to the magnitude of 

the disturbance,  , for sufficiently small   and i . 

Furthermore, each adaptive gain matrix is bounded. 

 

Proof:Since Span()Span(B), there exists a transformation 
*

DG  such that 0*  DBGL  

Let,  e DG G G , 
* * *

e DG G G    , and 

*G G G   . Then  GGyGGu DDe  **

 

where, 









D

y


 . The error differential equation becomes 

* *

0

( ) ( )

 bounded signal

c

e D D

A

C

x
A BG C x BG L

t

A x Bw

w G

  










     



   


 
 

 

Since B, C are finite rank operators, so is *

eBG C . 

Therefore, *

c eA A BG C   with ( )cD A D(A)  generates 

a 
0C  semigroup ( )cU t  because A  does; see [9] Theo. 2.1 

p. 497. Using equations (10), we have

 
*

T

G G G

G

y aG 

  



  

 

where 
0

0
0

e

D






 
  
 

. By Theorem 1, the corollary 

follows for   and i  sufficiently small. 

End of Proof. 

Corollary 1 provides a control law that is robust with 
respect to persistent disturbances and unknown bounded 

disturbances, and, exponentially with rate
ate

, produces: 

 
vMB

pa

p
ty

min

max1
)(lim





.  

IV. SYMMETRIC HYPERBOLIC SYSTEMS 

We will illustrate the above robust adaptive controller on 
the following m input, m output Symmetric Hyperbolic 
Problem:  

1

2

3

( )  

( , )

( , )

( , )  

...

( , )

D

m

x
Ax B u u v

t

c x

c x

y Cx c x

c x


    


 
 

  
   
  
  
   

 (11) 

with inner product ( , ) ( )Tv w v w dz


   and    is a 

bounded open set with smooth boundary, and where 

1

2

3 :  linear; ( )

...

T

m

i

m

b

b

B b X b D A

b

 
 
 
    
 
 
  

, 

2

0(0) ( ) ( )Nx x D A X L     , and 

:  linear; ( )m

iC X c D A  . 

For this application we will assume the disturbances are 
step functions. Note that the disturbance functions can be any 

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 51



  

basis function as long as D  is bounded, in particular 

sinusoidal disturbances are often applicable. So we have 

1D   and 
(1)

(0)

D D

D D

u z

z z





 which implies 0F   and 

1D  . 

Let the adaptive control law be 
e Du G y G   with 

T

e e e

D D D

G yy G

G y G

 

 

   


  

.

 
Now we define the closed linear operator A  with domain 

( )D A  dense in the Hilbert space 2 ( )X L   with inner 

product 
1 2 1 2( , ) T

Ω
v v (v v )dz   as: 

0

1

   
N

i

i i

x
Ax A A x

z


 


  

where 
iA are NxN symmetric constant matrices, 

0A  is a real 

NxN constant matrix, and x  is an Nx1 column vector of 
functions. 

Thus (11) is a symmetric Hyperbolic System of first 
order partial differential equations with 





N

i

ii AA
1

)(   

which is an NxN symmetric matrix [15]. The Boundary 

Conditions which define the operator domain )(AD  will be 

coercive, i.e. 0nhT
 where  

1 2 3

1
( ) ...

2

T T T T

Nh x x A x x A x x A x x A x     and 

( )n z  is the outward normal vector on boundary   of the 

domain 
N . 

Now use  
* *

D

e D D e D D D

u w

u G y G G y G G        where 

D

y




 
  
 

  

which implies  
*[ ]

c

t e

A x

x Ax BG Cx Bw v     

which implies 
*

c eA A BG C  . 

Since the boundary conditions are coercive, we use the 
Divergence Theorem to obtain 

*

*

0

1

*

0

( )

*

0

0

*

0

( , ) ( , ) ( , )

( ) ( , ) ( , )

1
( ) ( , ) ( , )

2

1
( ) ( , ) ( , )

2

( , ) ( , )

c e

N
T

i e

i i

e

Div h

T

e

e

A x x Ax x BG Cx x

x
x A dz A x x BG Cx x

z

h dz A x x BG Cx x

h n dz A x x BG Cx x

A x x BG Cx x









 


  



   

  

 







 

Assume i ib c  or  *B C  and 0* *

e eG -g  .  

Then we have  
*

0

*

0

2

0

( , ) ( , ) ( , )

( , ) ( , )

( , )

0

c e

*

e

*

e

A x x A x x BG Cx x

A x x - g Cx B x

A x x - g Cx

 







 

 which implies 
2

0Re ( , ) *

c e(A x,x) A x x - g Cx  and 
*B C  

which is not quite strictly dissipative. 

But we have the following result: 

Theorem 2: cA  has compact resolvent; hence it has 

discrete spectrum, in the sense that it consists only of 
isolated eigenvalues with finite multiplicity. 

Proof: See Appendix I. 

Consider that  

s uX E E   where sE  is the stable eigenspace and uE  

is the unstable eigenspace with corresponding projections 

,s uP P . Assume that 

dim u uE N  and uE E  .  This implies that 

,s uP P  are bounded self adjoint operators. 

Choose uPC  ; this is possible when the unstable subspace 

is finite-dimensional. 

Then we have the following result: 

Theorem 3: 

 
2

0Re( , ) sA x x P x   for all ( )x D A  

implies that ( , , )A B C  is almost strictly dissipative (ASD). 

Proof:  
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 

2*

2*

0

2 2*

2 2

2

Re( , ) Re( , )

Re( , )

c e

e

s e u

s u

A x x Ax x g Cx

A x x g Cx

P x g P x

P x P x

x







 

 

  

  

 

 

by choosing 
*

eg  . 

Therefore, 
2

Re( , )cA x x x   and 
*C B  implies 

that there exists 
* * 0e eG g    such that  

*( , , ) c eA A BG C B C   is strictly dissipative with 

P I . 

Here is a simple first order symmetric hyperbolic system 
example to illustrate some of the above:  

 

 
1 0

1 0 0

1 0 0 0 1

0 1

t z D

BA A

C

x x x u u

y x

       
         
     







 

where 0   is small. 

If we use  
*

* 0eG g     

this implies that  

 

 

2

0

2 2

1 * 2

2 2

* 1 2

0

2

Re ( , )

min( , )

*

c eA x,x A x x - g Cx

q g q

g q q

x













  

  

 

 

where 
1

2

q
x

q

 
  
 

. 

Then 
*( , , )c eA A BG C B C   is strictly dissipative with 

P I  and we can apply Theo. 1 and Cor. 1. 

V. CONCLUSIONS  

In Theorem 1 we proved a robustness result for adaptive 
control under the hypothesis of almost strict dissipativity for 
infinite dimensional systems. This idea is an extension of the 
concept of m-accretivity for infinite dimensional systems; 
see [9] pp278-280. In Cor 1, we showed that adaptive 
regulation to a neighborhood was possible with an adaptive 
controller modified with a leakage term. This controller 
could also mitigate persistent disturbances. The  results in 

Theo. 1 can be easily extended to cause model tracking 
instead of regulation. Also we can relax the requirement that 
the disturbance enters through the same channels as the 
control. 

We applied these results to general symmetric hyperbolic 
systems using m actuator and m sensors and adaptive output 
feedback.We showed that under some limitations on operator  
spectrum that we can accomplish robust adaptive control. 
This allows the possibility of rather simple direct adaptive 
control which also mitigates persistent disturbances for a 
large class of applications in wave behavior, electromagnetic 
fields, and some quantum fields. 

APPENDIX 

Proof of Theorem 2. 

We will assume the operator A is closed. If not we can 
work with the closure of A. It is easy to see that A is skew 

self-adjoint, i.e. ( , ) ( , )Af g f Ag   for all 

, ( )f g D A . Therefore the spectrum of A must lie on the 

imaginery axis and any complex )(A if it has nonzero 

real part. 

With coercive boundary conditions, it can be shown that 

for all ( )x D A , we have  

 
2

2 22

1

N

i i

x
K Ax x

z


 


  

and so 
1D(A) H . 

Let ( )A  , the resolvent set of A  and consider the 

resolvent operator  

)()(:)()( 21 ADLXAIR  
.  

We want to show that this resolvent operator is 
(sequentially) compact:  

Take a bounded sequence  

1{ }k kx X

   and define (1) ( )k kh R x D A  .  

Then  
2

2 22

1

N
k

k k

i i

h
K Ah h

z


 


 . 

But k k kh Ah x   or k k kAh h x   

which implies 

 
22 2

k k k k kAh h x h x    . 

Therefore 
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 

  
 

2

2 2

1
1

2 2 22

22 22

222 2(1 )

N
k

k k

i i

k k k

k k k k

k k k

h
h h

z

h K Ah h

h K h x h

K h K h x




 



  

   

   



 

Now  kx  is bounded by assumption and 

 (1)k kh R x  is bounded because (1)R  is a bounded 

operator. 

Therefore, 
1kh  is a bounded and so  k 1

h
k




is a bounded 

sequence in 1H . 

Consequently by the Rellich Compactness Theorem ( see e.g 
[19]Theo. 8.38 p175 or [20] Theo. 2 p246),  

1H  is compactly embedded in 
2( )X L   because   is 

a bounded open set with smooth boundary. 

Therefore there exists a convergent subsequence of  
1k k

h



 

in 
2 )X L (   and the resolvent operator 

1)()1(  AIR  is a compact operator. Then, by Theo. 

6.29 [9]p187, )(R  is compact for all )(A  and the 

spectrum is discrete, in the sense that it consists only of 
isolated eigenvalues with finite multiplicities. 

End of Proof. 
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Mathematical modeling of crown forest fires 
spread taking account firebreaks 

Valeriy Perminov 
National Research Tomsk Polytechnic University, e-mail: perminov@tpu.ru 

Abstract  
It is developed mathematical model of heat and mass transfer processes at crown forest fire spread which takes into account fire 
breaks. The paper gives a new mathematical setting and method of numerical solution of this problem. It is based on numerical 
solution of two dimensional Reynolds equations for turbulent flow taking into account diffusion equations for chemical 
components and equations of energy conservation for gaseous and condensed phases. To obtain discrete analogies a method of 
finite volume was used. Numerical solutions of crown forest fire propagation taking account breaks and glades were found. It 
possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and 
determine as well as the limiting condition of fire propagation in forest with these firebreaks. 
 
Keywords— control volume, crown fire, fire spread, forest fire, mathematical model, numerical method. 
 

1. INTRODUCTION 
Many mathematical models have been developed to 

calculate forward rates of spread for various fuel 
complexes. A detailed list is given Grishin A.M.[1]. 
Crown fires are initiated by convective and radiative heat 
transfer from surface fires. However, convection is the 
main heat transfer mechanism [2]. The theory proposed 
by Van Wagner depends on three simple crown 
properties: crown base height, bulk density of forest 
combustible materials and moisture content of forest 
fuel. Also, crown fire initiation and hazard have been 
studied and modelled in details later by another authors 
[3-9]. The more complete discussion of the problem of 
crown forest fires is provided by co-workers at Tomsk 
University [1,10]. In particular, a mathematical model of 
forest fires was obtained by Grishin [1] based on an 
analysis of known and original experimental data Konev 
[11], and using concepts and methods from reactive 
media mechanics. The physical two-phase models used 
by Morvan and Dupuy [12, 13] may be considered as a 
continuation and extension of the formulation proposed 
by A.M. Grishin[1]. 

This study gives a two dimensional averaged 
mathematical setting and method of numerical solution 
of a problem of a forest fire spread. The boundary-value 
problem is solved numerically using the method of 
splitting according to physical processes. It was based on 
numerical solution of two dimensional Reynolds 
equations for the description of turbulent flow taking into 
account for diffusion equations chemical components 
and equations of energy conservation for gaseous and 
condensed phases, volume of fraction of condensed 
phase (dry organic substance, moisture, condensed 
pyrolysis products, mineral part of forest fuel). One 
aspect of this research is to study of the conditions when 
the forest fire spreads through firebreaks and glades. The 
purpose of this paper is to describe detailed picture of the 
change in the temperature and component concentration 
fields with time, and determine as well as the limiting 
condition of fire propagation in forest with fire breaks. 

2. MATHEMATICAL MODEL 

It is assumed that the forest during a forest fire can be 
modeled as 1) a multi-phase, multistoried, spatially 
heterogeneous medium; 2) in the fire zone the forest is a 
porous-dispersed, two-temperature, single-velocity, 
reactive medium; 3) the forest canopy is supposed to be 
non - deformed medium (trunks, large branches, small 
twigs and needles), which affects only the magnitude of 
the force of resistance in the equation of conservation of 
momentum in the gas phase, i.e., the medium is assumed 
to be quasi-solid (almost non-deformable during wind 
gusts); 4) let there be a so-called “ventilated” forest 
massif, in which the volume of fractions of condensed 
forest fuel phases, consisting of dry organic matter, water 
in liquid state, solid pyrolysis products, and ash, can be 
neglected compared to the volume fraction of gas phase 
(components of air and gaseous pyrolysis products); 5) 
the flow has a developed turbulent nature and molecular 
transfer is neglected; 6) gaseous phase density doesn’t 
depend on the pressure because of the low velocities of 
the flow in comparison with the velocity of the sound. 
Let the point x1, x2 , x3= 0 is situated at the centre of the 
surface forest fire source at the height of the roughness 
level, axis 0x1 directed parallel to the Earth’s surface to 
the right in the direction of the unperturbed wind speed, 
axis 0x2 directed perpendicular to 0x1 and axis 0x3 
directed upward (Fig. 1). 

 
Fig.1. Scheme of the domain. 
 
Because of the horizontal sizes of forest massif more 
than height of forest, system of equations of general 
mathematical model of forest fire was integrated between 
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the limits from height of the roughness level - 0 to top 
boundary of forest crown.  
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The system of equations (1)–(6) must be solved taking 
into account the initial and boundary conditions 
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Here and above 
td

d  is the symbol of the total 

(substantial) derivative; αv is the coefficient of phase 
exchange; ρ - density of gas – dispersed phase, t is time; 
vi - the velocity components; T, TS, - temperatures of gas 
and solid phases, UR - density of radiation energy, k - 
coefficient of radiation attenuation, P - pressure; cp – 
constant pressure specific heat of the gas phase, cpi, ρi, ϕi 
– specific heat, density and volume of fraction of 
condensed phase (1 – dry organic substance, 2 – 
moisture, 3 – condensed pyrolysis products, 4 – mineral 
part of forest fuel, 5 – gas phase), Ri – the mass rates of 
chemical reactions, qi – thermal effects of chemical 
reactions; kg , kS  - radiation absorption coefficients for 
gas and condensed phases; eT  - the ambient temperature; 
cα - mass concentrations of α - component of gas - 
dispersed medium, index α=1,2,3, where 1 corresponds 
to the density of oxygen, 2 - to carbon monoxide CO, 3 - 
to carbon dioxide and inert components of air, 4 - to 
particles of black, 5 - to particles of smoke; R – universal 
gas constant; Mα , MC, and M molecular mass of α -
components of the gas phase, carbon and air mixture; g is 
the gravity acceleration; cd is an empirical coefficient of 
the resistance of the vegetation, s is the specific surface 
of the forest fuel in the given forest stratum. In system of 
equations (1)-(6) are introduced the next designations: 
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To define source terms which characterize inflow 
(outflow of mass) in a volume unit of the gas-dispersed 
phase, the following formulae were used for the rate of 
formulation of the gas-dispersed mixture m , outflow of 
oxygen 51R , changing carbon monoxide 52R  
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Here νg – mass fraction of gas combustible products of 
pyrolysis, α4 and α5 – empirical constants. Reaction rates 
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of these various contributions (pyrolysis, evaporation, 
combustion of coke and volatile combustible products of 
pyrolysis) are approximated by Arrhenius laws whose 
parameters (pre-exponential constant ki and activation 
energy Ei) are evaluated using data for mathematical 
models [1]. 
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The initial values for volume of fractions of condensed 
phases are determined using the expressions: 
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where  d -bulk density for surface layer, νz – coefficient 
of ashes of forest fuel, W – forest fuel moisture content. 
It is supposed that the optical properties of a medium are 
independent of radiation wavelength (the assumption that 
the medium is “grey”), and the so-called diffusion 
approximation for radiation flux density were used for a 
mathematical description of radiation transport during 
forest fires. To close the system (1)–(6), the components 
of the tensor of turbulent stresses, and the turbulent heat 
and mass fluxes are determined using the local-
equilibrium model of turbulence [1]. The system of 
equations (1)–(6) contains terms associated with 
turbulent diffusion, thermal conduction, and convection, 
and needs to be closed. The components of the tensor of 
turbulent stresses jivv ′′ρ , as well as the turbulent fluxes 
of heat and mass

j pv c Tρ ′ ′ , jv cαρ ′ ′  are written in terms of 
the gradients of the average flow properties using the 
formulas 
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where µt, λt, Dt are the coefficients of turbulent 
viscosity, thermal conductivity, and diffusion, 
respectively; Prt, Sct are the turbulent Prandtl and 
Schmidt numbers, which were assumed to be equal to 1. 
In dimensional form, the coefficient of dynamic 
turbulent viscosity is determined using local equilibrium 
model of turbulence [1]. The thermodynamic, 
thermophysical and structural characteristics correspond 
to the forest fuels in the canopy of a different (for 
example pine) type of forest. The system of equations 
(1)–(6) must be solved taking into account the initial and 
boundary conditions.  
 

3. NUMERICAL METHOD AND RESULTS 
The boundary-value problem (1)–(6) is solved 
numerically using the method of splitting according to 

physical processes. In the first stage, the hydrodynamic 
pattern of flow and distribution of scalar functions was 
calculated. The system of ordinary differential equations 
of chemical kinetics obtained as a result of splitting was 
then integrated. A discrete analog was obtained by means 
of the control volume method using the SIMPLE like 
algorithm [15]. The accuracy of the program was 
checked by the method of inserted analytical solutions. 
Analytical expressions for the unknown functions were 
substituted in (1)–(6) and the closure of the equations 
were calculated. This was then treated as the source in 
each equation. Next, with the aid of the algorithm 
described above, the values of the functions used were 
inferred with an accuracy of not less than 1%. The effect 
of the dimensions of the control volumes on the solution 
was studied by diminishing them. The time step was 
selected automatically. 

Fields of temperature, velocity, component mass 
fractions, and volume fractions of phases were obtained 
numerically. The distribution of basic functions shows 
that the process of crown forest fire initiation goes 
through the next stages. The first stage is related to 
increasing maximum temperature in the fire source. At 
this process stage the fire source a thermal wind is 
formed a zone of heated forest fire pyrolysis products 
which are mixed with air, float up and penetrate into the 
crowns of trees. As a result, forest fuels in the tree 
crowns are heated, moisture evaporates and gaseous and 
dispersed pyrolysis products are generated. Ignition of 
gaseous pyrolysis products of the ground cover occurs at 
the next stage, and that of gaseous pyrolysis products in 
the forest canopy occurs at the last stage. As a result of 
heating of forest fuel elements of crown, moisture 
evaporates, and pyrolysis occurs accompanied by the 
release of gaseous products, which then ignite and burn 
away in the forest canopy. At the moment of ignition the 
gas combustible products of pyrolysis burns away, and 
the concentration of oxygen is rapidly reduced. The 
temperatures of both phases reach a maximum value at 
the point of ignition. The ignition processes is of a gas - 
phase nature. Note also that the transfer of energy from 
the fire source takes place due to radiation; the value of 
radiation heat flux density is small compared to that of 
the convective heat flux. At Ve ≠ 0, the wind field in the 
forest canopy interacts with the gas-jet obstacle that 
forms from the forest fire source and from the ignited 
forest canopy and burn away in the forest canopy.  
Figures 2 - 5 present the distribution of temperature 

)300,/( KTTTTT ee == (1- 2., 2 – 2.6, 3 – 3, 4 – 3.5, 

5 – 4.) for gas phase, concentrations of oxygen 1c (1 – 
0.1, 2 – 0.5, 3 – 0.6, 4 – 0.7, 5 – 0.8, 6 – 0.9) and volatile 
combustible products of pyrolysis 2c   (1 – 1., 2- 0.1, 3 – 
0.05, 4 – 0.01) ( 23.0,/ 11 == ee сcсc αα ) and 
temperature of condensed phase 

)300,/( KTTTTT eeSSS == (1- 2., 2 – 2.6, 3 – 3, 4 – 
3.5, 5 – 4.) for wind velocity Ve= 10 m/s at h=10 m: 1) 
t=3 sec., 2) t=10 sec, 3) t=18 sec., 4) t= 24 sec. The 
boundary-value problem is solved numerically using the 
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method of splitting according to physical processes. 
Fields of temperature, velocity, component mass 
fractions, and volume fractions of phases were obtained 
numerically. As a result of heating of forest fuel 
elements of crown, moisture evaporates, and pyrolysis 
occurs accompanied by the release of gaseous products, 
which then ignite and burn away in the forest canopy. At 
the moment of ignition the gas combustible products of 
pyrolysis burns away, and the concentration of oxygen is 
rapidly reduced. The temperatures of both phases reach a 
maximum value at the point of ignition. The ignition 
processes is of a gas - phase nature. Note also that the 
transfer of energy from the fire source takes place due to 
radiation; the value of radiation heat flux density is small 
compared to that of the convective heat flux. At Ve ≠ 0, 
the wind field in the forest canopy interacts with the gas-
jet obstacle that forms from the forest fire source and 
from the ignited forest canopy and burn away in the 
forest canopy. The isotherms and lines of equal levels of 
gas phase components concentrations were deformed and 
moved in the forest canopy by the action of wind. It is 
concluded that the forest fire begins to spread. 
Mathematical model and the result of the calculation 
give an opportunity to consider forest fire spread for 
different wind velocity, canopy bulk densities and 
moisture forest fuel. The results obtained in this papers 
show the decrease of the wind induces a decrease of the 
rate of fire spread.  

One of the objectives of this paper could be to 
develop modeling means to reduce forest fire hazard in 
forest or near towns. In this paper it presents numerical 
results to study forest fire propagation through fire 
breaks and around glades. The results of numerical 
calculation present the forest fire front movement using 
distributions of temperature at different instants of time 
for various sizes of firebreaks. The fire break is situated 
in the middle of domain. In the first case the fire could 
not spread through this fire break. If the fire break 
reduces to 4 meters the fire continue to spread but the 
isotherms of forest fire is decreased after overcoming of 
fire break. The dependence of critical fire break value for 
different wind velocities is presented in paper. Of course 
the size of safe distance depends not only of wind 
velocity, but type and quality of forest combustible 
materials, its moisture, height of trees and others 
conditions. This model allows studying an influence all 
these main factors. The isotherms and lines of equal 
levels are moved in the forest canopy and deformed by 
the action of wind. Similarly, the fields of component 
concentrations are deformed. It is concluded that the 
forest fire begins to spread.  

 

Fig.2. Field of isotherms of the forest fire spread  (gas phase). 

 
Fig.3. The distribution of oxygen 1c  

Mathematical model and the result of the calculation 
give an opportunity to consider forest fire spread for 
different wind velocity. Figures 6 (a, b, c, d) present the 
distribution of temperature for gas phase, concentration 
of oxygen and volatile combustible products of pyrolysis 

2c  concentrations and temperature of condensed phase 
for wind velocity Ve= 5 m/s at h=10 m: 1) t=3 sec., 2) 
t=10 sec, 3) t=18 sec., 4) t= 20 sec., 5) t=31 sec., 6) t= 
40 sec.  

 

Fig.4 The distribution of 2c  

 
Fig.5 Field of isotherms of the forest fire spread (solid phase). 

The results reported in Fig. 6 show the decrease of the 
wind induces a decrease of the rate of fire spread. One of 
the objectives of this paper could be to develop modeling 
means to reduce forest fire hazard in forest or near 
towns. In this paper it presents numerical results to study 
forest fire propagation through firebreak. This problem 
was considered by Zverev [16] in one dimensional 
mathematical model approach. 
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Fig.6 Fields of isotherms of gas (a) and solid phase (d), isolines 

of oxygen(b) and gas products of pyrolysis(c). 
 

Figures 7 and 8 (Figure 8 b is a continuation of Figure 8 
a) present the forest fire front movement using 
distributions of temperature at different instants of time 
for two sizes of firebreaks (4.5 and 4 meters). The fire 
break is situated in the middle of domain (x1 =100 m). In 
the first case the fire could not spread through this fire 
break.  

 

 
Fig.7 Fields of isotherms for firebreak equals 4.5 m. 

 

If the fire break reduces to 4 meters (Figure 8) the fire 
continue to spread but the isotherm (isotherm 5) of forest 
fire is decreased after overcoming of fire break. In the 
Figure 9. the dependence of critical fire break value for 
different wind velocities is presented. Of course the size 
of safe distance depends not only of wind velocity, but 
type and quality of forest combustible materials, its 
moisture, height of trees and others conditions. This 
model allows to study an influence all these main factors. 

 

 
Fig.8 Field of isotherms. Firebreak equals 4 m. 

 

 
Fig.9 The influence of wind velocity at the size of firebreak. 

 
Figure 10(a, b, c) show the results of numerical 
simulation of a forest fire spreading around the glade 
under the action of wind blowing through it at a speed 5 
m/s in the direction of the Ox1-axis. Initially, the source 
of the fire has the shape of a rectangular. Then isotherms 
are deformed under the action of wind and the contour of 
forest fire is look as crescent (Fig. 10 a, curves I). When 
the fire (isotherms II in Fig.10 a) moves around the forest 
glade it is divided in two parts. But after that two fire 
fronts were joined in united fire (isotherms III in Fig.10 
a). Figures 10 (b, c) present the distribution of 
concentration of oxygen and volatile combustible 
products of pyrolysis 2c  for this case. 
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Fig.10 Fields of isotherms of gas phase (a), isolines of 

oxygen(b) and gas products of pyrolysis(c). 
 

Using the model proposed in this paper it is possible 
to estimate the sizes of firebreaks which look likes as 
glades. 

 
4. CONCLUSION 

The results of calculation give an opportunity to 
evaluate critical condition of the forest fire spread, which 
allows applying the given model for preventing fires. 
The model proposed there gives a detailed picture of the 
change in the temperature and component concentration 
fields with time, and determine as well as the influence 
of different conditions on the crown forest fire initiation. 
It allows to investigate dynamics of forest fire initiation 
and spread under influence of various external 
conditions: a) meteorology conditions (air temperature, 
wind velocity etc.), b) type (various kinds of forest 
combustible materials) and their state(load, moisture 
etc.). The results obtained agree with the laws of physics 
and experimental data [1,11]. 
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 

Abstract—This paper presents the analytical solution of 

magnetohydrodynamical (MHD) problems on a developing flow of 

conducting liquid in the initial part of a channel for the case, when 

conducting fluid flows into the channel through its wall in the 

presence of the rotational symmetry in the geometry of the flow. The 

problems are solved in Stokes and inductionless approximation, and 

on using integral transforms. The velocity field of the flow is 

analyzed numerically by means of the obtained solutions. 

 

Keywords— Magnetohydrodynamics, Navier-Stokes equations, 

analytical solution, channel flow.  

I. INTRODUCTION 

AGNETOHYDRODYNAMICS (MHD) is a separate 

discipline combining the classical fluid mechanics and 

electrodynamics. The flow of a conducting fluid in the external 

magnetic field produces new effects, absent in the ordinary 

hydrodynamics, and which arise due to the electromagnetic 

Lorenz force generated by the interaction of the moving fluid 

with electromagnetic field. MHD analyzes these phenomena 

and it also studies a flow of a conducting fluid caused by the 

current passing through the fluid.  

Nowadays MHD effects are widely exploited both in 

technical devices (e.g., in pumps, flow meters, generators) and 

industrial processes in metallurgy, material processing, 

chemical industry, industrial power engineering and nuclear 

engineering. Channels, in particular narrow and circular 

channels, are common parts of many MHD devices. Therefore, 

investigation of MHD phenomena in channels with conducting 

fluids is quite important.  

The motion of conducting fluid in external magnetic field is 

described by the system of MHD equations, containing 

Navier-Stokes equation for the motion of incompressible 

viscous fluid with the additional term corresponding to the 

Lorentz force (see [3], [4]).  

In magnetohydrodinamics the number of exact solutions, 

obtained analytically, is limited due to the nonlinearity of the 

Navier-Stokes equation. The exact solutions have been 

obtained only for very specific problems. Therefore, numerical 
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methods are widely used for solving these problems.  

Analytical solutions are mostly obtained for the simplified 

flow models and on using some approximations. In the present 

paper the following two approximations are used. These are 

the Stokes approximation, when the nonlinear term is 

neglected in the Navier-Stokes equations, and the 

inductionless approximation, for which the induced currents 

are taken into account, but the magnetic field created by these 

currents is neglected.  

In this paper two problems on a flow of conducting liquid in 

the initial part of a channel are considered for the case, when 

conducting fluid flows into the channel through its wall in the 

presence of rotational symmetry in the geometry of the flow. 

These problems are solved analytically by using integral 

transforms.  

The first problem is the problem on an inflow of a 

conducting fluid in the plane channel through a round hole of 

finite radius in its lateral side. In the authors’ work [5], this 

problem was considered for the longitudinal magnetic field, 

but the case of the strong transverse magnetic field was just 

briefly mentioned. In the present paper, the case of the strong 

transverse magnetic field is considered in detail and some new 

numerical results are also presented.   

Additionally, the problem on an inflow of a conducting 

liquid into a circular channel through a split of finite length in 

its lateral side is briefly considered. This problem was 

considered in the author’s work [2] and its solution was 

obtained in the form of convergent improper integrals on using 

Stokes and inductionless approximation. In [2] on obtaining 

the solution, the Fourier transform was used together with the 

assumption that the velocity and pressure gradient are equal to 

zero in channel at the sufficient distance from the entrance 

region. But this assumption is not correct, since in longitudinal 

magnetic field in a round channel the Poiseuille flow appears 

far away from the entrance region. In the present paper the 

correct way of obtaining the analytical solution of the problem 

is considered, although it is shown that the final results 

obtained in [2] are the same and correct. 

II. PROBLEM FORMULATION 

A plane channel with conducting fluid is located in region 

{0 , 0 2 , }D r h z h          , where , ,r z  are 

cylindrical coordinates. There is a round hole of finite radius 
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R  in the channel later side, through which a conducting fluid 

flows into the channel with the constant velocity 
0 zV e  (see 

Fig.1). 
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Fig. 1. The geometry of the flow. 
 

The case of transverse magnetic field is considered, i.e., 

when the external magnetic field 
z

e eB


0
B  is parallel to the 

z~ axis. It is also assumed that the channel walls z h   are 

non-conducting and induced streams do not flow through the 

hole { hz ~ , Rr
~~0  }.  

On introducing the dimensionless variables, when the half-

width of channel h is used as a length scale, the magnitude of 

the velocity of fluid in the entrance region V0 - as a velocity 

scale, and B0, V0B0 , 
0 /V h  - as scales of magnetic field, 

electrical field and pressure, respectively, where   is the 

conductivity,   is the  density and   is the viscosity of the 

fluid, and on using Stokes and inductionless approximations, 

the dimensionless MHD equations in cylindrical coordinates 

take the form  
                                             

PeeVEHaV BB 


)(2 ,   (1) 

0Vdiv


,   (2) 
 

where  
Be   is the unit vector of external magnetic field, 

( , ) ( , )r r z zV V r z e V r z e   is the velocity of the fluid, 

)()( 020 zz
r

rr VLe
r

V
VLeV


 ,   

2

2

2

2

0

1

zrrr
L












 . 

P  is the pressure,  /
0
hBHa   is the Hartmann 

number, characterizing the ratio of electromagnetic force to 

viscous one.  

Projecting (1) and (2) onto the r and z axes, and taking into 

account that 
B ze e  and the intensity of electrical field 0E   

for this problem (see [3],[4]), the problem takes the form 
 

02

1  rr VHaVL
r

P




,   (3) 

00  zVL
z

P




,   (4) 

0)(
1

 r
z Vr

rrz

V








.   (5) 

   

with the following boundary conditions 
 

1z  :       0rV  ,  









Rr

Rr
Vz

,0

0,1
   (6) 

1z  :         0rV  ,     0zV  , (7) 

: 0rr V  ,  / 0P r   , (8) 

 

where   2

01 / rffLfL  ,    hRR /
~

 . 

III. PROBLEM SOLVING 

Due to the rotational symmetry of the problem with respect 

to r, the Hankel transform (see [1]) is used for the problem 

solving. The Hankel transform of order 1 with respect to r  is 

applied to the functions 
r

V  and rP  / , but the Hankel 

transform of order 0 is applied to the functions 
z

V  and zP  / : 

 

rdrrJVzV rr )(),(ˆ
1

0

 


 ,       drrrJVzV zz )(),(ˆ

0

0  


 ,  

drrrPJzP )(),(ˆ

0

0  


 , (9) 

 

where ( )J r   is the Bessel functions of order  .  

On applying the Hankel transform to the system (3)-(5), one 

gets the system of ordinary differential equations for the 

Hankel transforms ),(ˆ zVr  , ),(ˆ zVz  , ),(ˆ zP  :     

 

0ˆ
ˆ

ˆˆ 2

2

2
2  r

r
r VHa

dz

Vd
VP  ,   (10) 

0
ˆ

ˆ
ˆ

2

2
2 

dz

Vd
V

zd

Pd z
z , (11) 

0ˆ
ˆ

 r
z V

dz

Vd
  (12) 

 

with the boundary conditions: 
 

1z :    0ˆ rV ,    /)(ˆ
1 RRJVz   (13) 

1z :     0ˆ rV ,  0ˆ zV . (14) 

 

On eliminating rV̂  and P̂  from (10)-(12), the following 

differential equation is obtained for zV̂ . 
 

  0ˆˆ2ˆ 422)4(



 zzz VVHaV  . (15) 

 

The general solution of (15) has the form  
 

zkCzkCzkCzkCVz 24132211 coshcoshsinhsinhˆ  ,  (16) 

 

where  22

1  k ,  22

2  k , (17)            

          2/Ha ,  C1 - C4 are  arbitrary constants.   
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In order to reduce the number of the constants C1-C4 in (16) 

and simplify the problem solving, the problem is divided into 

two sub-problems: an odd and even problem with respect to z, 

on considering a plane channel with two holes in its lateral 

sides z h   in the region 0 r R  .  

In the odd problem with respect to z the fluid with 

velocities   2/0 zeV


  flows into the channel through the both 

holes at z h  . The geometry of the flow for this problem is 

presented in Fig. 2.  

In the even problem with respect to z the fluid with velocity 

  2/0 zeV


 flows into the channel through the hole at hz ~  

and flows out with the same velocity through the hole at 

hz ~ . The geometry of the flow is presented in Fig. 3.  

Then the solution of the general problem is equal to 

the sum of solutions of the odd end even problems. 

A. Solution of the Odd Problem 

The odd problem with respect to z is the problem on an 

inflow of fluid into the channel through both holes at z h  .  
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Fig. 2. The odd problem with respect to z. 

 

The dimensionless boundary conditions for the problem are 
 

1z :  0rV ,     









Rr

Rr
Vz

,0

0,2/1
 (18) 

0:  xVr ,    0/  xP .           (19) 

 

On applying the Hankel transforms (9) to the boundary 

conditions (18)-(19), one gets 
 

1z :     0ˆ rV ,     )2/()(ˆ
1 RJRVz    (20) 

 

For the odd problem, 
zV̂  is the odd function with 

respect to z and, therefore, 043 CC  in (16), i.e. 

 

zkCzkCzVz 2211 sinhsinh),(ˆ   (21) 

 

In order to determine 
1C  and 

2C , the boundary 

condition (20) are used together with the additional 

boundary condition obtained from (12), i.e., 
 

1z :   )2/()(ˆ
1 RJRVz     and    0/ˆ dzVd z . (22) 

As a result, one obtains 
 











1

122211 sinhcoshsinhcoshˆ zkkkzkkk
Vz , (23) 

 

where 
21, kk   are given by (17), 

      2111221 sinhcoshsinhcosh kkkkkk  . (24) 

       2/)()( 1 RRJ    (25) 

 

The function 
rV̂  is determined from (12): 

 







1

1221 coshcoshcoshcoshˆ zkkzkk
Vr  (26) 

 

Functions P̂  and dzPd /ˆ are determined from (10)-(11): 
 

 





1

2111222 coshcoshcoshcoshˆ zkkkzkkk
HaP  (27) 







1

2112 sinhcoshsinhcoshˆ zkkzkk
Ha

zd

Pd
 (28) 

 

Then on using the inverse complex Hankel transform, 

the solution of the problem (3)–(5) with boundary conditions 

(18)-(19) is obtained in the form of the convergent improper 

integrals:  
 









0

1

1

1221 )(
coshcoshcoshcosh

 drJ
zkkzkk

Vr
, (29) 









0

0

1

122211 )(
sinhcoshsinhcosh

 drJ
zkkkzkkk

Vz
 (30) 













0

1

1

2111222 )(
coshcoshcoshcosh

 drJ
zkkkzkkk

Ha
r

P
 

                                                                                             (31) 









0

0

2

1

2112 )(
sinhcoshsinhcosh





drJ

zkkzkk
Ha

z

P
 (32) 

 

B. Solution of the Even Problem 

The geometry of the flow for the even problem with 

respect to z is shown in Fig. 3.  
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Fig. 3. The even problem with respect to z. 
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The dimensionless boundary conditions for this 

problem are 
 

1z :  0rV ,     









Rr

Rr
Vz

,0

0,2/1
                   (33) 

0:  xVr ,    0/  xP . (34) 

 

On applying the Hankel transform (9) to boundary 

conditions (32)-(33), one gets  
 

1z :     0ˆ rV ,     )2/()(ˆ
1 RRJVz   (35) 

 

For the even problem, the function 
zV̂  is even with 

respect to z, therefore, 021  CC  in (16), i.e., 

 

zkCzkCzVz 2413 coshcosh),(ˆ  .     (36) 

 

In order to determine 
3C  and 

4C , the boundary 

condition (35) and (12) are used, as a result, one gets 
 







2

211122 coshsinhcoshsinhˆ zkkkzkkk
Vz  (37) 

 

where  
21, kk   are given by (17),    is given by (25)  and 

           1212122 sinhcoshsinhcosh kkkkkk  . 
 

The function 
rV̂  is determined from (12): 

 







2

1221 sinhsinhsinhsinhˆ zkkzkk
Vr  (38) 

 

The functions P̂  and dzPd /ˆ  are determined from (10)-

(11): 
 

 





2

211122 sinhsinhsinhsinhˆ zkkkzkkk
HaP  (39) 







2

1221 coshsinhcoshsinhˆ zkkzkk
Ha

zd

Pd
 (40) 

 

On applying the inverse complex Hankel transform to 

(37)-(40), the solution to the problem (3)–(5) with boundary 

conditions (33), (34) is obtained in the form of convergent 

improper integrals:  
 









0

1

2

2112 )(
sinhsinhsinhsinh

 dr
zkkzkk

Vr , (41) 









0

0

2

211122 )(
coshsinhcoshsinh

 drJ
zkkkzkkk

Vz  (42) 

 drJ
zkkkzkkk

Ha
r

P
)(

sinhsinhsinhsinh
1

0 2

122211












  

 (43) 





drJ

zkkzkk
Ha

z

P
)(

coshsinhcoshsinh
0

2

0 2

1221







 (44) 

 

where 
21, kk   are given by (17) and   by (25) . 

IV. NUMERICAL RESULTS 

A. Numerical Results for the Odd Problem 

On the base of obtained solution, the velocity field is 

studied numerically. Results of calculations of the 

velocity radial component 
rV  for the odd problem at 

the Hartmann numbers Ha=10 and Ha=50 are presented 

graphically in Fig. 4. The component 
rV  is an odd 

function with respect to z. It can be seen from Fig.4 

that 
rV  has the M-shaped profiles only near the 

entrance hole ( 1.11  r  at На=10 and 1.11  r  

На=50). Even at a small distance from the entrance, the 

profiles of 
rV  take the shape peculiar to the Hartmann 

flow in a plane channel in transverse magnetic field. 

The magnitude of the velocity is inversely proportional to 

the distance from the hole. 
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Fig. 4. Profiles of the velocity radial component 
rV  for the odd  

            problem at  R=1. 
 

B. Numerical Results for the Even Problem 

Fig. 5 presents the results of calculation of 
rV  by means of 

formula (41). One can see that 
rV  differs from zero only near 

the entrance region. Additionally, in Fig. 5 
rV  is positive for 

some values of r, e.g., for 10  r  and Ha=10. However, 

since the fluid flows out through the hole at 1z , the r-

component of the velocity must be negative for 10  r  at 

Ha=0. It means that in the transverse magnetic field in the 

region 10  z  there exists an opposite flow, which occurs due 

to vortices generated in the channel (see Fig. 6). The vector 
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field of the velocity for Ha=10 is shown in Fig. 6. 
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Fig. 5. Profiles of 
rV  for the even problem at R=1. 
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Fig. 6. Velocity field for the even problem at  R=1 and  Ha=10. 

 

C. Numerical Results for the General Problem 

The solution of the general problem is equal to the sum of 

solutions to the odd and even problems with respect to z. 

Results of calculation of 
rV  for the general problem at the 

Hartmann numbers Ha=10 and Ha=50 are presented in Fig. 7 

and Fig. 8.  
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Fig. 7. Profiles of 
rV  for the general problem at R=1 and Ha=10. 

 

One can see that as in the previous case, the profiles of the 

velocity component 
rV  differ from the Hartmann flow profiles 

only near the entrance region. The magnitude of the velocity is 

inversely proportional to the distance from the hole. 
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Fig. 8. Profiles of  
rV  for the general problem at R=1 and Ha=50. 

 

V. REMARKS TO THE SOLUTION OF MHD PROBLEM ON AN 

INFLOW OF CONDUCTING FLUID INTO A CIRCULAR CHANNEL 

THROUGH THE CHANNEL’S LATERAL SIDE  

A. Formulation of the Problem 

A circular channel is located in the region 

D ={  zRr ~,2~0,~0  }. There is a split 

in the channel lateral surface in the region 

{ dzdRr
~~~

,~  }, through which a conducting fluid flows 

into the channel with the constant velocity 
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Fig.9). The case of longitudinal magnetic field is considered, 
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Fig. 9. The geometry of the flow in the circular channel. 

 

It is supposed that walls Rr ~  are nonconducting and 

induced streams do not flow through the split Rr ~ , 

dzd
~~~

  in the region  rR ~ . In this problem 

0E


 (see [3]). The dimensionless variables are introduced 

similarly as it was done for the first problem, but the chanel 

radius R is used as the length scale. 

The problem is described by the system of equations 

(3)-(5) with the boundary conditions: 
 

1r :  0zV ,     







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),(,0

),(,1

ddz

ddz
Vr        (45) 
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where Rdd /
~

 , constA . The functions )(rV  and 

dzdP /
 are the velocity of the flow and the pressure gradient 

in the channel at the sufficient distance from the entrance 

region, and which satisfy the following equation (see [3], [4]): 
 

0)(
1

 

dr

dV
r

rd

d

rdz

dP
  (47) 

 

with the boundary condition:    1r :    0)(  rV .   

B.  Solution of the Problem.  

On solving the problem, the symmetry of the problem with 

respect to z is used, i.e., the velocity component ),( zrVr  and 

pressure ),( zrP  are even functions with respect to z, but the 

component ),( zrVz  is the odd function with respect to z. It 

means that the functions ),( zrVr  and ),( zrVz  satisfy 

additional boundary conditions: 
 

10,0  rz  :     .0/,0  zVV rz  (48) 

 

The problem can be solved by the Fourier cosine and 

Fourier sine transforms, but since zV  and zP  /  do not 

tends to zero at z , the new functions for the velocity 

and pressure gradient are to be introduced before using these 

transforms:  
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As a result, the problem has the form:  
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Boundary conditions are  

1r :  0
new

zV ,     1, ( , )

0, ( , )
r

z d d
V

z d d
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  (54) 
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.  (55) 

 

The Fourier cosine transform with respect to z is applied to 

(51), (53) and to Vr in boundary conditions (54), but the 

Fourier sine transform is applied to (52) and to Vz  in boundary 

conditions (54): 
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It is also used that 
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
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As a result, the following system of ordinary differential 

equations for the unknown functions c

rV , s

zV ,  
cP  is obtained:  

 

0)( 2

1  c

rr

c

VHaL
dr

dP
, (57) 

0)()(
2

0   


 cs

zr

c FrVVLP , (58) 

  0)()(
21

  


 cc

r

s

z FrVrV
dr

d

r
V , (59) 

 

were    2

2

2

0

1


dr

d

rdr

d
L r

,     
201

1

r
LL rr  ,  

          un   











21

1
)(

z
FF cc  . 

 

The boundary conditions are 
 

r=1:   







L
rV c

r

sin2
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s

zV   (60) 

 

On eliminating the functions 
s

zV , 
cP  from system (57)- 

(59), the equation for 
c

rV  is obtained in the form 
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where   
rd

d

r
L r 

1~
0 ,  

dr

d

rdr

d
Lr

1
2

2

  , 
21

1~

r
LL rr  . (2.67) 

Differential equation (61) completely coincides with 

differential equation for 
c

rV  obtained in [2], therefore, the 

solution of this equation is the same as in [2], i.e., 
 

))())( 212111 rkIcrkIc)λ(r,V с

r    (62) 

 

where  

         
1 2 0 2 2 1 0 1( ) ( ) ( ) / , ( ) ( ) ( ) /c A k I k c A k I k        ,    (63) 
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The function 
s

zV̂  is determined from (59): 
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The functions cP and drdPc /  are determined from (57) 

and (58) on taking into account the following formulas 
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Note, that 
s

zV  and 
cP  differ from result obtained in [2] by 

only last terms. On applying the inverse cosine and sine 

Fourier transforms to the functions 
c

rV , 
s

zV , drdPc /  and 

cP , the solution of the problem is obtained and it has the 

form of convergent improper integrals, which coincide with 

the solution of the problem obtained in [2]: 
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where       ),()()(~
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        and   )(),( 21  cc  are given by (63). 
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Abstract— This paper is dedicated to the study of some properties 
of the operators which admit residually non-analytic functional 

calculus initiated in [14]. The concepts of SA -spectral function, 

respectively SA -decomposable and SA -spectral operators are 
introduced and characterized here and several elementary properties 
concerning them are studied. These operators are natural 

generalizations of the notions of A -scalar, A -decomposable and 

A -spectral operators studied in [8] and appear, in generally, as 
restrictions or quotients of the last one. 

 

Keywords— A -spectral ( SA -spectral) function; A -scalar 

( SA -scalar); A -decomposable ( SA -decomposable); A -spectral 

( SA -spectral); restrictions and quotients of operators. 

I. INTRODUCTION 

Let X  be a Banach space, let  XB  be the algebra 

of all linear bounded operators on X  and let   be the 

complex plane. If  T XB  and Y X  is a (closed) 

invariant subspace to T , let us denote by |T Y  the restriction 

of T  to Y , respectively by T  the operator induced by T  in 

the quotient space /X X Y . In what follows, by subspace 

of X  we understand a closed linear manifold of X . Recall 

that Y  is a spectral maximal space of T  if it is an invariant 

subspace such that for any other subspace Z X  also 

invariant to T , the inclusion    | |T Z T Y   implies 

Z Y  ([8]). A family of open sets   1
n

S i i
G G


 is an 

S -covering of the closed set     if 

1

n

S i
i

G G S


 
  
 
 

  and iG S     1, 2,...,i n  

(where S    is also closed) ([12]). 

 
 

The operator  T XB  is S -decomposable 

(where  S T  is compact) if for any finite open S -

covering   1
n

S i i
G G


  of  T , there is a system 

  1
n

S i i
Y Y


  of spectral maximal spaces of T  such that 

 | S ST Y G  ,  | i iT Y G    1, 2,...,i n  and 

1

n

S i
i

X Y Y


   ([4]). If dim 0S  , then S    and T  

is decomposable ([8]). An open set     is said to be a set 

of analytic uniqueness for  T XB  if for any open set 

    and any analytic function 0 :f X   satisfying 

the equation    0 0I T f    it follows that 

 0 0f    in   ([12]). For  T XB  there is a unique 

maximal open set T  of analytic uniqueness ([12]). We shall 

denote by \T T TS      and call it the analytic 

spectral residuum of T . For x X , a point   is in 

 T x  if in a neighborhood V  of  , there is at least an 

analytic X -valued function xf  (called T -associated to x ) 

such that    xI T f x   , for V  . We shall put 

         
       

    

\ ,

\ and

;

T T T T T T

T T T T T

T T

x x x x x

x x x x S

X F x X x F

    

   



   

  

  

 

 





 

where TS F    ([12], [13]). 

An operator  T XB  is said to have the single-

valued extension property if for any analytic function 

:f X   (where     is an open set), with 

    0I T f   , it follows that   0f    ([10]). T  
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has the single-valued extension property if and only if 

TS   ; then we have    T Tx x   and there is in 

   T Tx x   a unique analytic function  x  , T -

associated to x , for any x X . We shall recall that if 

 T XB , TS   , TS F  and  TX F  is closed, 

for F    closed, then  TX F  is a spectral maximal 

space of T  ([12]). 

We say that two operators  1 2,T T XB  are 

quasinilpotent equivalent if  

      
1 1

1 2 2 1lim lim 0
n nn n

n n
T T T T

 
     

where 

    1 2 1 2

0

1

n
n n k k n k

k

n
T T T T

k

 



 
    

 
 ([8]). 

Definition 1.1. ([14]) Let   be a set of the complex plane   

and let S    be a compact subset. An algebra SA  of  -

valued functions defined on   is called S -normal if for any 

finite open S -covering   1
n

S i i
G G


  of  , there are the 

functions, ,S i Sf f A   1 i n   such that: 

1)        0, 1 , 0, 1S if f     

 1 i n  ; 

2)    supp , suppS S i if G f G   

 1 i n  ; 

3) 

1

1
n

S i
i

f f


   on   

where the support of Sf A  is defined as: 

    supp ; 0f f    . 

Definition 1.2. ([14]) An algebra SA  of  -valued functions 

defined on   is called S -admissible if: 

1) , 1S S  A A  (where   and 1 denote the 

functions  f    and   1f   ); 

2) SA  is S -normal; 

3) for any Sf A  and any  supp f  , the 

function 

 
 

 

 

, for \

0, for

f

f


 

  

 




 
  

 

belongs to SA . 

Definition 1.3. ([14]) An operator  T XB  is said to be 

SA -scalar if there are an S -admissible algebra SA  and an 

algebraic homomorphism  : SU XA B  such that 

1U I  and U T   (where 1 is the function   1f    

and   is the function  f   ). The mapping U  is called 

SA -spectral homomorphism ( SA -spectral function or 

SA -functional calculus) for T . 

If S   , then we put A A  and we obtain an A -

spectral function and an A -scalar operator ([8]). 

The support of an SA -spectral function U  

is denoted by  supp U  and it is defined as the 

smallest closed set F    such that 0fU   for 

Sf A  with  supp f F   .  

A subspace Y  of X  is said to be invariant 
with respect to an SA -spectral function 

 : SU XA B  if fU Y Y , for any Sf A . 

We recall several important properties of an A -

spectral function U  ([8]), because we want to obtain similar 

properties for an SA -spectral function: 

1. U   has the single-valued extension property, 

where   is the identical function  f   ; 

2.    suppU fU x f


  , for any f  A  and 

x X ; 

3.If    suppU x f


   ,then 

  0fU x  , for any f  A  and x X ; 

4. 

      ; 0U U fx X F x X x F U x
 

     

, for any f  A  with property  supp f F   , 

F    closed; 

5.    supp U U  ; 

6. U   is decomposable. 

 

Theorem 1.4. Let  T XB  be an SA -scalar operator 

and let U  be an SA -spectral function for T . Then we 

have: 

   supp U T S   and    suppT U S   . 
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Proof. Let us consider Sf  A  such that 

    supp f T S    . If  supp f   and    

is the identical function  f   , then we have  

   f ffI U U U U
         

hence 

 ,f fU U U
   , for    suppU f    . 

The function 

 
   

 

, , for

, for supp

f

f

T U U
F

U f


  




 
 




 

 

is entire and  lim 0F





 , therefore 0F  . It 

follows that 0fU


  on  supp f  and 0fU  , hence  

   supp U T S  . 

Let now  0 supp U S   , let 
0

V  be an open 

neighborhood of 0  and let W  be an open neighborhood of 

 supp U S  such that 
0

V W   . Because the 

algebra SA  is S -normal, then there is a function Sf A  

with   1f    on W  and   0f    for 
0

V  . 

Consequently  

    supp 1 suppf U S     

hence 

1 0fU   , i.e. fU I . 

Whence 

   
0 0

0 0f f fU I U I U U U I
         

therefore we finally have    0 U T     and 

hence    suppT U S   . 

 

Theorem 1.5. (Properties of SA -spectral functions) 

Let U  be an SA -spectral function (particularly, U  is an 

SA -spectral function for an SA -scalar operator 

 T XB , T U ). Then we have the following 

properties: 

(1) The spectral analytic residuum TS  has the 

property: TS S ; when TS    (particularly, S   ), 

then T  has the single-valued extension property; 

(2) If  0 0 0I U x   , with 0 0x   and 

Sf A  with  f c  , for G   , where G  is a 

neighborhood of 0 , then 0 0fU x c x ; 

(3) If Sf  A  and x X , then 

   suppT fU x f  ; moreover, if  supp f S , then 

   suppT fU x f  ; 

(4) If Sf  A  such that 

   suppU x f


    and TS   , then 

0fU x  ; 

(5) If F    closed, with F S , x X  and 

TS   , then  Ux X F


  if and only if 0fU x  , for 

any Sf A  with the property  supp f F   ; 

(6) U   is S -decomposable. 

Proof. The assertions (1) and (2) are proved in [14], Theorem 
3.2, respectively Lemma 3.1. 

(3) We observe that for any  supp f   we have 

Sf A  and the X -valued function fU x


   is 

analytic. Consequently, 

   f f fI T U x I U U x U x
      , 

therefore  T fU x  , hence    suppT fU x f  . 

Furthermore, for Sf A  with  supp f S , we 

deduce 

       suppT f T T f T fU x S U x S U x f     

(4) Let  x   be the unique analytic X -valued function 

defined on  U x


  which satisfies the equality  

   I U x x    on  U x


 . 

It results that  

       f f fI U U x U I U x U x         

on  U x


  

hence the following inclusions are obtained 

   U U fx U x
 

   and 

   U f UU x x
 

  . 

From assertion (3),  

     
   supp

U f T f T T f

T f

U x U x S U x

U x f


  



  




,  

hence 
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     suppU f UU x f x
 

    , 

therefore according to Proposition 1.1.2, [8], it follows that 

0fU x  . 

The property (5) can be obtained by using (4), as in 
the proof of Proposition 3.1.17, [8] and will be omitted. 

The proof of (6) is presented in [14], Theorem 3.3. 
 

Lemma 1.6. Let U  be an SA -spectral function. If 1G  is an 

open neighborhood of  supp U ,  1 suppG U  and 2G  

is an open set such that 1 2G G   , 

 2 suppG U    (i.e.  1 2,G G  is an open covering 

of  ), then by S -normality of the algebra SA  it results 

that there are tow functions 1 2, Sf f A  such that: 

   1 20 1, 0 1,f f       ,  

 1 1supp f G ,  2 2supp f G  and 

1 2 1f f   on  . 

With these conditions we have: 

a) 
1fU I , 

2
0fU   

b) For Sf A  having the property that 1f   on 

a neighborhood of  supp U , it results that fU I . 

Proof. We have 

   
   

1 2 2

1

supp 1 supp

supp 1 supp

f f G

f U

  

  
 

hence 

1 11 10 f fU U U    

therefore 

1 1fU U I   and 
2

0fU  . 

Moreover, for Sf A  with the property that 

1f   on a neighborhood of  supp U  we have 

fU I  

because it can be chosen in this case: 1 2,f f f g  , with 

   supp suppg U   , hence 0gU   and 

accordingly 

1f g f gU U I U U     , whence fU I . 

 

Remark 1.7. From Lemma 1.6, it results that if Sf A  and 

1f   in a neighborhood of  supp U , then fU I . If 

we denote by 

0
f

f
U Y



A

 the linear subspace of X  

generated by fU Y , where Y X  and 0A  is the set of all 

functions in SA  with compact support, then we have: 

0
f

f
U X X




A
. 

 

Definition 1.8. Let U  be an SA -spectral function. For any 

open set SG G  we denote 

   
 supp

fUX G U X
f G




  

and for any closed set SF   we put  

       U U
G F

X F X G


  . 

where S  (respectively, SG ) is the family of all closed 

(respectively, open) subsets F    (respectively, 
G   ) having the property: either F S    or 

F S  (respectively, G S    or G S ).  

Theorem 1.9. Let U  be an SA -spectral function. Then 

        ;U UUX F X F x X x F
 

    , for 

,SF F S  . 

Proof. If  U x F


  , for SF  , with F S , let us 

consider SG G  an open set with G F S  . Then by 

S -normality of SA  there is a function Sf A  such that 

 
 

1, for in a neighborhood of

0, for in a neighborhood of \

F
f

G







 

 





and therefore  supp f G , whence 

     supp 1 supp 1Uf x f F


      . 

According to Theorem 1.5, 1 0fU x  , hence  

   f Ux U x X G  . 

SG G  being an arbitrary open set with , SG F F  , 

we have  

   Ux X F , i.e.      U UX F X F


 . 

Conversely, let us show that 

     UUX F X F


 , for any SF  , F S .  

Let        U Ux X F X G  , for any open set 

SG G , G F S  , and let 1 SG G  be an arbitrary 
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open set containing G . By S -normality of SA , there is a 

function 1 Sf A  such that 

 
 

1
1

1, for

0, for \

G
f

G






  
 

 




 

hence   11supp f G . Therefore for any Sf A  with 

 supp f G  we have 1f f f , so that  

1f f fU U U , i.e.        
1

| |f U UU X G I X G  

whence  

1fU x x . 

According to Theorem 1.5 it follows that  

         
1 1 1

11suppU U f U f U U fx U x U x S U x f G
    

       

 
and hence 

 
1

1

1

S

U
G

G G

x G G







 
G

. 

SG G  being an arbitrary open set, G F S  , we 

obtain  

 
S

U
G

G F S

x G F





 

 
G

, hence  Ux X F


 . 

 

Corollary 1.10. If U  is an SA -spectral function, then for 

any SF   with F S ,    UX F  is a maximal 

spectral space for U . 

Proof. It results easily from the previous theorem. 
 

Theorem 1.11. Let  1 2,T T XB . If 1T  is S -

decomposable (in particular, decomposable) and 1 2,T T  are 

spectral equivalent, then 2T  is also S -decomposable (in 

particular, decomposable) and 

   
1 2T TX F X F ,  

for any F    closed, F S  (when S   , for any 

F    closed).  

If 1T  and 2T  are decomposable, then 1T  is spectral 

equivalent to 2T  if and only if their spectral spaces 

 
1TX F  and  

2TX F  are equal, i.e. 

   
1 2T TX F X F , for any F    closed ([8], 2.2.1, 

2.2.2). 

If 1T  and 2T  are S -decomposable and spectral equivalent, 

then their spectral spaces are equal, i.e. 

   
1 2T TX F X F , for any F    closed, F S , 

but conversely is not true. 

II. SPECTRAL EQUIVALENCE  OF  SA -SCALAR  OPERATORS. 

SA -DECOMPOSABLE  AND  SA -SPECTRAL  OPERATORS  

 

For decomposable (respectively, spectral, S -

decomposable, S -spectral) operators, we have several 
important results with respect to spectral equivalence property. 

Thus if  1 2,T T XB , 1T  is decomposable (respectively, 

spectral, S -decomposable, S -spectral) and 1 2,T T  are 

spectral equivalent, then 2T  is also decomposable 

(respectively, spectral, S -decomposable, S -spectral). 

Furthermore, if 1T  and 2T  are decomposable (respectively, 

spectral), then 1 2,T T  are spectral equivalent if and only if 

the spectral maximal spaces    
1 2

,T TX F X F  of 1T  

and 2T , corresponding to any closed set F   , are equal 

(respectively, the spectral measures 1 2,E E  of 1T  and 2T  

are equal) ([8], 2.2.1, 2.2.2, 2.2.4). For S -decomposable 

(respectively, S -spectral) operators, the equality of the 

spectral spaces (respectively, the equality of S -spectral 
measures) does not induce the spectral equivalence of the 

operators, but only their S -spectral equivalence.  

The behaviour of A -scalar and SA -scalar 

operators with respect to spectral equivalence is completely 

different. If  1T XB  is A -scalar (respectively, SA -

scalar) and  2T XB  is spectral equivalent to 1T , then 

2T  is not A -scalar (respectively, SA -scalar), in general; in 

this situation, we still know that 2T  is decomposable 

(respectively, S -decomposable) and then 2T  is said to be 

A -decomposable (respectively, SA -decomposable). If in 

addition T  commutes with one of its A -spectral 

(respectively, SA -spectral) functions U , i.e. 

f fT U U T , for any f A  (respectively, for any 

Sf A ), then T  is said to be A -spectral 

(respectively, SA -spectral).  

 

Definition 2.1. An operator  T XB  is called SA -

decomposable if there is an SA -spectral function U  such 

that T  is spectral equivalent to U  . 
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In case that S   , we have  A A , A -spectral 

function is A -spectral function, A -decomposable operator 

is A -decomposable operator ([8]). 

 

Theorem 2.2. Let  T XB  such that we consider the 

following two assertions: 

(I) There is an SA -spectral function U  such that T  is 

spectral equivalent to U   (i.e. T  is SA -decomposable); 

(II) There is an SA -spectral function U  such that for any 

closed set F   , F S , we have: 

(a)    U UT X F X F
 

   

(b)   UT X F F


  . 

Then the assertion (I) implies the assertion (II), and for case 

S   , the assertions (I) and (II) are equivalent. 

Proof. Let us suppose that there is an SA -spectral function 

U  such that T  and U   are spectral equivalent. Since U   

is S -decomposable (Theorem 1.5), then, according to 

Theorem 1.11, it results that T  is S -decomposable and we 
have 

   T UX F X F


  (1) 

for any F    closed, F S . But  TX F  is invariant 

to T  and   TT X F F   (Theorem 2.1.3, [6]), 

whence it follows (by (1)) that 

   U UT X F X F
 

  

and 

  UT X F F


  . 

In case S   , if the assertion (II) is fulfilled, according to 

Theorem 2.2.6, [8], we deduce that T  is decomposable and 

that the equality (1) holds for any closed set F   . Then T  

is spectral equivalent to U   (Theorem 2.2.2, [8]) and 

therefore (I) is verified. 
 

Remark 2.3. If  T XB  is SA -decomposable and U  is 

one of its SA -spectral functions, then: 

1) T  is S -decomposable; 

2)    T UX F X F


 , for any F    

closed, F S ; 

3) If V  is another SA -spectral function of T , 

then U   and V  are spectral equivalent (in particular, V  

is spectral equivalent to T ); 

4) For S   , if A  is an inverse closed algebra of 

continuous functions defined on a closed subset of   and V  

is another A -spectral function of T , then fU  and fV  are 

spectral equivalent, for any f  A  (see [8]). 

 

Definition 2.4. An operator  T XB  is called SA -

spectral if it is SA -decomposable and commutes with one of 

its SA -spectral functions, hence T  is SA -spectral if there 

is an SA -spectral function U  commuting with T  such that 

T  is spectral equivalent to U  .  

For S   , we have that an A -spectral operator is an A -

spectral operator ([8]). 
 

Theorem 2.5. For an operator  T XB  we consider the 

following four assertions:  

 I  T  is SA -decomposable and commutes with one of its 

SA -spectral functions (i.e. T  is SA -spectral); 

 II   II1  T  is S -decomposable; 

 II2  There is an SA -spectral function U  

commuting with T , i.e. f fU T T U , for  any 

Sf A ; 

 II3     T UX F X F


 , for any F    

closed, F S ; 

 III   III1  There is an SA -spectral function U  

commuting with T ; 

 III2    | UT X F F


  , for any F    

closed, F S ; 

 IV  T S Q  , where S  is an SA -scalar operator and 

Q  is a quasinilpotent operator commuting with an SA -

spectral function of S  (not to be confused the compact subset 

S  with the operator S  from the equality T S Q  , S  

being the scalar part of T and Q  the radical part of T ). 

Then the assertions  I  and  IV , respectively  II  and 

 III  are equivalent,  I  implies  II , respectively  III ,  

and finally  IV  implies  II . 

Proof.      I II , III . Assuming (I) fulfilled, we prove 

that the assertions (II) and (III) are verified. If T  is SA -

decomposable and commutes with one of its SA -spectral 

functions U , then U   is spectral-equivalent to T . 
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Furthermore, U   being S -decomposable (Theorem 1.5), 

then T  is S -decomposable (Theorem 1.12) and we have the 
equality: 

   T UX F X F


  

for any F    closed, F S , hence  II  is fulfilled. 

From Theorem 2.2, it follows that 

     U TT X F T X F F


    

for any F    closed, F S , hence  III  is also 

verified. 

   I IV  T  being SA -spectral, there is an SA -

spectral function U  commuting with T , i.e. 

f fT U U T , for any Sf A  (in particular, 

T U U T  ) such that T  is spectral equivalent to U  . 

But the operator U   is S -decomposable (Theorem 1.5), 

hence by Theorem 1.12, T  is also S -decomposable and the 
following equality is verified 

   T UX F X F


 , for any F    closed, F S . 

Using the fact that T  and U   commute, it follows that 

T U   is a quasinilpotent operator commuting with U , 

because 

       
0

1

n
n nn k k n k

k

T U T U T U  
 



      

and the quasinilpotent equivalence of T  and U   is given by 

     
1 1

lim lim 0
n nn n

n n
T U U T 

 
     

(we remember that an operator T  is quasinilpotent 

if

1

lim 0n n

n
T


  or, equivalently,   0T  ). We 

remark that if U  is an SA -spectral function, then U   is an 

SA -scalar operator. Putting S U   and Q T U   , we 

have  

T S Q   

where S  is SA -scalar and Q  is quasinilpotent ( S  is the 

scalar part of T  and Q  is the radical part of T ). 

   IV I  By the hypothesis of assertion  IV , since 

S  is an SA -scalar operator, we deduce that there is at least 

one SA -spectral function U  of S  such that: S U  , the 

quasinilpotent operator Q  commutes with U  and S  is S -

decomposable (Theorem 1.5). It also results that T S Q   

commutes with U  (since we obviously have 

f fU U U U    fU  ) and since Q T S   is 

quasinilpotent, then T  is spectral equivalent to S , 

consequently T  is SA -spectral.  

   III II  Assume that there is an SA -spectral function 

U  commuting with T  such that   | UT X F F


  , 

for F    closed, F S . On account of the definition and 

the properties of an SA -spectral function and of an SA -

scalar operator, we remark that U  is an SA -scalar 

operator, hence U  is S -decomposable (Theorem 1.5) and 

we have      U UX F X F


 , F    closed, F S  

(Theorem 1.9). But  UX F


 is a spectral maximal space of 

U  (Theorem 2.1.3, [6]), hence it is ultrainvariant to U  

(Proposition 1.3.2, [8]); therefore  UX F


 is invariant to 

T  and then the restriction  | UT X F


 makes sense and 

  | UT X F F


  .  

   II III  The operator T  being S -decomposable, 

according to Theorem 2.1.3, [6], we have that  TX F  is a 

spectral maximal space of T , for any F    closed, 

F S  and 

    | TT X F F T    

hence (by (  II3 )  

     U TT X F T X F F


   . 

   IV II  S  being SA -scalar, there is an SA -

spectral function U  such that S U  . But from Theorem 

1.5, S  is S -decomposable and applying Theorem 1.11 to T  

and S , we get that T  is S -decomposable and  

     T S UX F X F X F


   

for any F    closed, F S .  

The function U  commutes with the quasinilpotent 

operator Q , i.e. f fQ U U Q , for Sf A , hence 

T S Q   commutes with U . 

 
Remark 2.6. With the same conditions as in Theorem 2.4, if 

S   , then the four assertions above are equivalent (see 
[8]). 

Remark 2.7. Let  1 2,T T XB  be two spectral 

equivalent operators. Then we have: 
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1) If  1T XB  is SA -scalar (respectively, A -

scalar), then 2T  is not SA -scalar (respectively, A -scalar). 

2) If  1T XB  is SA -decomposable 

(respectively, A -decomposable), then 2T  is SA -

decomposable (respectively, A -decomposable). 

3) If  1T XB  is SA -spectral (respectively, 

A -spectral), then 2T  is not SA -spectral (respectively, A -

spectral). 
 

III. SEVERAL  PROPERTIES  OF  SA -SCALAR, SA -

DECOMPOSABLE AND  SA -SPECTRAL  OPERATORS. 

 
In this section we study the behaviour of these three 

classes of operators with respect to direct sums, to restrictions 
and quotients with regard to an invariant subspace and to 
continuous algebraic homomorphisms, respectively. 

 
Lemma  3.1.  

1  Let  ,i i iA B XB  such that iA  is quasinilpotent 

equivalent to , 1,2iB i  . Then 1 2A A  is quasinilpotent 

equivalent to 1 2B B ; 

2   Let  ,A B XB  such that A  is quasinilpotent 

equivalent to B  and let Y  be a closed linear subspace of X  

invariant to both A  and B . Then the restrictions A Y  and 

B Y  are quasinilpotent equivalent; 

3  If  ,A B XB  are two quasinilpotent equivalent 

operators and    :h X YB B  is a continuous 

homomorphism, then  h A  is quasinilpotent equivalent to 

 h B . Similarly, if h  is an antihomomorphism. 

Proof. We remind that the multiplication between two 

operators A  and B  means here the composition of A  with 

B . In general, A  and B  are not permutable, and the 
definition of quasinilpotent equivalence is reminded in 

Preliminaries; if A  and B  commute, the spectral equivalence 

is equivalent to the fact that the operator A B  is 

quasinilpotent (i.e.  
1

lim 0
n n

n
A B


  ). 

We also remember that 

   
 

       

1 2 1 2 1 1 2 2

1 2 1 2

1 2 1 2 1 1 2 2

A A B B A B A B

A A A A

A A B B A B A B

  

   

  

      

 

hence  1 2 1 2
n n nA A A A   . 

If we use the 

notation     
0

1

n
n n k k n k

k

n
A B A B

k

 



 
    

 
 , for 

any  ,A B XB then we   have 

     

     

     

   

1 2 1 2

1 2 1 2

0

1 2 1 2

0

1 1 2 2

0

1

1

1

n

n
n k k n k

k

n
n k k k n k n k

k

n
n k k n k k n k

k

A A B B

n
A A B B

k

n
A A B B

k

n
A B A B

k

 



  



  



   

 
    

 

 
     

 

 
    

 







 

 

   

     

1 1 2 2

0 0

1 1 2 2

1 1

n n
n k n kk n k k n k

k k

n n

n n
A B A B

k k

A B A B

  

 

   
       

   

   

 

 
therefore

           
1 2 1 2 1 1 2 2

n n n
A A B B A B A B      

  By the last equality and from the definition of the norm in 

the space 1 2X X  

2 2 2
1 2 1 2x x x x    

we deduce that 

 

     

      

1
2

1 2 1 2

1
2 2

1 1 2 2

nn

nn n

A A B B

A B A B

 
    

 
 

 
    

 

 

and therefore assertion 1  is established. 

2   For  ,A B XB  and Y X  a closed subspace 

invariant to both A  and B , we obviously 
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have

    

   

     

     

     

0

0

0

0

1

1

1

1

n
n n k k n k

k

n
n k k n k

k

n
n k k n k

k

n
k n kn k

k

n

n
A B Y A B Y

k

n
A B Y

k

n
A Y B Y

k

n
A Y B Y

k

A Y B Y

 



 



 







 
        

 

 
  

 

 
   

 

 
  

 

 









 

and applying the inequality T Y T  and the fact that 

A  and B  are quasinilpotent equivalent, it follows that A Y  

is spectral equivalent to B Y . 

3  If  ,A B XB  and    :h X YB B  is a 

continuous homomorphism (respectively, antihomomorphism), 
then we obtain 

 

     

     

       

      

0

0

0

1

1

1

n
n n k k n k

k

n
n k k n k

k

n
k n kn k

k

n

n
h A B h A B

k

n
h A h B

k

n
h A h B

k

h A h B

 



 







 
        

 

 
   

 

 
  

 

 







 

(respectively, 

           
1

nn n
h A B h A h B    ) and

          n n
h A h B h A B    

hence if A  and B  are quasinilpotent equivalent, it results that 

 h A  is spectral equivalent to  h B . 

Proposition 3.2. Let SA  be an S -admissible algebra and 

let 1X  and 2X  be two Banach spaces. If  1 1T XB  and 

 2 2T XB  are SA -scalar (respectively, SA -

decomposable or SA -spectral) operators, then 

 1 2 1 2T T X X  B  is also SA -scalar (respectively, 

SA -decomposable or SA -spectral). 

Proof. If 1T  and 2T  are SA -scalar, then there are two SA -

spectral functions 
1U  and 

2U  such that 

1

1 1
1 1, XU T U I    and 

2

2 2
2 1, XU T U I    

(where   and 1 are the functions  f    and 

  1f   ). 

The mapping 

 1 2
1 2: SU U X X  BA , 

1 2
f ff U U  , 

is evidently an SA -spectral function for 1 2T T , because 

we have: 
 

 
  1 2 1 2

1 2 1 2
1 2

1 2 1 2
1 1

1
X X X X

U U U U T T

U U U U I I I

 




    

     
 

1 2
f f

U U
 

    is analytic on  supp f , 

since 
1
f

U


  2
f

U


   are analytic on  supp f , 

hence 1 2T T  is SA -scalar.  

If 1T  and 2T  are SA -decomposable, then there are 

two SA -spectral functions 
1U  and 

2U  such that 1T  is 

spectral equivalent to 
1U  , respectively 2T  is spectral 

equivalent to 
2U  . According to Lemma 3.1, we have that 

1 2T T  is spectral equivalent to
1 2U U  , hence 

1 2T T  is SA -decomposable.  

If 1T  and 2T  are SA -spectral, then there are two 

SA -spectral functions 
1U  and 

2U  such that 
1U  

commutes with 1T  and 1T  is spectral equivalent to 
1U  , 

respectively 
2U  commutes with 2T  and 2T  is spectral 

equivalent to 
2U  . 

It is obvious that 
1 2U U  commutes with 

1 2T T : 
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       

       

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2 ,

.

f f
f

f f f f

f f
f

S

U U T T U U T T

U T U T T U T U

T T U U T T U U

f

     

   

    

A

 

From Lemma 3.1, 1 2T T  is spectral equivalent 

to
1 2U U  , hence 1 2T T  is SA -spectral.  

 

Proposition 3.3. Let  T XB  be an SA -scalar 

(respectively, SA -decomposable or SA -spectral) operators 

and let Y  be a closed linear subspace of X  which is 

invariant to T  and to one of its SA -spectral functions. Then 

the restriction T Y  is 
1SA -scalar (respectively, 

1SA -

decomposable or 
1SA -spectral), where 

 1S S T Y  . 

Proof. Let us suppose that T  is SA -scalar and let U  be an 

SA -spectral function for T  such  

that Y  is invariant to both T  and U . Then the restrictions 

, , ,f ST Y U Y U Y f A  make sense. Putting 

f fV U Y  we obtain a  YB -valued function V  which 

is an 
1SA -spectral function for T Y , since: 

1 1

|

| Y

V U Y T Y

V U Y I
  

 
 

hence the operator T Y  is 
1SA -scalar, where 

 1S S T Y  . 

If T  is SA -decomposable, then T  is spectral 

equivalent to U   and according to Lemma 3.1, it results that 

T Y  is spectral equivalent to |U Y V  , therefore T Y  

is 
1SA -decomposable. 

If T  is SA -spectral, then T  commutes with U  

and T  is spectral equivalent to U  . It is clear that T Y  

commutes with V  and according to Lemma 3.1, T Y  is 

spectral equivalent to V , hence T Y  is 
1SA -spectral. 

 

Proposition 3.4. Let X  and Y  be two Banach spaces, let 

 T XB  be an SA -scalar (respectively, SA -

decomposable or SA -spectral) and let 

   :h X YB B  be a continuous homomorphism or 

antihomomorphism. Then  h T  is also SA -scalar 

(respectively, SA -decomposable or SA -spectral). 

Proof. We remark that the SA -spectral functions U  and 

 h U  are defined using the same S -admissible algebra 

SA . The S -admissible algebra SA  with which it is defined 

the SA -spectral function U  is also the same for the SA -

spectral function  h U  with the same S .  

If  : SU XBA  is an SA -spectral function, 

then the mapping    : Sh U Y BA   defined by 

    ,f Sf
h U h U f A  is also an SA -spectral 

function. 

Let us suppose that T  is an SA -scalar operator and 

let U  be an SA -spectral function for T , i.e. U T  , 

1 XU I . Then  h U  is an SA -spectral function for 

 h T : 

     

     11 X Y

h U h U h T

h U h U h I I


 

  
 

hence  h T  is SA -scalar. 

If T  is SA -decomposable, then T  is spectral 

equivalent to U   and according to Lemma 3.1, it results that 

 h T  is spectral equivalent to    h U h U 
 , 

therefore  h T  is SA -decomposable. 

If T  is SA -spectral, then T  commutes with U  

and T  is spectral equivalent to U  . It is obvious that  h T  

commutes with  h U  and according to Lemma 3.1,  h T  

is spectral equivalent to  h U


, hence T Y  is SA -

spectral. 
 

Corollary 3.5. If  T XB  is an SA -scalar (respectively, 

SA -decomposable or SA -spectral), U  is one of its SA -

spectral functions and Y  is a closed linear subspace of X  

invariant to both T  and U , then  T X B , defined by 


,T x T x x X



    , the quotient operator induced by T  in 
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the quotient space /X X Y , is also an SA -scalar 

(respectively, SA -decomposable or SA -spectral) operator.  

Proof. This is an immediate consequence of the previous 
proposition.  
 
 

IV. CONCLUSIONS 
 

 We will underline the relevance, importance and 

necessity of studying the SA -scalar (respectively, SA -

decomposable or SA -spectral) operators, showing the 

consistence of this class, in the sense of how many and how 
substantial its subfamilies are.   

These operators are natural generalizations of the notions of 

A -scalar, A -decomposable and A -spectral operators 
studied in [8] and appear, in general, as restrictions or 
quotients of the last one. 

 We demonstrated some of their properties, leaving the 
challenge to proof and generalize many others. 
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 INTRODUCTION 

 
Abstract— The aim of this study is to investigate several 

mathematical models describing pulsatile blood flow through the 
cardiovascular system. Specifically, this study considers the 
numerical simulation of blood flow through a three-dimensional 
model of an aneurysm in the common carotid artery in order to better 
understand the hemodynamic that may contribute to the growth of 
this aneurysm. Four non-Newtonian blood models, namely the Power 
Law, Casson, Carreau and the Generalized Power Law, as well as the 
Newtonian model of blood viscosity, are used to investigate the flow 
effects induced by these different blood constitutive equations. 
Results show significant differences between modeling blood as a 
Newtonian and non-Newtonian fluid at low shear rates. The 
dependence of the flow on the degree of abnormality is examined and 
differences from the Newtonian case are discussed. 

. 
 

his paper examines the flow dynamics in a representative 
model of an aneurysm in the common carotid artery under 
physiologically realistic pulsatile conditions and compares 

it with a healthy carotid artery for various degree of dilation 
using five blood rheological models. The results of transient 
simulations are presented in this paper while a companion 
paper investigates steady state flow. 

An aneurysm is an area of localized dilation of a blood 
vessel. An aneurysm in the carotid artery involves the two 
carotid arteries, the left and right common carotid arteries 
(CCAs) that supply blood to the brain. They supply the large, 
front part of the brain, which is responsible for our personality 
and our ability to think, speak and move. Aneurysms are 
frequently located at branching points of the major arteries. 
Most aneurysms are fusiforms. They are shaped like a spindle 
with widening all around the circumference of an artery. The 
inside walls are often lined with a laminated blood clot. 
Aneurysms are most common after 60 years of age. Men are 
more likely than women to be affected. The foremost health 
danger of this aneurysm is rupture which leads to death in up 
to 90% of the victims. 
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The most common cause of an aneurysm is hardening of 
the arteries, called arteriosclerosis [1]. The arteriosclerosis can 
weaken the arterial wall and the pressure of the blood being 
pumped through the aorta causes expansion at the site of 
weakness. Consequently, hemodynamic factors such as blood 
velocity, wall shear stress and pressure play important roles in 
the pathogenesis of aneurysms and thrombosis. The geometry 
of the aneurysm, its volume and aspect ratio (depth/neck 
width) and its relation to the parent vessel are also important 
factors affecting its hemodynamic.  

Although the rupture of an aneurysm is thought to be 
associated with a significant change in its size, there is still 
some debate over the size at which rupture occurs. The 
relationship between geometric features and rupture is closely 
associated with low flow conditions. The stagnation of blood 
flow in large aneurysms is commonly observed. Clearly, a 
better understanding of aneurysm growth and rupture is 
needed. 

 
Recently, Valencia and Solis [2], examined blood flow 

dynamics in a saccular aneurysm model with elastic walls of 
the basilar artery. They found the shear stress on the aneurysm 
wall and its deformation dependent on the wall thickness and 
the elastic or hyperelastic wall model. Oshima et al. [3]  
employed the finite-element method to study the flow in a 
cerebral aneurysm. Their geometrical model was derived from 
computed tomography data. The finite-element method was 
also used by Kumar and Naidu [4], to perform 2D 
axisymmetric simulations in aneurysms models with 0 – 75% 
dilation.  Their results examined the sensitivity of various flow 
parameters to dilation height. Neofytou and Tsangaris [5], used 
a finite volume scheme to numerical simulate the effects of 
various blood rheological models in flows through a stenosis 
and an abdominal aortic aneurysm. Their results indicated 
significant differences between modeling blood as Newtonian 
and non-Newtonian fluids.      

 
There are three objectives of this study: first, to 

investigate the variation in wall shear stress in an aneurysm of 
the carotid artery at different flow rates and degrees of 
dilation; second, to compare the various blood models and 
hence quantify the differences between the models and judge 
their significance and lastly, to determine whether the use of 
the Newtonian blood model is appropriate over a wide range 
of shear rates. 

 

Pulsatile Non-Newtonian Flows in a Dilated 
Vessel  

Iqbal Husain*, Christian R Langdon and Justin Schwark 

T 

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 79



 

 

2 MATHEMATICAL MODELLING 
 

2.1   Governing equations 
 
We assumed the blood flow to be laminar and 

incompressible and therefore the governing Navier-Stokes 
equations for such flows are given by 

 
0=⋅∇ V                      (1) 
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where V  is the three-dimensional velocity vector, 
p pressure, ρ density and τ  the shear stress term. 

We considered four different non-Newtonian blood flow 
models and compared the results obtained with that from the 
simple Newtonian model in this study. The effects of these 
models on the flow field and the wall shear stress in the 
vicinity of the aneurysm are examined. These models are given 
below [6]. 
 
 

 
Blood Models 

1. Newtonian model 
 

00345.0=µ  sPa ⋅                (3) 
 
2. Power Law Model 
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3. Casson Model 
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where  and =  
with = 0.0012 Pa·s and . 
 
4. Carreau Model 
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where Pa·s,  Pa·s, 

 s and . 
 
5. Generalized Power Law Model 
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These models have been created by various researchers 
Walburn and Schneck [7], Cho and Kensey [8], Fung [9], 
Ballyk et al. [10]and  Johnston et al. [11], by fitting the input 
parameters in these models to experimental data for blood 
viscosity measured at certain shear rates.  
 
2.2  Geometry 

 
The diameters of the left and right common carotid artery 

show a significant amount of variation. A study of 17 healthy 
subjects [12] produced diameters in the range of 0.52 to 0.75 
cm with an average diameter of 0.64 cm. In this study, two 
different model of the abdominal aortic aneurysm are used to 
investigate blood flow in the initial stages of its development. 
The carotid artery before and after the dilation is idealized as a 
straight rigid tube without any branching arteries. 

The flow geometry then consists of straight rigid tube of 
diameter d and is divided into three regions, the inlet, the 
dilation and the outlet region. The lengths of these regions are 
4d, 4d and 18d, respectively.  The radius of the undeformed 
inlet and outlet is . Two different values of the 
diameter were used to model the carotid artery, namely, 

 cm and cm. 
The radius of the diseased region [12] is given by  
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where x  is the distance from the start of the aneurysm, a is the 
degree of dilation, and b is the overall length of the diseased 
area as shown in Figure 1. Each model had an aspect ratio 

 which is typical of fusiform aneurysms. 

 
      Fig. 1. Aneurysm Geometry  
 
Three different degrees of dilation, 25%, 40% and 55% were 
used in this study. 
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2.3  Assumptions and boundary conditions 

 
We assume the arterial walls to be rigid and apply the no-

slip condition at the walls. At the outlet, stress-free conditions 
are applied and the pressure is set to zero. Symmetry is 
assumed at the centerline. Finally, the velocity profile at the 
inlet is regarded to be that of fully developed flow in a straight 
tube and is given by  
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where u  is the velocity component in the −x  direction and  
is the centerline velocity specified at the inlet. 

 

 
Fig. 2. Physiological flow waveform in the carotid 
artery used to drive the inlet velocity boundary 
condition as a function of time. 

 

In transient flow, the pulsatile flow prescribed at the inlet 
of the artery is given by a time varying forcing function given 
in Figure 2. This physiological profile was obtained by 
averaging the pulsed Doppler spectra data collected from the 
left and right common carotid arteries of 17 normal volunteers 
[12]. The data was acquired over approximately 50 cardiac 
cycles and analyzed in both the time and frequency domains to 
determine the average properties and variability of human 
carotid waveform. In this study, this forcing function was 
scaled to yield a maximum inflow velocity of   with a heart 
rate of approximately 60 beats per minute. 

 

2.4  Solution methodology 

The governing equations are highly nonlinear and are 
solved numerically using techniques of computational fluid 
dynamics. In this study, these equations are solved using the 
finite element method as implemented by COMSOL 
(COMSOL Inc., Los Angeles, CA). The flow geometry for the 
aneurysm was first created using Matlab. Then a finite element 
mesh was placed on this geometry. Briefly, an inlet plane of 
the artery is meshed in 2D using triangles and this mesh is 
extruded along the centerline of the artery to create a 3D mesh 
consisting of hexadrel elements. The mesh used for all 
computations consisted of 17,696 elements and 27,132 nodes 
for the aneurysm. 

Grid independence was determined by performing 
additional simulations using a greater number of nodes. A 
mesh size of 107, 350 nodes for the aneurysm was used and 
the results obtained differed from those on the original mesh 
by less than 1%.  

 

3.  RESULTS AND DISCUSSION 

Pulsatile inflow simulations were performed using all five 
models given above. As stated, three different degrees of 
dilation of the aneurysm were examined namely 25%, 40% 
and 55%.  Several flow rates )(u  were used in these 
simulations, from 0.04 m/sec to 0.22 m/sec, corresponding to 
the lower range of the average maximum systolic velocity of 
1.08 m/sec in the common carotid artery as reported in [12].  

A comparison of the streamlines patterns from various 
models in pulsatile flow simulation shows that the flow follows 
the contour of the wall (attached flow) throughout the 
aneurysm during the early systolic phase. During late systole, a 
vortex begins to form at the proximal end of the aneurysm. By 
the late diastolic stage, the flow becomes vortex dominated 
with the vortex filling the entire aneurysm. This flow pattern is 
similar in larger aneurysm except that the vortex strength and 
the translational speed increases. There exists minor 
differences in the recirculation regions shown by each model 
and these differences become more prominent at 55% dilation 
and higher flow rates, specifically the growth of the 
recirculation region and the vortex length. The Newtonian 
model shows the largest recirculation region and the Power 
law model, the smallest.   

 
Fig. 3. Pressure difference distribution as a function of 
flow rate. 
 
The distribution of maximum pressure with the flow rate 

is shown in Figure 3.  This figure shows that all of the non-
Newtonian models considered here produce a lower pressure 
difference than the Newtonian model at low flow rates. 
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Specifically, the lowest pressure drop is induced by the 
Generalized Power Law model.  At higher flow rates, greater 
than 0.16 m/s, the Generalized Power Law model comes in 
close agreement with the Newtonian model whilst the Careau 
model begins to deviate, giving pressure differences that are 
significantly less than the Newtonian fluid. It is not clear why 
this is the case and further study is required to explain this 
behaviour. Also, at flow rates greater than 0.18 m/s, the Power 
Law model begins to breakdown, producing pressure 
differences significantly higher than the Newtonian model. The 
other non-Newtonian models show good agreement in pressure 
differences with the Newtonian case for various degrees of 
severity and as the flow rate increases. This result agrees well 
with that of [5] in the transient non-pulsatile case. 

 

 
Fig. 4. Wall shear stress distribution for various degrees of 
dilation. 
 
 

 
Fig. 5. Wall shear stress vs shear rate. 
 
The distribution of the wall shear stress (WSS) is one of 

the most important hemodynamic parameter due to its direct 
relevance in artherosclerosis formation. The distribution of 
wall shear stress with the size of the aneurysm for the 0.64 cm 
diameter artery is shown in Figure 4. It is evident that WSS 
increases with increasing dilation. All of the non-Newtonian 
models give values that are higher than the Newtonian case for 
various flow rates, especially, the Power Law model. At all 
degrees of dilations, the WSS values predicted by this model 
are significantly higher than that of the Newtonian model. 
Figure 5 displays the distribution of maximum WSS with shear 
rate. Again, WSS increases with increasing shear rate with the 
Power Law model deviating significantly from the rest at 
higher shear rates. The Casson and the Carreau models 
produce higher WSS values compared to the Newtonian model 
at high shear rates but are in good agreement with the 
Newtonian values at low shear rates. The Generalized Power 
Law model compares very well with the Newtonian model at 
both high and low shear rates. 
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Fig. 6. Wall shear stress distribution for an artery with a 
55% aneurysm using the generalized power law. 
 
 

 
Fig. 7. Shear rate distribution in an artery containing a 
55% aneurysm. 
 
Figure 6 show the distributions of shear stress for a 55% 

aneurysm obtained from the Generalized Power Law at various 
times in a cardiac cycle. As can be seen, the shear stress drops 
abruptly as the flow enters the aneurysm. The magnitude of 
this drop increases with higher flow rates. This is followed by 
a sharp rise at the end of the aneurysm. Further downstream, 
the WSS rapidly regains its undisturbed value. The maximum 
wall shear stress occurs in the middle of the cycle 
corresponding to the maximum inflow velocity. The 
distribution of shear rates in a 55% dilated artery is shown in 
Figure 7.  The high shear rates are confined to the small areas 
at the entrance and exit to the aneurysm and immediately 
downstream. 

The maximum and minimum WSS values are in good 
agreement for the Generalized Power Law and the Newtonian 
models. The Power Law model gives a much lower value 
because it exhibits a lower viscosity at the entrance and exit of 
the aneurysm where the shear stress is high. As the flow rate 
increases, these WSS differences from the first two models 
become less prominent indicating insignificant differences in 
model behaviour at high shear rates. 

Similar result are obtained when the diameter of the 
common carotid artery is assumed to be as large as 2.0 cm. 
The maximum wall shear stress and shear rates values are 
lower when compared to the 0.64 cm diameter artery but the 
differences in model behaviour are analogous.   

It is evident from these results that the Power Law model 
tends to break down at higher shear rates in that it reduces the 
viscosity of the blood to levels below the Newtonian level 
which theoretically is not possible.  This is clearly evident in 
the 55 % dilated model.  The pressure difference predicted by 
this model is less than the Newtonian model, indicating a 
lower than Newtonian viscosity.  This model also produces 
very low wall shear stress levels, dropping below Newtonian 
levels at fairly low shear rates, for example at the medium flow 
rate at 55% dilation,  the WSS levels are less than Newtonian 
levels.  This Power Law model is relatively easy to use but 
predict decreasing viscosity at higher strain, contrary to the 
generally accepted observation that blood behaves as a 
Newtonian fluid for strains above . 

At low shear rates the Casson model shows near 
Newtonian behavior. As the shear rate increases, this model 
begins deviating from the Newtonian case by producing higher 
WSS.  This model takes the haematocrit factor H (the volume 
fraction of red blood cells in whole blood) into account, with 
the parameters given (obtained from data fitting) suggesting a 
value of H of 37%. However, it is reported that this yields a 
limiting viscosity at high shear slightly above the usual 
Newtonian value. The results obtained here suggest the same 
with WSS values above the Newtonian values at very high 
shear rates. This model appears to breakdown in the aneurysm 
at high shear rates, but is accurate at low shear rates. 

The Carreau model generally produces values that are in 
close agreement with that of the Newtonian model at shear 
rates well above 1100 −s .  Our results do not indicate this to 
be the case. Both the WSS and the pressure difference deviate 
significantly from the Newtonian values at shear rates in 
excess of 11000 −s . This model by design reverts to 
Newtonian numbers as shear rates approach infinity.  The basis 
for this model is the constant Newtonian viscosity, modified to 
non-Newtonian such that the modification tends to zero as the 
limit of the shear rate goes to infinity.   

 
Finally, the Generalized Power Law model gave results 

that are in closest agreement with the Newtonian values at 
mid-range and high shear rates. At low shear rates, this model 
gives values that are close to that of the Power Law and the 
Carreau models. While the Power Law model breaks down at 
high shear, our results show a close agreement between the 
Generalized Power Law and the Newtonian models even at 
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high shear rates as shown in Figure 5. The Generalized Power 
Law model is widely accepted as a general model for non-
Newtonian blood viscosity. It includes the Power Law model 
at low shear rate and the Newtonian model at mid-range and 
high shear rates. There is also good agreement between the 
Generalized Power Law and the Carreau model for low shear 
rates.  

 
 

4.  CONCLUSIONS 
 

      A study of the effects of modeling blood flow through an 
aneurysm using five different blood rheological models is 
presented. The flow field and wall shear stress distributions 
produced by each model are investigated for various flow rates 
and degrees of abnormality. In a specific dilated artery with a 
particular inlet velocity, the pattern of the WSS was found to 
be the same for all models studied. The only difference was in 
the magnitude of the WSS predicted by each model. These 
differences were significant at low shear rates and, in the case 
of the Power Law, the Carreau and the Casson model, at high 
shear rates. At mid-range to high shear rates, the Generalized 
Power Law and the Newtonian models produced almost 
identical results. The differences in magnitude of the WSS can 
be explained by the differences in the models themselves as 
discussed above. 
     The results show that there are significant differences 
between simulating blood as a Newtonian or non- Newtonian 
fluid at low shear rates. In particular, the Power Law model 
overestimates WSS at low shear rates and underestimates it at 
high shear. The Newtonian model under estimates WSS at low 
shear while the Generalized Power Law models provide a 
better approximation of WSS at low shear rates. 
     The distribution of shear rates in the dilated artery in Figure 
7 shows a small region in the vicinity of the aneurysm where 
the shear rate is high. The shear rate in the rest of the artery is 
relatively low, indicating that non-Newtonian behavior is 
important. However, these simulations correspond to a heart 
rate of only 60 beats per minute and low inlet velocities 
(maximum of 0.225 m/s for the dilated artery). If the heart rate 
were increased to 100 beats per minute and/or the inlet 
velocities increased, the region (and periods in a cardiac cycle) 
over which the non-Newtonian behavior was important would 
decrease. 
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     Fig. 8. Wall shear stress chart. 
 
     In a healthy left or right common carotid artery, the average 
maximum systolic velocity is 1.08 m/s [13]. In modeling the 
aneurysm, our simulation could only reach velocities as high 
as 0.375 m/s. We were successful in simulating a healthy artery 
at the maximum velocity and the results obtained from the 
various models are shown in Figure 8. The WSS values from 
all models are in good agreement except for the Power Law 
model. As in the dilated artery, the Generalized Power Law 
model gave the closest value to that of the Newtonian model. 
  
     In conclusion, in terms of the wall shear stress distribution, 
we found that the Newtonian model is a good approximation in 
regions of mid-range to high shear but the Generalized Power 
Law model provides a better approximation of wall shear 
stress at low shear. Whether the fact that the Newtonian model 
underestimates the WSS in regions of low shear is biologically 
significant is open to debate.  A prudent approach would be to 
use the Generalized Power Law model since it predicts WSS 
better than the Newtonian model for low inlet velocities and 
regions of low shear and is effectively Newtonian at midrange 
to high shear. 
      These conclusions are presented under the assumption that 
the arterial walls are rigid and zero pressure is assumed at the 
outlet. A more realistic simulation would include elastic walls 
and incorporate the effects of upstream and downstream parts 
of the circulatory system into the boundary conditions. 
Simulations incorporating elastic walls are currently in 
progress. 
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Permutation codes: a branch and bound approach
Roberto Montemanni, János Barta and Derek H. Smith

Abstract—This paper presents a new approach for retrieving
largest possible permutation codes. These have applications in
error correction for telecommunication purposes. The method
presented is based on combinatorial optimization concepts such
as branch and bound techniques and incorporates new ad-
hoc theoretical results. It is shown how the method can be
applied to obtain new results for subproblems. These results for
subproblems can be combined with other theoretical results to
obtain new results for complete instances. It is shown how the
new improved upper bound M(7,5)≤ 124 can be obtained with
such techniques.

Index Terms—Permutation codes; Branch and bound algo-
rithms; Upper bounds.

I. INTRODUCTION

THIS paper considers the application of branch and bound
techniques to the construction of permutation codes. Per-

mutation codes (sometimes referred to as permutation array)
have received considerable attention in the literature [1], [2],
[3], [4], [5], [6], [7]. This has been motivated by an application
to powerline communications when M-ary Frequency-Shift
Keying (FSK) modulation is used [3], [8], [9], [10], [11]. In
this application permutations are used to ensure that power
output remains as constant as possible while combatting
impulsive noise permanent, narrow band noise from electrical
equipment or magnetic fields, as well as the more common
white Gaussian noise.

A permutation code is a set of permutations in the symmet-
ric group Sn of all permutations on n elements. The codewords
are the permutations and the code length is n. The error-
correcting capability of a permutation code is related to the
minimum Hamming distance of the code. The Hamming dis-
tance δ between two codewords is the number of elements that
differ in the two permutations. Alternatively, two permutations
σ1 and σ2 are at distance δ if σ1σ

−1
2 has exactly n−δ fixed

points. The minimum distance d is then the minimum δ taken
over all pairs of distinct permutations. Such a code is then
denoted an (n,d) permutation code.

Redundancy in an encoding is minimized if the number of
codewords is as large as possible. Thus if M(n,d) denotes
the maximum number of codewords in an (n,d) permutation
code it is important to determine M(n,d), or if this is not
possible to find good lower and upper bounds. The most
complete contributions to lower bounds can be found is in [3],
[12]. Recently, some improvements based on similar search
techniques have been presented in [13], while in [14] a study
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land, Galleria 2, 6928 Manno, Switzerland. Emails: {roberto.montemanni,
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D.H. Smith is with the Division of Mathematics and Statistics, Uni-
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Γ = {[012345], [021453], [034512],
[045231], [102534], [130425],
[153240], [205143], [243015],
[251304], [310254], [324105],
[341520], [425310], [432051],
[450132], [504321], [513402]}.

Fig. 1. An optimal (6, 5) code.

on the structure of optimal codes has been presented. Results
on a similar problem using a metric different from the one
treated in this paper can be found in [15].

II. PROBLEM DESCRIPTION

A permutation of the n-tuple x0 = [0,1, ...,n−1] ∈ Nn is a
codeword of length n and the set of all codewords of length
n is denoted by Ωn. From an algebraic point of view the set
Ωn is the single orbit of the symmetric group of permutations
Sn , i.e.

Ωn = {x ∈ Nn|x = gx0, g ∈Sn}

Any subset Γ of Ωn is a permutation code of length n. The
main problem can now be stated as:

Definition 1. Given a code length n and a Hamming distance
d, the maximum permutation code problem (MPCP) consists
of the determination of a code Γ⊆Ωn with minimum distance
d and the maximum possible number of codewords.

Example 1. The problem (6,5) is to determine a maximal
code of length n= 6 with minimum distance d = 5. As reported
in [14], [3], [12] the optimal solution of this problem is
M(6,5) = 18. One of the many possible optimal (6,5) codes
is shown in Figure 1.

III. A BRANCH AND BOUND ALGORITHM

Branch and bound approaches work by building a search-
tree that covers all possible assignments of permutations to
solutions, but with most of the branches of the tree pruned by
inferring information from lower and upper bounds. The main
elements of the algorithm proposed here are described in this
section.

A. Structure of the search-tree node

From now on, the set of nodes of the search tree will be
denoted S, and the subtree of the search-tree rooted at node t
will be denoted as SubT (t). Each node t of the search-tree is
then identified by the following elements:

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 86



• in(t): a list of permutations that are forced in the solutions
associated with the search-tree nodes of SubT (t);

• f eas(t): a list of permutations that are feasible according
to the list of forced permutations in(t), and to reduction
rules (see Section III-D2);

• lb(t): a lower bound for the number of permutations in the
optimal solutions associated with the search-tree nodes in
SubT (t). The calculation of the lower bound is described
in Section III-F.

• ub(t): an upper bound for the number of permutations
in the optimal solutions associated with the search-tree
nodes in SubT (t). The calculation of the upper bound is
described in Section III-E.

From these four items all the information required by domi-
nance rules and pruning can be derived.

B. Initialization and branching strategy

Initial lower and upper bounds BestLB and BestUB are
provided as input to the algorithm (they can be 0 and +∞,
respectively). These initial values will be updated during the
execution of the algorithm in case improved values are ob-
tained. A permutation p is selected and the root r of the search-
tree is the node initialized with in(r) = {p}, lb(r) = BestLB,
ub(r) = BestUB and f eas(r) = {i∈Ωn : δ (i, p)≥ d}. Initially,
r will be the only node contained in S (S := {r}), the set of
the nodes to be examined, referred to as open nodes in the
remainder of the paper. Due to the symmetry of the problem,
the first permutation included in in(r) can be chosen arbitrarily.
The set of closed nodes C is initialized as empty (C := /0). This
set will contain nodes already examined by the algorithm, and
will be used by pruning and reduction techniques described in
Section III-D.

At each iteration of the branch and bound algorithm, an
open node t from the set S is expanded (see Section III-C
for more details about the strategy used to select node t, and
the rationale behind it), which means that node t is expanded
by decomposing it into the associated subproblems. One new
search-tree node tp is created for each permutation p of f eas(t)
in such a way that in(tp)= in(t)∪{p} and the new set f eas(tp)
is determined, also taking into account the reduction and
pruning rules described in Section III-D. Sets S and C are
finally updated: S = S\{t}, C = C∪{t}. For each new node
tp the values of lb(tp) and ub(tp) are calculated, as described
in Sections III-F and III-E respectively. In the case that the
pruning test is positive (see Section III-D) the new node tp is
pruned and C :=C∪{tp}, otherwise the set S of open node is
incremented: S := S∪{tp}.

In case mint∈S ub(t) ≤ BestUB, the global upper bound
of the residual open problems has been improved, and the
updating BestUB := mint∈S ub(t) can take place. Also the
value of BestLB can be updated in case a new incumbent
heuristic solution is found (in general BestLB :=maxt∈S lb(t)).
All the open nodes u of the search tree are examined and
pruned in case ub(u) ≤ BestLB, since no improving solution
can exist in the search-tree node rooted in u. In such a case
S := S\{u} and S := S∪{u}.

The branch and bound algorithm stops when the set S
is empty (all the search-tree nodes have been processed or
labelled as dominated).

C. Selection of the node to expand

Nodes are expanded in the same order they have previously
been created. This strategy allows the best exploitation of the
reduction and pruning rules described in Section III-D.

D. Reduction and pruning rules

This section discusses some rules useful to prune dominated
search-tree nodes and to reduce the size of f eas(t) while
generating a new search-tree node t. These results are based
on the concept of isomorphism for graphs [16].

1) Pruning rule: Two graphs G and H are said to be
isomorphic if a bijection between the vertex sets of G and
H f : V (G)→ V (H) exists, such that any two vertices u and
v of G are adjacent in G if and only if f (u) and f (v) are
adjacent in H.

Definition 2. The graph induced by search-tree node t is
defined as GI

t = {V I
t ,E

I
t }, with V I

t = V\in(t) and EI
t ={

{i, j}|i, j ∈V I
t ,δ (i, j)≥ d)

}
.

Remark 1. The graph induced by search-tree node t is
considered instead of the subgraph of G with vertices set
f eas(t) because f eas(t) might have already have benefited
from reduction rules in previous iterations, and therefore
isomorphisms could be more difficult to identify.

Definition 3. If the graph GI
t induced by search-tree node t

is isomorphic to the graph GI
u induced by another search-tree

node u, it will be said (for short) that node t is isomorphic to
node u and written t ∼= u.

The following result allows one of two isomorphic nodes
to be pruned from the branch and bound tree.

Theorem 1. If a new search-tree node t is such that t ∼= u with
u ∈ S∪C, |in(t)|= |in(u)| then the node t can be classified as
dominated and moved to set C (S = S\{t} and C =C∪{t}).

Proof: The search-tree subtree associated with node t
will provide an optimal solution with the same number of
permutations of that of node u, that has been already expanded
(u ∈C), or is scheduled to be expanded (u ∈ S).

2) Reduction rule: During the branching of a search-
tree node t, all potential new search-tree nodes obtained by
expanding the set f eas(t) with each possible permutation will
be considered.

Proposition 1. While creating a new search-tree node u
obtained by adding pu ∈ f eas(t) into in(u), permutation
pk ∈ f eas(u), with k ∼= v, v ∈ S∪C, |in(k)| = |in(v)| (nodes
already expanded at the same level) can be taken out of
f eas(u): f eas(u) = f eas(u)\{pk}

Proof: The best possible solution including permutations
pk and the permutations of in(u) is equivalent to that of
the problem v, that has been already expanded (u ∈ C), or
is scheduled to be expanded (u ∈ S). Therefore all solutions
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including permutation pk are not of interest while solving the
problem associated with f eas(u).

Remark 2. When applying the reduction rule described in
Proposition 1 it is necessary to expand search-tree nodes
according to the basic strategy described in Section III-C, in
order to avoid situations where the permutations isomorphic to
that associated with node ui are taken out from f eas(vi) as a
result of Proposition 1 at level i of the search-tree, but then the
permutations associated with a descendant v j of vi are taken
out of a descendant u j of ui at a level j, with j > i, of the
tree. Such a situation would clearly lead to infeasible solutions
since some regions of the search space are left unvisited by
the search-tree.

In the implementation described here the routines of Nauty
2.5 described in [17] are used to identify graph isomorphisms.

E. Upper bound

The set of codewords Ωn can be split into n subsets
W0, ...,Wn−1, in such a way that for a fixed value k ∈ {0, ...,n−
1} the subset Wi is defined as Wi = {x ∈ Ωn|x(k) = i}. In
other words, the subset Wi contains all codewords with the k-th
component having the value i. Since the partition is obtained
by fixing the value of one component of the codewords, it is
clear that the sets Wi are isomorphic to Ωn−1. Furthermore,
as the sets Wi form a partition of Ωn it is well-known that an
upper bound of M(n,d) can be obtained by adding the upper
bounds on the subsets Wi:

Theorem 2 (Deza and Vanstone [18]).

M(n,d)≤ n ·M(n−1,d) (1)

The partitioning procedure described in Theorem 2 can be
carried out on any subset of Ωn. At each search-tree node
t the algorithm generates a partition T0, ...,Tn−1 of the set
f eas(t), such that Ti = {x ∈ f eas(t)|x(k) = i} and a partition
Q0, ...,Qn−1 of the set in(t), such that Qi = {x ∈ in(t)|x(k) =
i}. For each subset Ti an upper bound UB(Ti) is calculated
using the Maximum Clique Problem (MCP) solver proposed
in [19] (see also [20]), which is run for 10 seconds on every
subproblem. The choice of this solver is motivated by its
ability of proving optimality extremely fast on small/medium
problems. From preliminary experiments the solver described
in [19] is significantly faster than the one presented in [21]
(see Section III-F) on the instances treated.

The new upper bound for the search tree node t can be
expressed as follows.

Proposition 2.
n−1

∑
i=0
|Qi|+min{UB(Ti);M(n−1,d)−|Qi|} (2)

is a valid upper bound for the search-subtree rooted at the
search-tree node t.

Proof: In case it can be shown that in a partition {Ti}
of f eas(t) the maximum clique has size smaller than M(n−
1,d)−|Qi| a tighter upper bound for that partition is available.

Combining the n partitions together, gives the global upper
bound provided by (2).

Remark 3. The result of Proposition 2 can be seen as a
refinement of a previous result originally presented in [14].

Remark 4. As the index k of the fixed component in the
codewords can be varied, there are n different partitions that
can be generated. The algorithm computes for each partition
an upper bound and finally chooses the lowest one.

F. Lower bounds

The methods used to provide lower bounds for the optimal
solution cost of the problem associated with the search-tree
node t are based on MCP algorithms [21]. In detail, when
examining node t, it is possible to associate a graph Gt =
{Vt ,Et} such that the set of vertices Vt = f eas(t) (where each
vertex is associated with a permutation) and the set of edges
Et = {{i, j}|i, j ∈Vt ,δ (i, j)≥ d)}. Notice that this graph is a
subgraph of that induced by node t (see Section III-D). The
problem is then equivalent to solving a MCP on graph Gt .
This transformation usually has the side-effect that possible
structure and information coming from group theory (and the
possibility to exploit these) is lost. On the other hand, the
very efficient methods developed for the MCP over the years
can be used directly. In the remainder of this section it will be
shown how to modify a general-purpose method to the current
context, in order to insert permutation codes related concepts
into its logic.

The original MCP method works as follows, according to
the description provided in [21]. The algorithm considers the
vertices of Vt in a given order {v1,v2, ...,v|Vt |}. Initially, the
method finds the largest clique C1 that contains the vertex v1.
Then it finds C2, the largest clique in Gt\{v1} that contains
v2 and so on. Applying heuristics and pruning techniques,
the search space can, however, be reduced dramatically. The
notion of the depth is crucial for the algorithm. Suppose
vertex v1 is under investigation. At depth 2, all vertices
adjacent to v1 are considered. At depth 3, all vertices (that are
already in depth 2) adjacent to the first vertex in depth 2 are
considered and so on. When there are no more vertices left at
a certain depth, a clique has been identified, and backtracking
is activated. Pruning rules based on the number of vertices left
at each level are triggered to have early backtracking. These
rules are very quick to check but very effective. When the
entire search-tree created by the method has been visited (or
declared dominated) the computation is stopped and the largest
clique has been retrieved.

Some context-dependent modifications of the general algo-
rithm previously described were implemented. The modifica-
tions to the original method are introduced to anticipate the
pruning in the branch and bound framework running internally
in the MCP algorithm. In detail, during the execution a 2-
dimension array PosVal is kept in memory, defined as follows.

Definition 4. PosVal[i][ j] contains at any time during the
execution of the MCP algorithm [21] the current number of
permutations with value j in position i that are still feasible
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according to the partial assignment under investigation, or are
part of such a partial assignment.

Notice that the structure is dynamically updated during the
execution of the algorithm, depending on the partial solution
currently under investigation. The pruning is based on the
following theoretical results.

Proposition 3. When
n

∑
j=1

min{M(n−1,d),PosVal[i][ j]} ≤ BestLB (3)

for some i,1 ≤ i ≤ n the partial solution under investigation
will not lead to any improving result, it can be pruned and it
is possible to backtrack.

Proof: It is known ([18]) that if a position i of the code-
words of a code (n,d) is fixed to a value j then there cannot
be more that M(n− 1,d) permutations with this property.
This is valid for each value of i and j. During the execution
of the MCP algorithm PosVal[i][ j] can become smaller than
M(n−1,d) for some i or j. In such a case the best upper bound
for the corresponding subproblem is no longer M(n− 1,d),
and the global upper bound is updated according to (3) by
summing over all possible values j for position i. When
the global upper bound is not greater than the cost of the
best solution currently available (BestLB) there is no hope of
finding an incumbent improved solution, and backtracking can
be activated.

Proposition 4. When
n

∑
i=1

min{M(n−1,d),PosVal[i][ j]} ≤ BestLB

for some j,1≤ j ≤ n the partial solution under investigation
will not lead to any improving result, it can be pruned and it
is possible to backtrack.

Proof: The proof is based on the same principles of that
of Proposition 3 but now the sum is over all possible positions
i for value j (by columns of PosVal instead of by rows).

Remark 5. The results of Propositions 3 and 4 can be seen
as the adaptation of the upper bound of Proposition 2 to the
context of the MCP algorithm, where it is preferable to have
a less precise but much faster upper bound.

In the context of the current permutation codes algorithm,
the main target is to have the MCP algorithm complete the
computation in order to prove optimality for the problem under
investigation in the given time available (see Section IV). For
this reason, to have pruning as early as possible, at each
iteration one of the permutations with value j in position i
is expanded such that

PosVal[i][ j] = min
1≤k≤n,1≤l≤n

PosVal[k][l] (4)

The strategy described in (4) allows the anticipation of the
application of Propositions 3 and 4 as much as possible.
Different strategies might however be used in order to make
it more likely to have heuristic solutions instead of early
backtracking, if the algorithm is used in a different perspective.

The modified version of the algorithm originally proposed
in [21] described previously is executed each time a new non-
dominated search-tree node (of the external branch and bound
method) is generated, and it is run for a maximum of 720
seconds.

IV. EXPERIMENTAL RESULTS

The approach discussed in Section III can be applied to
subproblems to prevent ths size of the search tree increasing
too much for large instances. Results on subproblems can
then be propagated to full problems in order to obtain new
theoretical results, as will be shown later in this section. All
the experiments presented have been carried out on a computer
equipped with a 2.3GHz AMD Quad Opteron processor (only
one core has been used at a time), while the algorithm has
been coded in ANSI C.

In the study presented here two subproblems of (7,5) are
considered, where a position of the permutations is restricted
to values from a given set F ⊂ {0,1, ...,n− 1}. The largest
possible code fulfilling the requirements with all permutations
with the given position strictly from F is sought. Notice that
either the position fixed or the values of F are not important
due to the symmetry of the problem. The cardinality of F is the
only important factor. Therefore subproblems can be defined
as follows.

Definition 5. Refer to the problem (n,d)||F | as the subproblem
of (n,d) where a position of the code is restricted to values
from set F.

Such a problem with |F | = 1 is equivalent to the problem
(6,5) since the largest possible set with a common symbol
in the first position is sought. According to [18] this amounts
to looking for the largest possible code of length n−1. More
interesting are the cases when 2 ≤ |F | ≤ n− 1. Notice that
for these problems a trivial upper bound, coming from the
generalization of that described in (1), is the following one:

M(n,d)||F | ≤ |F | ·M(n−1,d) (5)

For |F |= 2 equation (5) returns an upper bound of 36. The
branch and bound described in Section III has been able to
retrieve a solution with 36 permutations, matching the upper
bound. This result is not as obvious as it could appear, since
traditional methods based on maximum clique solvers (e.g.
[19], [21]) are not able to retrieve such a solution in a week
of computation, while the method described here was able to
close the problem in 15 382 seconds. The optimal solution
retrieved is presented in Figure 2. It might turn out to be
useful for future studies by other researcher, since inspecting
such a solution might bring new insights about the general
characteristics of solutions.

For |F |= 3 the branch and bound described in Section III
has been used to obtain a new upper bound, which improves
the one given by (5). The algorithm itself is not able to find
significantly large heuristic solutions (and consequently lower
bounds), but if it is run with a hypothetical initial lower bound
of BestLB = 53, the algorithm is able to prove in 922 450
seconds that no solution with 54 permutations exists, leading
to the following new result.
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Γ = {[0123456], [0134562], [0162345],
[0214635], [0236154], [0265413],
[0342516], [0351642], [0364251],
[0415326], [0426531], [0452163],
[0516243], [0521364], [0543621],
[0631425], [0645132], [0653214],
[1025634], [1043265], [1056423],
[1203546], [1240653], [1254360],
[1305462], [1326045], [1360524],
[1432605], [1450236], [1463052],
[1534026], [1546302], [1562430],
[1602354], [1624503], [1635240]}.

Fig. 2. An optimal (7, 5)|2 code.

Proposition 5.
M(7,5)|3 ≤ 53

The result of Proposition 5 has a remarkable implication: it
allows us to improve the lower bound for the general problem
(7,5).

Proposition 6.
M(7,5)≤ 124

Proof: Partition the code in three parts, each part covering
some possible values for a given position. The first and the
second parts cover 3 possible distinct values each, while the
third part covers the remaining value. By combining the results
on subproblems the new global upper bound is obtained:
M(7,5)≤M(7,5)|3 ·2+M(7,5)|1 ≤ 53 ·2+18 = 124

The result of Proposition 6 improves the previously best
known upper bound of 126 that can be obtained with equation
(5). It is interesting to mention that the best result reported in
the literature so far was 140 instead of 126 (see, for example,
[12]).

The results previously presented show that a novel approach
like the one proposed has potential. Further refinement to
the current branch and bound method could lead to new
improvements.

V. CONCLUSIONS

A novel approach based on combinatorial optimization and
branch and bound has been proposed to attack permutation
codes. It is based on some ad-hoc new theoretical results that
make the technique practical for real problems. Experimental
results have been presented, aiming at clarifying the current
potential of the method. New results on subproblems of per-
mutation code instances have been described, and it has been
shown how such results can be used to derive new theoretical
results (upper bounds in this case) for full permutation code
instances.

The technique appears to be capable of further improve-
ments to handle larger problem instances. New theoretical
results could be used to speed up computation and to make

pruning even more effective. There is also a clear potential
for such techniques to be adapted to other types of codes (e.g.
binary codes). Such adaptions represent an important area for
future work.
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Unary operators
József Dombi

(Invited Paper)

Abstract—Modal operators play an important role in fuzzy
theory, and in recent years researchers have devoted more effort
on this topic. In our study, we will construct modal operators.
We give a common form of all types of unary operators. We
will characterise them using differential equations, Bayesian
inference, and a functional equation. We will show that a special
class of the kappa function is related to the sigmoid function, it
and can be characterised by odds.

Keywords—negation, modalities, hedges, sharpness operator, Pli-
ant system

I. INTRODUCTION

In logic theory, modal operators have a variety of applica-
tions and even from a theoretical perspective they are inter-
esting to study. Here, we will present different approaches for
obtaining the form of the necessity and possibility operators.
These have a simple parametrical form. By changing the
parameter value, we get different modalities. Cintula et al
[1] made a study on fuzzy logic with an additive involutive
negation operator. In Hájek’s paper [2], the basic logic (BL)
was defined. In a recent paper [3], we can find a survey paper
that discusses the state-of-art of BL.

In standard modal systems, the basic modalities are called
necessity (denoted by �) and possibility (denoted by ♦).
They satisfy basic properties such as their interdefinability via
negation �p = ¬♦¬p, and distributivity of � over conjunction
�(p ∧ q) = �p ∧ �q and distributivity of ♦ over disjunction
♦(p ∧ q) = ♦p ∧ ♦q. Now consider a De Morgan operator
system augmented with unary operators that represent the
distributive modalities.

II. NEGATION

Definition 1: We say that η(x) is a negation if
η : [0, 1]→ [0, 1] satisfies the following conditions:

C1: η : [0, 1]→ [0, 1] is continuous (Continuity)
C2: η(0) = 1, η(1) = 0 (Boundary conditions)
C3: η(x) < η(y) for x > y (Monotonicity)
C4: η(η(x)) = x (Involution)

From C1, C2 and C3, it follows that there exists a fix point
ν∗ ∈ [0, 1] of the negation where

η(ν∗) = ν∗ (1)

So another possible characterisation of negation is when we
assign a so-called decision value ν for a given ν0, i.e. a point

J. Dombi is with the Institute of Informatics, University of Szeged, Hungary
e-mail: dombi@inf.u-szeged.hu
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(ν, ν0) can be specified such that the curve must intersect. This
tells us something about how strong the negation operator is.

η(ν) = ν0 (2)

If η(x) has a fix point ν∗, we use the notation ην∗(x) and
if the decision value is ν, then we use the notation ην(x). If
η(x) is employed without a suffix, then the parameter has no
importance in the proofs. Later on we will characterise the
negation operator in terms of the ν∗, ν0 and ν parameters.

For the strong negation operator case, two representation
theorems are known. Trillas [4] has shown that every involu-
tive negation operator has the following form

η(x) = f−1(1− f(x)), (3)

where f : [0, 1] → [0, 1] is a continuous strictly increasing
(or decreasing) function. This generator function corresponds
to the nilpotent operators (nilpontent t-norms). For the strictly
monotonously increasing t-norms, another form of the negation
operator is given in [5]:

η(x) = f−1

(
1

f(x)

)
,

where f : [0, 1] → [0,∞] is a continuous, increasing (or
decreasing) function and f is the generator function of the
strict monotone t-norm or t-conorm.

We can express these negation operators in terms of their
neutral values and we get a new form of the negation operator.

For the strict monotone operators,

ην∗(x) = f−1

(
f2(ν∗)

f(x)

)
(4)

The other form of the negation operator in terms of ν0, and
ν, and corresponding to (II), is

ην(x) = f−1

(
f(ν0)

f(ν)

f(x)

)
(5)

In the following we will use (4) and (5) to represent the
negation operator because here we are just considering strict
monotone operators and we sketch the shape of the negation
function.

Definition 2: If ν1 < ν2, then ην1(x) is a stricter negation
than ην2(x).

Definition 3 (Drastic negation): We call η1(x) and η2(x) a
drastic negation when

η1(x) =

{
1 if x 6= 1
0 if x = 1

η0(x) =

{
1 if x = 0
0 if x 6= 0
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Theorem 4: The negation operators

ην(x) = f−1

(
f(ν0)

f(ν)

f(x)

)
,

ην∗(x) = f−1

(
f2(ν∗)

f(x)

)
have the following properties:

a. They are continuous.
b. They are strictly monotonous decreasing.
c. The correspondence principle is valid:

ην(0) = 1, ην(1) = 0, ην∗(0) = 1, ην∗(1) = 0

d) The involutive property is valid:

ην(ην(x)) = x, ην∗(ην∗(x)) = x.

e) The neutral value property holds:

ην(ν) = ν0, ην∗(ν∗) = ν∗.

Proof: Using the representation form of the negation
operator, this is trivial.

In fuzzy theory, we utilise two types of negation operator.
These are

Yager: ηm(x) = m
√

1− xm (6)

and
Hamacher, Sugeno: ηa(x) =

1− x
1 + ax

(7)

We can express the parameters of the negation operator in
terms of its neutral values n(ν∗) = ν∗. So we have

ν∗ = η(ν∗) = m
√

1− νm∗ and m = − ln(2)

ln(ν∗)

Then the Yager negation operator has the form

ην∗(x) =
(

1− x−
ln 2
lnν∗

)− ln ν∗
ln2

(8)

In a similar way, for the Hamacher negation operator,

ην(x) =
1

1 + 1−ν0

ν0

1−ν
ν

x
1−x

, ην∗(x) =
1

1 + ( 1−ν∗
ν∗

)2 x
1−x

(9)
This form of the negation operator can be found in [6].
Definition 5: A negation ην1

(x) is stricter than ην2
(x), if

ν1 < ν2.

III. MODALITIES INDUCED BY TWO NEGATION
OPERATORS

The linguistic hedge “very” always expresses a tight
interval, whereas ”more or less” expresses a looser interval
(less tight). In this sense, "very" corresponds to the necessity
operator and "‘more or less"’ the possibility operator.
With this starting point, the necessity and possibility operators
used in fuzzy logic are based on an extension of modal logic
to the continuous case. We begin with the negation operator

and we make use of two types of this operator; one that is
strict, and one that is less strict. We will show that with these
two negation operators we can define the modal hedges.

Modal logic, which is an area of mathematical logic,
can be viewed as a logical system obtained by adding logical
symbols and inference rules.

We will construct linguistic modal hedges called necessity
and possibility hedges. The construction is based on the fact
that modal operators can be realised by combining two kinds
of negation operators.

In intuitionistic logic, another kind of negation operator also
has to be taken into account. Here ∼x means the negated
value of x. ∼1 x and ∼2 x are two negation operators.

In modal logic, ∼1 x means "x" is impossible. In other
words, ∼1 is a stronger negation than not "x", i.e. ∼2 x.
Because ∼1 x in modal logic, it means "x is impossible".
We can write

impossible x = necessity(not x)

∼1 x := impossible x

∼2 x := not x

∼1 x = � ∼2 x

We will show that both operators belong to the same class
of unary operators, and also show that because they have
a common form in the Pliant system, we will denote both
of them by τν(x). Depending on the ν value, we get the
necessity hedge or the possibility hedge.

As we mentioned above, in modal logic we have two more
operators than in the classical logic case, namely necessity and
possibility; and in modal logic there are two basic identities.
These are

∼1 x = impossible(x) = necessity(not(x)) = � ∼2 x
(10)

♦x = possible(x) = not(impossible(x)) =∼2 (∼1 x) (11)

In our context, we model impossible(x) with a stricter
negation operator than not(x). Eq.(11) serves as a definition
of the possibility operator.

If in Eq.(10) we replace x by ∼2 x and using the fact that
∼2 x is involutive, we get

�x =∼1 (∼2 x),

and with Eq.(11), we have

♦x =∼2 (∼1 x).

Definition 6: The general form of the modal operators is
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τν1,ν2
(x) = ην1

(ην2
(x)) ,

where ν1 and ν2 are neutral values. If ν1 < ν2, then τν1,ν2(x)
is a necessity operator and if ν2 < ν1, then τν1,ν2(x) is a
possibility operator.
From the above definition, we get

τν1,ν2
(x) = f−1

(
f(ν1)

f(x)

f(ν2)

)
,

This can be rewritten as

τν,ν0(x) = f−1

(
f(ν0)

f(x)

f(ν)

)
.

Dombi operator case:

fc(x) =

(
1− x
x

)α
and fd(x) =

(
x

1− x

)α
τνc(x) =

1

1 + 1−ν0

ν0

(
νc

1−νc
1−x
x

)
τνd(x) =

1

1 + 1−ν0

ν0

(
νd

1−νd
1−x
x

)
IV. BAYESIAN INFERENCE AND MODALITIES

Theorem 7: Here, we show that Bayes’ theorem can be
reformulated so we have the modal operator of the Pliant
system.

Proof: Bayes’ theorem modifies a probability value, given
new evidence, in the following way

P (H|E) =
P (E|H)P (H)

P (E)

P (E|H) is called the conditional probability. It is also
known as a likelihood function when it is regarded as a
function of H for fixed E (P (E|Hx)). P (H) is called an a
priori probability, P (E) is called a marginal probability and
P (H|E) is called an a posterior probability. Because P (E)
can be rewritten as

P (E) = P (E|H)P (H) + P (E|H̄)P (H̄),

where H̄ is the complementer event (H ∪ H̄ = X (H, H̄ span
over all possibilities) and H ∩ H̄ = ∅). We can employ the
identity P (H̄) = 1 − P (H). Hence, we can rewrite Bayes’
formula as

P (H|E) =
P (E|H)P (H)

P (E|H)P (H) + P (E|H̄)P (H̄)

=
1

1 + P (E|H̄)
P (E|H)

1−P (H)
P (H)

=
1

1 + ν
1−ν

1−x
x

= τν(x) (12)

where P (H) = x, ν = 1

1+
P (E|H)

P (E|H̄)

and τν(x) is modal

operator in the Pliant system. The ratio of two likelihood
functions is called the likelihood ratio. So

∧E =
P (E|H)

P (E|H̄)

and we get

ν =
1

1 + ∧E
or P (H|E) =

1

1 + 1
∧E

1−P (H)
P (H)

P (H|E) can be expressed in terms of ∧E . From Eq. 12, we
get

P (H|E)

1− P (H|E)
= ∧E

P (H)

1− P (H)
or odd(H|E) = ∧Eodd(H),

(13)
where odd(H) and odd(H|E) are called the odds of the a
priori probability and a posteriori probability. That is, the
posteriori probability is a linear function of the odds of prior
probability.

With two pieces of evidence E1 and E2 that are marginally
and conditionally independent of each other, successively
applying Bayes’ theorem yields

P (H|E1 ∧ E2)

= P (E1|H)P (E2|H)P (H)
P (E1|H)P (E2|H)P (H)+P (E1|H̄)P (E2|H̄)P (H̄)

Thus, we get

P (H|E1 ∧ E2) =
1

1 + 1
∧1∧2

1−P (H)
P (H)

=
1

1 + ν
1−ν

1−P (H)
P (H)

= τν(P (H))

So we get again the modal operator of the Pliant system, where

∧1 =
P (E1|H)

P (E1|H̄)
, ∧2 =

P (E2|H)

P (E2|H̄)
, ν =

1

1 + 1
∧1∧2

More generally, we can infer that

odd

(
H|

n⋂
i=1

Ei

)
= odd(H)

n∏
i=1

∧i, where ∧i =
P (Ei|H)

P (Ei|H̄)

and
n∏
i=1

∧i = ∧ is called Bayes’ factor

odd

(
H|

n⋂
i=1

Ei

)
= τν(P (H))

and

ν =
1

1 +
∏
∧i
.
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V. INTRODUCTION: HEDGES IN THE ZADEH’S SENSE

In the early 1970s, Zadeh [7] introduced a class of powering
modifiers that defined the concept of linguistic variables and
hedges. He proposed computing with words as an extension
of fuzzy sets and logic theory (Zadeh [8], [9]). The linguistic
hedges (LHs) change the meaning of primary term values.
Many theoretical studies have contributed to the computa-
tion with words and to the LH concepts (see De Cock and
Kerre [10]; Huynh, Ho, and Nakamori [11]; Rubin [12];
Türksen [13]).

As pointed out by Zadeh [14], [15], [16], linguistic variables
and terms are closer to human thinking (which emphasise
importance more than certainty) and are used in everyday life.
For this reason, words and linguistic terms can be used to
model human thinking systems (Liu et al. [17]; Zadeh [18]).

1) General form of modifiers: Three types of modifiers were
introduced earlier. These are the

1) Negation operator:

ην,ν0
(x) = f−1

(
f(ν0)

f(ν)

f(x)

)
2) Hedge operators, necessity and possibility operators:

τν,ν0
(x) = f−1

(
f(ν0)

f(x)

f(ν)

)
(14)

3) Sharpness operator:

χ(λ)(x) = f−1
(
fλ(x)

)
(15)

These three types of operators can be represented in a
common form.

Definition 8: The general form of the modifier operators is

κ(λ)
ν,ν0

(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
(16)

Theorem 9: Negation (1), hedge (14) and sharpness (15) are
special cases of this modifier.

Proof:

λ = −1 is the negation operator
λ = 1 is the hedge operator

f(ν0) = f(ν) = 1 is the sharpness operator

VI. CHARACTERIZATION OF THE MODIFIERS BY A
DIFFERENTIAL EQUATION

We saw previously that κ(x) is closely related to the
generator function. Namely, it is an isomorphic mapping of the
abstract space of objects onto the real line. If we have different
types of mapping, then we will have different operators. If
we change the isomorphic function f we get conjunctive,
disjunctive or aggregation operators. See Figure 1.
We will characterize κ(x) by this f function.

Let us introduce the effectiveness notion for f(x) by defining
the following

r(x) =
f ′(x)

f(x)

Fig. 1. Interpretation of x ◦ y = f−1(f(x) + f(y))

Definition 10: We say that the effectiveness of κ(x) is
normal if

r(κ(x)) = λr(x)

and the boundary condition holds

ν0 = κ(ν)

Theorem 11: Let κ(x) be an arbitrary, continuous and dif-
ferentiable modifier on [0, 1] with the property

κ(ν) = ν0.

κ(x) is normal iff

κ(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
,

where λ 6= 0. This is the general form of the modifier operator.
Proof: Let f be a strictly monotonous transformation of

κ(x). Then

r(κ(x)) =
f(κ(x))′

f(κ(x))
= λ

f ′(x)

f(x)
= r(x) (17)

or, rewriting this equation, we have

f(κ(x))′

f ′(x)
= λ

f(κ(x))

f(x)
,

That is, the ratio of the speed of the transformed value κ(x)
and the speed of x are the same as the ratio of the transformed
value and the value x multiplied by a constant λ.

Recall that

(ln(f(x)))′ =
f ′(x)

f(x)
,

so Eq.(17) can be written in the following form:

(ln(f(κ(x))))′ = (λ ln(f(x)))′
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Integrating both sides, we get

ln(f(κ(x))) = λ ln(f(x)) + C

and
f(κ(x)) = Cfλ(x)

Expressing this in terms of κ(x), we find that

κ(x) = f−1
(
Cfλ(x)

)
Using the boundary condition κ(ν) = ν0,

f(ν0) = Cfλ(ν) ⇒ C =
f(ν0)

fλ(ν)
,

which is the desired result.
Corollary 12: From (17), we see that

f ′(κ(x))κ′(x)

f(κ(x))
= λ

f ′(x)

f(x)

and so
κ′(x) = λ

f(κ(x))

f ′(κ(x))

f ′(x)

f(x)

is related to negation operators

VII. SIGMOID AND KAPPA FUNCTION

The sigmoid function plays an role in economics, biology,
chemistry and other sciences. A key feature of the sigmoid
function is that the solution of the differential equation
σ
′
(x) = λσ(x)(1− σ(x)) is the sigmoid function.

Let us replace σ(x) function by κ(x)
x and 1 − σ(x) by

1−κ(x)
1−x , then with this substitution, we can characterize the

kappa function. Here, σ(x) is the value and κ(x)
x is the relative

value; and similarly 1 − σ(x) is the value and 1−κ(x)
1−x is the

relative value.
Theorem 13: Let κ(x) be an arbitrary continuous and dif-

ferentiable function on [0, 1] with the properties

κ(ν) = ν0 and κ′(x) = λ
κ(x)(1− κ(x))

x(1− x)
.

If the above conditions hold, then the κ(x) function is

κ(x) =
1

1 + 1−ν0

ν0

(
1−ν
ν

x
1−x

)λ (18)

Proof: Making use of (18), we can write

y′ = κ′(x) = λ
1

x(1− x)

1
1

κ(x)(1− κ(x))

= λ
1

x(1− x)

1
1

y(1− y)

=
f1(x)

f2(y)

where

f1(x) =
λ

x(1− x)
f2(x) =

1

y(1− y)

The differential equation

y′ =
f1(x)

f2(y)

is separable, so the solution is:∫
f2(y)dy =

∫
f1(x)dx+ c

In our case∫
1

y(1− y)
dy = λ

∫
1

x(1− x)
dx+ c

so

ln(y)− ln(y − 1) = λ ln(x)− ln(x− 1) + ln(a)

We get
y

1− y
= a

(
x

1− x

)λ
,

so the unary operator is

y =
1

1 + a
(

1−x
x

)λ

VIII. CHARACTERIZATION OF THE KAPPA FUNCTION BY
ODDS

Let us denote the odds of the input variable by X , i.e.

X =
x

1− x
(19)

and the odds of the output (transformed) value by Y, i.e.

Y =
κ(x)

1− κ(x)
. (20)

Let F (X) be the corresponding function between the input
and output odds

Y = F (X). (21)

It is natural to assume that

F (X1X2) = C1F (X1)F (X2) (22)

or
F

(
X1

X2

)
= C2

F (X1)

F (X2)
, (23)

where Ci > 0, i = 1, 2.
Theorem 14: The general solution of (21) and (23) is

F (X1, X2) =
1

C1
Xλ (24)

F (X1, X2) = C2X
λ (25)
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Then (24) and (25) have the same form, i.e. C1 = 1
C2

.

Proof: See [19].
Theorem 15: If (22) (or (23)) is true, then κ(x) has the form

κ(x) =
1

1 + C
(

1−x
x

)
Proof: Using (19), (20) and (24), we get

κ(x)

1− κ(x)
=

1

C

(
x

1− x

)λ
. (26)

A. Extension of κλν (x) to [a, b] interval
We can extend K on the [a, b] interval. K : [a, b]→ [0, 1]
Here, κ(x) is defined on [0, 1]. We can extend it to the [a, b]

interval by applying a linear transformation. That is,

x :=
x− a
b− a

and

ν :=
xν − a
b− a

Then we get

K
(λ)
a,b (x) =

1

1 + 1−ν0

ν0

(
xν − a
b− xν

b− x
x− a

)λ
K

(λ)
a,b (x) has the following properties:

K
(λ)
a,b (xν) = ν0,

K
(λ)
a,b (a) = 0 and Ka,b(b) = 1

Ka,b has the same form as that in [20], where we showed
that this is the general form for a certain class of membership
function.

We can extend K such that K∗ : [a, b] → [A,B]. This
K∗(x) function can be written in the following implicit form:

K∗(x)−K∗(a)

K∗(b)−K∗(x)

K∗(b)−K∗(xν)

K∗(xν)−K∗(a)
=

(
x− a
b− x

)λ(
b− xν
xν − a

)λ
(27)

Now let

X :=

(
x− a
b− x

)λ(
b− xν
xν − a

)λ
K∗(xν)−K∗(a)

K∗(b)−K∗(xν)
(28)

Then we get the explicit form of K(x)

K∗(x) =
XK∗(b) +K∗(a)

1 +X
(29)

IX. CONCLUSIONS

In this study, we provided a general and theoretical basis
for modalities. Here, we defined necessity and possibility
operators, then we defined them via using a generator function
of the Pliant operators. We gave a theoretical basis for hedges
and the main result is a unified formula for unary operators.
The subroutine can be downloaded from the following website:
http://www.inf.u-szeged.hu/~dombi/.
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Keywords—non -Newtonian; mixed convection; incompressible; 
stagnation-point; spectral method.  

 
Abstract—An analysis of the steady magnetohydrodynamis 

(MHD) mixed convection flow of a viscoelastic fluid stagnating 
orthogonally on a heated or cooled vertical flat plate has been 
studied. Using similarity variables, the governing equations are 
transformed into a system of two coupled non-linear ordinary 
differential equations which then are solved numerically using the 
spectral method. 
 

I. INTRODUCTION 
NTEREST  in the study of non-Newtonian fluids has 
become more evident over the past decades due to the 

occurrence of these fluids in many engineering and industrial 
applications.  Non-Newtonian fluids is a broad class of fluids 
in which the relation between the shear stress and the shear 
rate is nonlinear and hence there exist many constitutive 
relations. One such relation describes the so-called second-
grade fluid. The equations of motion of second-grade fluid are 
highly non-linear and one order higher than the Navier-Stokes 
equations.  

The mixed convection flow is encountered in many 
industrial and technological applications which include 
electronic devices cooled by fans, solar central receivers 
exposed to wind currents, etc. (Seshadri et al. [1]). The mixed 
convection in stagnation flow is important when the buoyancy 
forces due to the temperature difference between the surface 
and the free stream become large. Consequently, both the flow 
and thermal fields are significantly affected by the buoyancy 
forces. Hiemenz [2] derived an exact solution of the Navier-
Stokes equations which describes the steady flow of a viscous 
and incompressible fluid directed perpendicularly 
(orthogonally) to an infinite flat plate. An analytic technique, 
namely the homotopy analysis method (HAM), has been 
recently used by Hayat et al. [3] to study the steady mixed 
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convection in two-dimensional stagnation flows of a 
viscoelastic fluid around a heated vertical surface for the case 
when the temperature of the wall varies linearly with the 
distance from the stagnation point. 

The aim of this paper is to analyze the steady two-
dimensional mixed convection flow of a second grade fluid 
stagnating orthogonally on a heated or cooled vertical flat 
plate. The governing equations are transformed into a system 
of two coupled non-linear ordinary differential equations using 
similarity variables. Employing the spectral method (Canuto et 
al. [4]), the resulting equations are then solved numerically.  
     

II. BASIC EQUATIONS 
Consider the steady orthogonal  mixed convection flow of 

a second grade fluid close to the stagnation point on a vertical 
surface. The oblique velocity of the inviscid (potential) fluid is 

),( eee vuv  and it is assumed that the temperature of the plate 

is )(xTw , while the uniform temperature of the ambient fluid 

is ∞T , where ∞> TxTw )(  corresponds to a heated plate 

(assisting flow) and ∞< TxTw )(  corresponds to a cooled 

plate (opposing flow), respectively. The potential velocity ev  

has the components eu a x b y= + and ev a y= − , 
where ba and are positive constants. It is also assumed that 

the wall temperature )(xTw  varies linearly with x  being of 

the form xcTxTw += ∞)( , where c  is  positive or negative 
constant. The bar on a variable denotes its dimensional form. 
 
     Under these assumptions along with the Boussinesq  
approximation, the steady two-dimensional mixed convection 
flow of a second grade fluid can be written in dimensionless 
form as follows:  

0=
∂
∂

+
∂
∂

y
v

x
u

                            (1) 

MHD mixed convection flow of a second-grade  
fluid on a vertical surface 

Fotini Labropulu, Daiming Li and Ioan Pop 
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and the boundary conditions in dimensionless form are 
 

0, 0, ( ) at 0
, , 0, as

w

e e e

v u T T x x y
u x v y T p p y

= = = = =
= = − = = → ∞

                                                                                                   
(5) 

where Pr  is the Prandtl number, eW  is the Weissenberg 

number, M  is the Hartmann number, 1λ  is a viscoelastic 
parameter and λ  is the constant mixed convection parameter.  
 
It should be mentioned that 0>λ  (heated plate) corresponds 
to assisting flow and 0<λ  (cooled plate) corresponds to 
opposing flow, while 0=λ corresponds to forced convection 
flow, respectively. 
 
Using Eqs. (2) and (3), and boundary conditions (5), the non-
dimensional pressure ep p=  of the inviscid or far flow can 
be expressed as 

  .)(
2
1 22 Constyxpp e ++−==                       (6) 

The physical quantity of interest are the shear stress or skin 
friction at the wall and the local heat flux from the flat plate, 
which can be easily shown that in dimensionless form are 
given by  
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0
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Tq
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∂ = −  ∂
                                                            (8)                                                                           

The boundary conditions (5) suggest that Eqs. (1) to (4) have 
a solution of the form 
  ( ) , ( ), ( )u x F y v F y T x yθ= = − =′               (9) 
where prime denotes differentiation with respect to y .  
Substituting (9) into Eqs. (2) to (4) and eliminating the 
pressure p  by cross differentiation of Eqs. (2) and (3) it 
results in, after one integration of the resulting equation, the 
following ordinary differential equations  

                    

( )2 2

1

2

0

ivF F F F We F F F F F

MF Cλθ

+ − − − +′′′ ′′ ′ ′ ′′′ ′′

− ± + =′
                                                                                             

(10) 

0''''
Pr
1

=−+ θθθ FF                                               (11)              

where 1C  is a  constant of integration. The boundary 
conditions (5) become 

     
(0) 0, '(0) 0, '( ) 1
(0) 1, ( ) 0

F F F
θ θ

= = ∞ =
= ∞ =

                        (12)                         

Taking the limit ∞→y  in Eq. (10) and using the boundary 

conditions 1)(' =∞F  and 0)( =∞θ , we get 11 =C . 
Further, from an analysis of the boundary layer equation (10) 
it results in that )(yF  behaves as       
   ( ) as      F y y A y= + → ∞                                (13) 
where )(WeAA =  is a constant accounts for the boundary 
layer displacement  

  
Employing (9), the dimensionless skin friction and the local 
heat transfer given by equations (7) and (8) can now be 
written as 

''(0)w x Fτ =                                                (14) 

(0)wq xθ= − ′                                                (15) 
where the values of (0)F ′′  and (0)θ′ can be calculated 
from equations (10) to (11) with the boundary conditions (12) 
for various values of the parameters , ,We Mλ  and Pr . 
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III. METHOD OF SOLUTION, RESULTS AND DISCUSSION 
 

The coupled equations (10) and (11) subject to boundary 
conditions (12) has been solved numerically for various values 
of  , ,We Mλ  and Pr  using the highly accurate and at the 
same time stable spectral method (Canuto et al., [4]).  

 
Numerical values of (0)F ′′  and (0)θ− ′ for assisting 

flows are shown in Tables 1 to 2 for various values of Pr  
when 0.0We = , 1λ =   and 0.M =  These values are in 
good agreement with previously reported values of 
Ramachandran et a. [5], Lok et al. [6] and Ishak et al. [7]. 
Numerical values of (0)F ′′  and (0)θ− ′ for assisting and 
opposing flows are shown in Tables 3 to 4 for various values 
of Pr  and  We  when 0.2λ =   and 0.M = It is observed 
from Tables 3 and 4 that the skin friction coefficient and the 
local heat transfer are decreasing when the Weissenberg 
number We is increasing in both the assisting and opposing 
flows. On the other hand, the skin friction is decreasing and 
the local heat transfer is increasing when Pr is increasing in 
the case of assisting flow. In the case of opposing flow, the 
skin friction and the local heat transfer are increasing as Pr is 
increasing. 
 
The variation of ( )F y′  for various values of λ  when 

0.3We =  and Pr 1= for assisted flow is shown in Figure 1. 
Figure 2 depicts the variation of ( )F y′  for various values of 
λ  when 0.3We =  and Pr 1= for opposed flow. Figure 3 
illustrates the variation of ( )yθ  for various values of λ  
when 0.3We =  and Pr 1= for assisted flow. The variation 
of ( )yθ  for various values of λ  when 0.3We =  and 
Pr 1= for opposed flow are shown in Figure 4.  
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Table 1. Numerical values of (0)F ′′ for various values of 
Pr for assisting flow when 1, 0Weλ = =  and 0.M =  
 

Pr  Ramachandra
n 
   et al. [12] 

  Lok  
et al. [13] 

  Ishak  
et al.                          
[14] 

Present 
Results 

0.7 1.7063 1.706376 1.7063 1.7063 
1 - - 1.6754 1.6754 
7 1.1579 1.517952 1.5179 1.5179 
10 - - 1.4928 1.4928 
20 1.4485 1.448520 1.4485 1.4485 
40 1.4101 1.410094 1.4101 1.4101 
60 1.3903 1.390311 1.3903 1.3903 
80 1.3774 1.377429 1.3774 1.3774 

 
 
 
 
Table 2. Numerical values of (0)θ− ′ for various values of 
Pr  for assisting flow when 1, 0Weλ = =  and 0.M =  
 

Pr  Ramachandra
n 
   et al. [12] 

  Lok  
et al. [13] 

  Ishak  
et al. 
[14]                

Present 
Results 

0.7 0.7641 0.764087 0.7641 0.7641 
1 - - 0.8708 0.8708 
7 1.7224 1.722775 1.7224 1.7224 
10 - - 1.9446 1.9446 
20 2.4576 2.458836 2.4576 2.4576 
40 3.1011 3.103703 3.1011 3.1011 
60 3.5514 3.555404 3.5514 3.5514 
80 3.9095 3.194882 3.9095 3.9095 
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Table 3. Numerical values of (0)F ′′ for various values  
of Pr  and We  when 0.2λ =  and 0.M =  
 
We
 

Pr  Assisting 
Flow 

Opposing flow 

0.0 0.2 1.35426 1.10711 
0.2 0.2 1.15591 0.95607 
0.5 0.2 0.98230 0.81854 
0.7 0.2 0.90441 0.75554 
1.0 0.2 0.81738 0.68434 
1.5 0.2 0.71694 0.60129 
2.0 0.2 0.64713 0.54310 
    
0.2 0.0 1.19920 0.92091 
 0.5 1.14411 0.96893 
 0.7 1.13961 0.97378 
 1.0 1.13482 0.97892 
 
 
 
 
Table 4. Numerical values of (0)θ− ′ for various values  
of Pr  and We  when 0.2λ =  and 0.M =  
 
We
 

Pr  Assisting 
Flow 

Opposing flow 

0.0 0.2 0.44198 0.42351 
0.2 0.2 0.42606 0.40958 
0.5 0.2 0.40990 0.39499 
0.7 0.2 0.40177 0.38753 
1.0 0.2 0.39189 0.37837 
1.5 0.2 0.37922 0.36652 
2.0 0.2 0.36944 0.35729 
    
0.2 0.0 0.03221 0.03221 
 0.5 0.60841 0.58753 
 0.7 0.69073 0.66820 
 1.0 0.78862 0.76435 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: Variation of ( )F y′  for various values of λ  when 

0.3We =  and Pr 1= for assisted flow. 
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Figure 2: Variation of ( )F y′  for various values of λ  when 
0.3We =  and Pr 1= for opposed flow.  

 
 
 
 
 
 
 
 

 
 
Figure 3: Variation of ( )yθ  for various values of λ  when 

0.3We =  and Pr 1= for assisted flow.  
 
 
 
 
 
 
 

 
 
Figure 4: Variation of ( )yθ  for various values of λ  when 

0.3We =  and Pr 1= for opposed flow.  
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Workflow Analysis - A Task Model Approach
Glória Cravo, Member of Center for Linear Structures and Combinatorics, University of Lisbon

Abstract—In this paper we describe the structure of a workflow
as a graph whose vertices represent tasks and the arcs are
associated to workflow transitions. To each task an input/output
logic operator is associated and this logic operator can be the
logical AND (•), the OR (⊗), or the XOR -exclusive-or - (⊕).
Furthermore, we associate a Boolean term to each transition
present in the workflow.

The main contribution of this paper is the analysis of a
workflow through its tasks which allows us to describe the
dynamism of the workflow in a very simple way.

Finally, we describe the logical termination of workflows and
we present conditions under which this property is valid.

Index Terms—Graphs, Propositional Logic, Workflows, Busi-
ness Processes.

I. INTRODUCTION

AWorkflow is an abstraction of a business process that
consists on the execution of a set of tasks to complete

a process (for example, hiring process, loan application, sales
order processing, etc.). Tasks represent unities of work to be
executed that can be processed by a combination of resources,
such as a computer program, an external system, or human
activity. In the literature several papers are devoted to the
study of workflows, see for example [1], [2], [3], [4], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17] and the references
therein. In general, these approaches contemplate the use of
Petri Nets, State and Activity Charts, Event-Condition-Action
rules, Temporal Logic and Markov Chains.

In this paper we present a formalism to describe and analyse
the structure of workflows based on the concept of graph and
Propositional Logic. An important highlight of this paper is the
emphasis on the tasks present in the workflow, which allows
us to identify easily the dynamism present in the workflow.
Finally, we describe the logical termination in a very intuitive
form and we present conditions under which this property is
valid.

II. WORKFLOW STRUCTURE

In this Section we provide a complete description of the
structure of workflows. We start by introducing the formal
concept of a workflow. This workflow structure can be also
found in [5], [6], [7]. Notice this type of graphs has and
input/output logic operator associated with each vertex.

Definition 2.1: [5], [6], [7] A workflow is a tri-logic
acylic directed graph WG = (T,A,A′,M), where T =
{t1, t2, . . . , tn} is a finite nonempty set of vertices representing
workflow tasks. Each task ti (i.e., a vertex) has attributed
an input logic operator (represented by � ti) and an output

Glória Cravo is with the Center of Exact Sciences and Engineering, Univer-
sity of Madeira, 9020-105 Funchal, Madeira, Portugal, e-mail: gcravo@uma.pt
(see http://www.uma.pt).

logic operator (represented by ti ≺). An input/output logic
operator can be the logical AND (•), the OR (⊗), or the XOR
-exclusive-or - (⊕). The set A = {at, au, a1, a2, . . . , am} is a
finite nonempty set of arcs representing workflow transitions.
The transition at is the tuple (t, t1) and transition au is
the tuple (tn,u), where the symbols t and u represent
abstract tasks which indicate the entry and ending point of
the workflow, respectively. Every transition ai, i ∈ {1, . . . , n}
corresponds to a tuple of the form (tk, tl), where tk, tl ∈ T.

We use the symbol ′ to reference the label of a transition,
i.e., a′i references transition ai, ai ∈ A. The elements a′i are
called Boolean terms and form the set A′.

Given ti ∈ T, the incoming transitions for task ti are the
tuples of the form (tl, ti), tl ∈ T, and the outgoing transitions
are the tuples of the form (ti, tl), tl ∈ T.

The incoming/outgoing condition of task ti is the
Boolean expression a′k1

ϕ . . . ϕa′kl
, where ϕ ∈ {•,⊗,⊕},

a′k1
, . . . , a′kl

∈ A′ and ak1 , . . . , akl
are the incoming/outgoing

transitions of task ti. The terms a′k1
, . . . , a′kl

are connected
with the logic operator � ti, ti ≺, respectively. If task ti
has only one incoming/outgoing transition we assume that the
condition does not have logic operator.

An Event-Action (EA) model for task ti is an implication of
the form ti : fE  fC , where fE and fC are the incoming and
outgoing conditions of task ti, respectively. An EA model has
the behavior with two distinct modes: when fE is evaluated to
true, fC is also evaluated to true; when fE is evaluated to
false, fC is always false. And the EA model ti : fE  fC

is true if both fE , fC are true, otherwise it is false. We say
that the EA model ti : fE  fC is positive if its Boolean
value is true, otherwise it is said to be negative.

We denote by M the set of all EA models present in WG.
Task ti is said to be executed if the EA model ti : fE  fC

is positive. In this case, task ti has attributed the Boolean value
true.

Remark 1: Given an expression whose Boolean value is true
(respectively, false), we simply can represent this fact by 1,
(respectively, 0).

Remark 2: Given an EA model ti : fE  fC , if fE is false,
then task ti disables all its outgoing transitions. Consequently
fC is also false.

Notice the workflow starts its execution by enabling transi-
tion at, i.e., by asserting a′t to be true. In other words, the
workflow starts its execution by executing task t1.

Notice that a′i is true if transition ai is enabled, otherwise ai

is false. Transitions can be enabled by a user or by an external
event. If the EA model ti : fE  fC is negative, then both
fE , fC are false. In this case, all the transitions of fC are
disabled.
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Fig. 1. Example of a workflow.

Example 1: In Figure 1 we present a workflow WG =
(T,A,A′,M), where T = {t1, t2, . . . , t9}, A = {at,
au, a1, a2, . . . , a11}, A′ = {a′t, a′u, a′1, a′2, . . . , a′11}, M =
{t1 : a′t  a′1 • a′2, t2 : a′1  a′3 ⊕ a′4, t3 : a′2  a′8,
t4 : a′3  a′5⊕ a′6, t5 : a′4  a′7, t6 : a′5  a′9, t7 : a′6  a′10,
t8 : a′7 ⊕ a′9 ⊕ a′10  a′11, t9 : a′8 • a′11  a′u}.

The output logic operator of task t2 (t2 ≺) is a XOR (⊕),
while the input logic operator of task t9 (� t9) is an AND
(•).

The incoming transition for task t2 is a1 = (t1, t2) and its
outgoing transitions are a3 = (t2, t4) and a4 = (t2, t5). Hence
the incoming condition for task t2 is a′1, while its outgoing
condition is a′3 ⊕ a′4.

Task t2 is executed if the EA model t2 : a′1  a′3 ⊕ a′4 is
positive, i.e., if a′1 is true and only one of the Boolean terms
a′3, a

′
4 is true.

Proposition 2.2: Let WG = (T,A,A′,M) be a workflow.
Let al = (ti, tj) ∈ A, ti, tj ∈ T. If a′l is true, then ti is
necessarily executed.

Proof 1: Let us assume that a′l is true. Let ti : fEi
 fCi

be
the EA model associated to task ti. If task ti is not executed,
then the EA model ti : fEi  fCi is negative. Since the
EA model is negative, all outgoing transitions of task ti are
disabled, in particular al is disabled, i.e., a′l is false, wich is
a contradiction. Hence task ti is executed. �

Remark 3: The condition of Proposition 2.2 is not sufficient.
For example in the workflow from Figure 1, if task t2 is
executed, then the EA model t2 : a′1  a′3 ⊕ a′4 is positive.
For a′1 = true, a′3 = true, a′4 = false, a4 = (t2, t5), t2 is
executed, but a′4 is false.

Remark 4: Let us consider the Boolean term a′l where al =
(ti, tj) ∈ A, ti, tj ∈ T. If a′l is true, task tj is not necessarily
executed. For example, in the workflow from Figure 2, let us
assume that a′t = true, a′1 = true, a′2 = false, a′3 = true,
a′4 = true, a′5 = true, a′6 = true, a′7 = true, a′8 = true,
a′u = false. Hence, for this assignment the EA model t7 :
a′6 ⊕ a′8  a′u is negative, which means that task t7 is not
executed. Nevertheless, a8 = (t6, t7) and a′8 is true.

Next we introduce the concept of logical termination. This
is a very important structural property, since its analysis will

Fig. 2. Example of a workflow.

allow to verify if a workflow will eventually finish, according
to the initial specifications.

Definition 2.3: Let WG = (T,A,A′,M) be a workflow.
We say that WG logically terminates if task tn is executed
whenever task t1 is executed.

In the following result we establish a necessary and suffi-
cient condition for the logical termination.

Theorem 2.4: Let WG = (T,A,A′,M) be a workflow.
Then WG logically terminates if and only if a′u is true
whenever a′t is true.

Proof 2: Let us assume that WG logically terminates, i.e.,
task tn is executed whenever task t1 is executed. This means
that the EA model tn : fEn  a′u is positive whenever the
EA model t1 : a′t  fC1 is positive. Bearing in mind that
WG starts its execution by executing task t1, then the EA
model t1 : a′t  fC1 is positive. Hence the EA model tn :
fEn  a′u is also positive. Consequently, a′t, fC1 , fEn , a

′
u

are true. Thus, a′u is true whenever a′t is true.
Conversely, let us assume that a′u is true whenever a′t is

true. Let us assume that task t1 is executed. This means that
the EA model t1 : a′t  fC1 is positive. Bearing in mind
that a′u is true, according to the behavior of the EA models,
necessarily fEn is true. Hence the EA model tn : fEn  a′u
is positive, which means that task tn is executed. So we can
conclude that task tn is executed whenever task t1 is executed,
which means that WG logically terminates. �

Example 2: It is not hard to check that in the workflow from
Figure 1, a′u is true whenever a′t is true. Thus, the workflow
logically terminates.

Next we address our study on the dynamism present in
a workflow. Obviously the dynamism is associated to the
sequencial execution of its tasks. In the workflow from Figure
1 the execution of task t1 implies the execution of both tasks
t2, t3; the execution of task t2 implies the execution of only
one of the tasks t4, t5; the execution of task t4 implies the
execution of only one of the tasks t6, t7; the execution of only
one of the tasks t5, t6, t7 implies the execution of task t8.
Finally, the execution of both tasks t3, t8 implies the execution
of taks t9. Hence, we can state the execution of task t1 implies
the execution of t2 • t3; the execution of task t2 implies the
execution of t4 ⊕ t5; the execution of task t4 implies the
execution of t6 ⊕ t7; the execution of t5 ⊕ t6 ⊕ t7 implies
the execution of task t8; the execution of t3 • t8 implies the
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execution of taks t9. Notice that when we consider t2 • t3, the
operator • is the output logic operator of task t1,while when
we consider t5⊕ t6⊕ t7, ⊕ is the input logic operator of task
t8.

These remarks led us to introduce the following concept.

Definition 2.5: Let WG = (T,A,A′,M) be a workflow.
The compound tasks of WG are the elements of the following
form: ti1ϕti2ϕ . . . ϕtik

, ti1 , ti2 , . . . tik
∈ T, ϕ ∈ {•,⊗,⊕}.

The set of all compound tasks of WG is denoted by T ′, i.e.:

T ′ = {ti1ϕti2ϕ . . . ϕtik
: ti1 , ti2 , . . . tik

∈ T, ϕ ∈ {•,⊗,⊕}}.

Example 3: In the workflow from Figure 1, T ′ = {t2 • t3,
t4 ⊕ t5, t6 ⊕ t7, t5 ⊕ t6 ⊕ t7, t3 • t8}.

Remark 5: Since every task ti has associated a Boolean
value, according to its execution, it is also natural to attribute
a Boolean value to the compound tasks of WG. The natural
attribution is the following. Given any compound task of WG,
ti1ϕti2ϕ . . . ϕtik

, ϕ ∈ {•,⊗,⊕}:
If ϕ = •, then the Boolean value of ti1ϕti2ϕ . . . ϕtik

is 1
if and only if the Boolean value of all tasks ti1 , ti2 , . . . , tik

is
equal to 1;

If ϕ = ⊗, then the Boolean value of ti1ϕti2ϕ . . . ϕtik
is 1 if

and only if there exists at least one of the tasks ti1 , ti2 , . . . , tik

whose Boolean value is equal to 1;
If ϕ = ⊕, then the Boolean value of ti1ϕti2ϕ . . . ϕtik

is 1
if and only if there exists only one of the tasks ti1 , ti2 , . . . , tik

with Boolean value equal to 1.
Naturally, we can state that a compound task

ti1ϕti2ϕ . . . ϕtik
is executed if and only if its Boolean

value is equal to 1, which means that the compound task
ti1ϕti2ϕ . . . ϕtik

is positive. In other words, ti1ϕti2ϕ . . . ϕtik

is executed if and only if:
If ϕ = •, all tasks ti1 , ti2 , . . . , tik

are executed;
If ϕ = ⊗, at least one of the tasks ti1 , ti2 , . . . , tik

is
executed;

If ϕ = ⊕, only one of the tasks ti1 , ti2 , . . . , tik
is executed.

Definition 2.6: Let WG = (T,A,A′,M) be a workflow. Let
ti, tj , ti1 , ti2 , . . . , tik

, tj1 , tj2 , . . . , tjl
∈ T, ϕ, ψ{•,⊗,⊕}.

A compound task model is an implication with one of the
following forms:

(1) ti ↪→ tj1ψtj2ψ . . . ψtjl
;

(2) ti1ϕti2ϕ . . . ϕtik
↪→ tj ;

(3) ti1ϕti2ϕ . . . ϕtik
↪→ tj1ψtj2ψ . . . ψtjl

.
Usually we represent a compound task model by tIi

↪→ tOi
,

where tIi is called the incoming task and tOi is called the
outgoing task. We say that a compound task model tIi ↪→ tOi

is positive if both incoming and outgoing tasks are positive,
i.e., if both tasks tIi

, tOi
are executed.

In particular, the implication of the form ti ↪→ tj is called
a simple task model. Clearly, it is positive if both tasks ti, tj
are executed.

The set of all simple and compound task models present in
WG is called the set of task models of WG and is denoted
by TM.

The task models have the behavior with two distinct modes:
if its incoming task is true, necessarily its outgoing task is

true; if the incoming task is false, the outgoing task is false.
In other words, if tIi

↪→ tOi
is a compound task model, then

tIi
is executed if and only if tOi

is executed.

Notice that in a compound task model tIi
↪→ tOi

, at least
one of the tasks tIi

, tOi
is compound.

Example 4: In the workflow from Figure 1, the set of its task
models is: TM = {t1 ↪→ t2 • t3, t2 ↪→ t4 ⊕ t5, t4 ↪→ t6 ⊕ t7,
t5 ⊕ t6 ⊕ t7 ↪→ t8, t3 • t8 ↪→ t9}.

From now on, we use the symbol ←→ with the following
meaning: X ←→ Y means that the compound statements X
and Y are logically equivalent.

According to simple rules of Logic and taking into account
the behavior of the task models, we can infer the following
rules that allow us to identify new task models present in the
workflow.

Remark 6: Let WG = (T,A,A′,M) be a workflow.
(a) If both tasks models tIi

↪→ tOi
and tIj

↪→ tOj
belong

to TM and tOi
←→ tIj

then the model tIi
↪→ tOj

still holds
in WG.

(b) If both task models tIi
↪→ tOi

and tIj
↪→ tOj

belong
to TM , where tOi

←→ tLϕtIj
, ϕ ∈ {•,⊗,⊕} then the task

model tIi ↪→ tLϕtOj still holds in WG.
(c) If both task models tIi

↪→ tOi
and tOj

↪→ tIj
belong

to TM , where tOi
←→ tLϕtIj

, ϕ ∈ {•,⊗,⊕} then the task
model tIi ↪→ tLϕtOj still holds in WG.

(d) If both task models tIi
↪→ tOi

and tIj
↪→ tOj

belong
to TM , where tIi

←→ tLϕtIj
, ϕ ∈ {•,⊗,⊕} then the task

model tLϕtOj ↪→ tOi still holds in WG.
(e) If both task models tIi

↪→ tOi
and tOj

↪→ tIj
belong

to TM , where tIi
←→ tLϕtIj

, ϕ ∈ {•,⊗,⊕} then the task
model tLϕtOj ↪→ tOi still holds in WG.

The previous remark allow us to identify new task models,
as it is described below.

Definition 2.7: Let WG = (T,A,A′,M) be a workflow.
An extended task model is a model obtained by applying a
finite sequence of some of the rules presented in Remark 6.
We denote by TM ′ the set of all extended task models of
WG.

Example 5: In the workflow From Figure 1, bearing in mind
that t1 ↪→ t2 • t3, t2 ↪→ t4⊕ t5 ∈ TM, according to Remark 6
we can conclude that the model t1 ↪→ (t4⊕ t5) • t3 still holds
in WG. Therefore, we can state that t1 ↪→ (t4⊕ t5) • t3 is an
extended task model of WG.

Notice we adopt the same notation of the task models to
represent the extended task models. Furthermore, the extended
task models verify the same properties of the task models. In
particular, given an extended task model B ↪→ C, necessarily
both B, C have the same Boolean value.

Definition 2.8: Let WG = (T,A,A′,M) be a workflow. We
define the closure of TM as the set of all task models and
extended task models in WG. This set is denoted by TM∗.
In other words, TM∗ = TM ∪ TM ′.
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Example 6: As we saw in Example 4 in the workflow from
Figure 1, TM = {t1 ↪→ t2 • t3, t2 ↪→ t4 ⊕ t5, t4 ↪→ t6 ⊕ t7,
t5 ⊕ t6 ⊕ t7 ↪→ t8, t3 • t8 ↪→ t9}. Since t1 ↪→ t2 • t3, t2 ↪→
t4 ⊕ t5 ∈ TM , according to Remark 6 we can deduce that
t1 ↪→ (t4⊕ t5) • t3 ∈ TM∗. Now bearing in mind that t4 ↪→
t6⊕ t7 ∈ TM, applying again Remark 6 we can conclude that
t1 ↪→ ((t6⊕t7)⊕t5)•t3 ∈ TM∗. As (t6⊕t7)⊕t5 ←→ t5⊕t6⊕
t7 we can state that t1 ↪→ (t5⊕ t6⊕ t7) • t3 ∈ TM∗. Bearing
in mind that t5 ⊕ t6 ⊕ t7 ↪→ t8, applying once more Remark
6 we infer that t1 ↪→ t8 • t3 ∈ TM∗. As t8 • t3 ←→ t3 • t8,
applying again Remark 6 we conclude that t1 ↪→ t9 ∈ TM∗.

Notice the workflow from Figure 1 logically terminates and
t1 ↪→ t9 ∈ TM∗. Furthermore, we studied many other exam-
ples of workflows that logically terminates and simultaneously
t1 ↪→ tn ∈ TM∗. The analysis of these different cases led us
to formulate the following conjecture.

Conjecture 1: Given a workflow WG = (T,A,A′,M), then
WG logically terminates if and only if t1 ↪→ tn ∈ TM∗.

III. CONCLUSION

In this paper we develop a formalism to describe and analyse
the structure of workflows. Furthermore, our analysis allows
us to study the logical termination of workflows. In particular
we present conditions under which this property is valid.

It is important to point out that our main emphasis is
the analysis of a workflow through the study of its tasks.
Another relevant aspect of our approach is the introduction
of the concept of compound tasks. This concept allows us to
identify new task models based on the existing ones. Through
these new task models we are able to describe the dynamism
present in a workflow. Clearly, the study of the dynamism of
a workflow is equivalent to analyse the sequential execution
of its tasks.

Finally, we conjecture that a workflow (WG) logically
terminates if and only if t1 ↪→ tn is in the closure of WG.
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Abstract—Rule-based fuzzy systems are gaining increasing 

importance for classification in many fields of application. Various 

degrees of freedom for the construction of rule-based fuzzy models 

are analyzed here, comprising fuzzy sets shape, different types of 

norms, axes rotation, and weights for antecedents and consequents of 

each rule and for different rules. Results of application on an example 

dataset are discussed in terms of classification performances, taking 

into account interpretability at the same time. 

 

Keywords—classification, norms, rule-based fuzzy systems, 

fuzzy set shapes, weights. 

I. INTRODUCTION 

ULE-BASED fuzzy systems are gaining increasing 

importance in a widening variety of fields of application. 

In particular, classification problems can be tackled by using 

fuzzy systems, basically constituted by a fuzzy partition of 

influencing variables, and a rule base connecting them to 

different classes to which each data sample should be 

associated. However, some structural decisions to be made in 

designing this type of systems have not been extensively 

considered yet. For example, at the best of our knowledge, the 

choices of the shape of fuzzy sets, often triangular or Gaussian, 

and of the type of T-norm and S-norm used for inference, have 

been studied only few times with rationale motivations [1-4]. 

Moreover, while a simple fuzzy system could be promptly 

interpretable by the user, many complications can be added to 

the system, making it gradually more similar to a neural 

network, aiming at improving performances, but returning the 

drawback of hindering the overall transparency and 

interpretability. 

In this work, the classification performances of different 

rule-based fuzzy systems are studied, starting from a simple 

system, and going towards a more complicated one. A recently 

developed method [5] is used to extract knowledge from data, 

and to obtain a reference fuzzy system. 

Firstly, on the simplified version of the reference system, the 

choice of the shape of MFs is evaluated, by considering the 

differences among a crisp system, a fuzzy system with linear 
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membership functions (MFs), and the substitution with 

smoothed MFs. Then, using a family of T-norms and S-norms, 

and their soft couterparts, the types of norm which are more 

appropriate for different uses in the inference process are 

individuated. Moreover, possible complications added to the 

simplified system, such as the use of linear combinations of the 

original variables, the use of weights for different antecedents 

of each rule, weights for different rules, and the definition of 

rule consequents as a set of classes with respective 

probabilities instead of a single class, are evaluated in terms of 

their power of improving performances, and the results are 

discussed in order to decide whether such improvements could 

be great enough to justify the associated loss of system 

interpretability. 

A well-known dataset, i.e. the Wisconsin Breast Cancer 

Dataset [6], is used as a proof of concepts. In particular, only a 

couple of independent variables is considered, in order to 

allow the 3D visualization of surfaces representing the 

posterior probabilities of different classes, and thus discuss the 

changes in the results while structural changes are disposed. 

This paper is organized as follows. In Section II, some 

possible improvements to a simple fuzzy system for 

classification are listed, and followed by an example of a 

recently developed system. In Section III, the results of a 

comparison among different systems are given and discussed. 

Finally, Section IV concludes the work. 

II. VARIANTS OF A FUZZY SYSTEM 

A. A Simple Fuzzy System for Classification 

A fuzzy system is basically made of the fuzzy partitions of 

the variables of interest (once these have been selected), and of 

a rule base. 

Each fuzzy partition is made of a collection of fuzzy sets, 

representing the terms of the associated linguistic variable. 

Suppose that n variables are considered. Then, suppose that 

the range of the j-th variable is partitioned into Tj fuzzy sets 

( )

j

j

t
F , with 1,...,j jt T= . Each of the N data samples 

( ) ( ){ }1
,...,

n
i i ix x=x , 1,...,i N= , belongs to the fuzzy set 

( )

j

j

t
F  

with the membership grade 
( ) ( )
j

j j

it
xµ  
  

. 

A complete rule base [7] is made of a set of 1 ... nT T⋅ ⋅  rules 
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{ }1,..., nt tr , with { } { } { }1 1,..., 1,..., ... 1,...,n nt t T T∈ × × , of the type: 

( ) ( ) ( ) ( )
{ }

( ) ( ) ( ) ( )
{ }11

11
1,...,11 1

11
,...,

...

...

...
nn

nn

nn
T TT T

if x  is F  and  and x  is F  then C

if x  is F  and  and x  is F  then C









,    (1) 

where antecedents are all possible combinations of fuzzy sets 

of the partitions, and consequents are fuzzy sets [8,9]. 

Each data sample ix  fires the rule { }1,..., nt tr  with a strength  

{ }
( ) ( )

1,...
1,...,n j

j j

it t t
j n

FS T xµ
=

  =     
 ,            (2) 

while the implication of the consequence is usually modeled 

as: 

{ } { } { }1 1 1,..., ,..., ,...,,
n n nt t t t t tIMP T FS C =   

 ,          (3) 

and different implications are aggregated as: 

{ } { } { } { }1
1 1

,...,
,..., 1,..., ... 1,..., n

n n

t t
t t T T

AGG S IMP
∈ × ×

 =   
 ,      (4) 

where T is a T-norm and S is an S-norm. 

Note that FS  in (2) is a number, while IMP  in (3) and 

AGG  in (4) are fuzzy sets. Suppose that there are K possible 

classes 1,..., KC C , then the fuzzy set AGG assume a set of 

values 1,..., KAGG AGG  in correspondence of different 

classes. Therefore, a defuzzification step is required, which 

can be accomplished in different ways: usually, the class k 

which takes the greatest kAGG  is chosen (winner-takes-all 

strategy); however, since a result constituted by different 

classes with respective confidence grades should be preferred 

[10], then the defuzzification can be implemented as a 

normalization [4]: 

1

/

K

k kDEF AGG AGGκ
κ =

= ∑  .              (5) 

B. Shape of Membership Functions 

Only few works have discussed on the opportunity of using 

a certain shape for MFs [1-3], however, results seem to be 

application-dependent. In general, the following considerations 

could be made. 

First of all, the difference between crisp intervals (binary 

MFs) and fuzzy intervals (trapezoidal MFs) can be studied, 

even if the advantages of fuzzy logic [11] are widely 

recognized [12,13]. 

Fuzzy numbers (triangular MFs) can be viewed as particular 

cases of fuzzy intervals. Even if they are used very often, their 

advantage with respect to fuzzy intervals can be ascribed only 

to a lower number of parameters (3 instead of 4), which 

reflects the difference between a number and an interval. 

However, intervals are generally more appropriate to model 

the terms of a linguistic variable. On the other hand, intervals 

of the type Ax x<  or Bx x>  cannot be fuzzified with 

increasing and then decreasing MFs, like triangular and 

Gaussian ones, but “shoulders” (only decreasing or only 

increasing MFs) are required to model extreme linguistic terms 

instead. Therefore, triangular, Gaussian and bell-shaped MFs 

will not be considered here, even if Gaussian MFs require a 

lower number of parameters. 

Trapezoidal MFs can be provided with some improvements, 

in order to reach: i) derivability, i.e. to obtain MFs smoothly 

going from the plateaus to the increasing/decreasing segments; 

ii) non-linearity, i.e. to obtain MFs overcoming the limits of 

linear models between input and output variables. These issues 

can be settled by considering sigmoidal MFs. 

A trapezoidal or a sigmoidal MF can be represented by 4 

parameters a, b, c, d, while a “shoulder” by 2 parameters. A 

whole partition with T MFs can be described by ( )2 1T −  

parameters. Binary MFs are represented here with the same 

number of parameters. Therefore, the MFs are modeled here as 

follows: right “shoulders” [ ]; ,R x c dµ  are binary 

[ ]
( )

( )

0 / 2
; ,

1 / 2
RB

,        x c d
x c d

,        c d x
µ

 ≤ +
= 

+ ≤
 ,          (6) 

trapezoidal 

[ ]

0

; ,

1

RT

,        x c

x c
x c d , c x d

d c

,        d x

µ

≤


−
= < <

−
≤

 ,            (7) 

or sigmoidal 

[ ]
2

1
; ,

1

RS d c x
t t

d c d c

x c d

e

µ
+ 

⋅ − ⋅ ⋅ 
− − 

=

+

 ,           (8) 

respective left “shoulders” are 

[ ] [ ]; , 1 ; ,L Rx a b x a bµ µ= −  ,              (9) 

while internal MFs are 

[ ] [ ] [ ]; , , , 1 ; , ; ,I L Rx a b c d x a b x c dµ µ µ= − −  ,     (10) 

with a b c d≤ ≤ ≤  and [ ]1/ 1t Log ε= − , where 1ε �  (in the 

following 0.01ε = ) is a positive constant fixed to approximate 

sigmoidal MFs to normal, i.e. [ ] 1xε µ ε≤ ≤ − . Using these 

settings, binary sets divide the variable range in intervals, 

trapezoids fuzzify these intervals, and trapezoidal and 

sigmoidal MFs with the same parameters result very similar, 

the latter being smoother. 

In the following, a comparison of performances will be 

made among binary, trapezoidal and sigmoidal MFs. In Fig. 1, 

the three types of partition are shown, all with a number of 

terms 3T =  and the same parameters. 

 

 
Fig. 1 Binary, trapezoidal, and sigmoidal fuzzy partitions. 
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C. A Family of (Soft) T-norms and S-norms 

Many types of T-norms and S-norms were developed. In 

particular, Mamdani, Product, Łukasiewicz and Drastic T-

norms are the most used. However, very few attempts [4] were 

done on deciding which type is the most suitable for different 

applications. At the same time, some parameterized families of 

norms were developed, which smoothly changes one norm into 

the others by varying just one parameter p. Here, the Frank T-

norm family [14] is considered: 

( )

1

1

1 1

1

min ,..., 0

1

max 1,0
,..., ;

1

log 1
1

d

d

d

d

d
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p

a a ,                 p

a ,                              p
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T a a p

p
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δ

δ

δ

δ

δ

δ

=

=

=
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


=


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 − + = +∞
 =     


 
 −
 

+  − 
 
   

∏

∑

∏

 ,  (11) 

with 0p ≥ . The corresponding S-norm is calculated as: 

1 1,..., ; 1 1 ,...,1 ;d dS a a p T a a p= − − −        .        (12) 

Moreover, following [15], a soft version of both norms, 

which is a middle way between each norm and the arithmetic 

mean, can be defined as follows: 

( )1 1

1

1
,..., ; , 1 ,..., ;

d

d dT a a p a T a a p
d

δ
δ

α α α

=

= − +      ∑�  ,  (13) 

( )1 1

1

1
,..., ; , 1 ,..., ;

d

d dS a a p a S a a p
d

δ
δ

α α α

=

= − +      ∑�  .  (14) 

In the following, the dependence of system performances on 

both p  and α  parameters will be evaluated. In particular, 

their use for different T-norms and S-norms, i.e. Fp  and Fα  

in (2), Ip  and Iα  in (3), Ap  and Aα  in (4), is investigated, 

and different optimal values of them can be found. 

D. Preferred Directions 

Some of the best regression [16,17] or classification [18,19] 

systems are based on the observation that there exist a set of 

directions in the variables space, which is better than others in 

explaining the behavior of the system. E.g., in [16] these 

preferential directions are those which maximize the variance 

and result more useful to study the output variable, while in 

[18,19] they define a hyperplane which divides the space 

where the samples of one class are situated from the other 

where there is the other class. Generally, these directions do 

not correspond to the original variables of the dataset, but are 

linear combinations of them. They can be viewed as a possible 

reduction of dimensionality and axes rotation. 

On the one hand, preferred directions could be surely useful 

to improve the system performances. On the other hand, they 

are scarcely used in fuzzy systems where interpretability is a 

main objective, since their use undoubtedly complicates the 

comprehensibility of the system. 

In the following, the advantages of axes rotation will be 

studied by substituting a couple of original variables 1x  and 

2x  with another orthogonal couple obtained by linearly 

combining them through a parameter D, i.e. 

{ } { }1 2 1 2 2 1, ,x x x Dx x Dx⇒ + −  .          (15) 

E. Weights 

Different importance can be assigned to antecedents of each 

rule, and to different rules of a rule base. 

In the case of rule antecedents, assigning them different 

weights 1w ,..., nw  corresponds to giving different importance 

to the variables, and can be modeled [4] by substituting in (2) 

the T-norm with a weighted T-norm: 

( ) ( )1 1 1 1, ..., ; , ..., 1 1 ,...,1 1n n n nWT a a w w T w a w a = − − − −    
 . (16) 

In case of R different rules, their different impact on the 

result can be modeled [4] by substituting in (4) the S-norm 

with a weighted S-norm: 

[ ] [ ]1 1 1 1,..., ; ,..., ,...,R R R RWS a a W W S W a W a=  .    (17) 

All 1w ,..., nw  and 1W ,..., RW  must be in the interval [ ]0,1  

[4]. 

The dependence on the system performances on the use of 

weights will be studied in the following by comparing 

weighted and non-weighted firing strength and aggregation. 

F. Consequent definition 

In case of regression, each consequent of (1) can be a 

singleton (i.e. a fuzzy set whose support is a single value with 

a membership grade of 1) or a proper fuzzy set [8], or a 

function [9]. In case of a classifier, which is examined in this 

work, each consequent can be a singleton whose support is a 

class [8], or a fuzzy set defined on different classes [8]. 

Suppose that there are K possible classes 1,..., KC C . In the 

simplified model, each consequent is a singleton whose 

support is a class. Deeper knowledge can be modeled by a 

more complicated system. For example, if one knows that, in 

the space restriction modeled by antecedents of a rule 

{ }1,..., nt tr , different classes have respective probabilities 

{ }1,..., 1nt tp − ,..., { }1,..., nt t Kp − , then these can be assigned to the 

rule consequent, which can be regarded as a fuzzy sets with 

different non-zero membership grades in correspondence of 

different classes. In this case, the result of defuzzification (5) 

can be viewed as the posterior probability [5]: 

1

| /

K

k kP C AGG AGGκ
κ =

=   ∑x  .          (18) 

G. A Reference Method for Knowledge Extraction 

The method [5], which was recently developed by authors, 

is considered as a reference one. It can be summarized as 

follows. 
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Each range of the original variables is partitioned into a 

collection of Tj fuzzy sets described by sigmoidal MFs, 

( ) ( )
j

j j

t
xµ  
  

, 1,...,j jt T= , such that: 

( ) ( ) ( )

1

|

j

j j

j

T
jj j

k t k t
t

P C x xλ µ−

=

    ⋅        
∑�  ,       (19) 

with 1,...,k K=  and 1,...,j n= . 

Note that parameters of MFs and the number of fuzzy sets 

constituting each partition are optimized at the same time. 

Then, a rule base as (1) is constructed, by considering a 

complete set of rules { }1,..., nt tr , each one having a weight 

{ }1,..., nt tW  and different probabilities of classes { }1,..., nt t kp − . 

Weights and probabilities are calculated as follows: 

{ }

{ }

{ }

1

1 1

1

1

,...,

1
,...,

,...,

1 1 1

...

n

n n

n

n

K

t t k

k
t t TT K

k

k

w

W

w τ τ
τ τ

−
=

−
= = =

=

∑

∑ ∑∑
         (20) 

{ }
{ }

{ }

1

1

1

,...,

,...,

,...,

1

n

n

n

t t k

t t k K

t t k

k

w
p

w

−

−

−
=

=

∑
 ,           (21) 

where 

{ }
1

1,..., 1

...
n

n

t k t k

t t k n
k

w
P C

λ λ− −
− −

⋅ ⋅
=

  

 ,           (22) 

and kP C    are prior probabilities of classes. 

The types of norms used are product T-norm in (2), product 

T-norm in (3), and weighted sum for S-norm in (4). After 

normalization (5), it is demonstrated that the results 

approximate posterior probabilities as in (18). 

In the following, this method will be used to calculate 

parameters of membership functions, rule weights and rule 

consequents. Its results will be compared with those of the 

systems obtained by simplifying it and then: i) substituting 

different shapes of MFs; ii) modifying types of T-norms and S-

norms; iii) using soft T-norms and S-norms; iv) rotating axes; 

v) adding weights to antecedents; vi) adding weights to rules; 

vii) substituting singletons with fuzzy consequents. 

III. RESULTS AND DISCUSSION 

In this section, the Wisconsin Breast Cancer Dataset [6] is 

used as a proof of concepts. 699 samples are classified into 

benign (CB) and malignant (CM). Two input variables of the 

dataset are used here, which are Uniformity of Cell Shape 

(UCS) and Bland Chromatin (BC). 

The choice of only two variables derives from the need of 

showing the behavior of 3D surfaces representing the functions 

of the posterior probabilities of classes (CPPFs). In the 

following (see Figs 3-7, 9), the surface representing the 

probability of BC , given different values of UCS and BC, i.e. 

[ ]|BP C x , in red, and that representing [ ]|MP C x  in green, 

are showed together. The lateral view of the images is given 

when the height of the surfaces is to be shown, while the top 

view is preferred to emphasize the separation of the variables 

space into regions associated to different classes (e.g., if 

[ ] [ ]| |B MP C P C>x x , then the point x  of the space is 

assigned to the class BC  and in the top view it is red). 

Results of different systems are evaluated in terms of 

classification error (CE) and squared classification error 

(SCE): 

1

1 ˆ1 ,0

N

i i

i

CE   if  C C   otherwise
N

=

 = ⋅ =
 ∑  ,      (23) 

( )
2

1 1

1 1
N K

k k
i i

i k

SCE
N K

α δ
= =

= −∑∑  ,          (24) 

where ˆ
iC is the predicted class, iC  the real one, k

iα  the 

activation of k-th class for the i-th data sample, and k
iδ  is 1 if 

the correct class for the i-th data sample is the k-th one, 0 

otherwise. In particular, while CE is simply the fraction of 

wrongly classified data items, SCE takes into account that high 

(low) confidence should be assigned to right (wrong) 

solutions. Both should be minimized. 

The method described in Section II.G is used to determine 

parameters of membership functions and the number of terms 

of each partition. In particular, only two fuzzy sets constitute 

each of the two partitions, and the parameters of the MFs (8) 

and (9) results: 1.09 and 5.37 for UCS, 1.34 and 6.01 for BC. 

The obtained partitions are shown in Fig.2. 

Moreover, the reference method is used to determine 

optimal rule weights (20) and rule consequents (21), of a rule 

base as (1), which are listed in the first column of Table I.A, 

together with the resulting performances. 

In order to evaluate the usefulness of system complications, 

let us begin by considering a simple system, as described in 

Section II.A, where parameters p and α of norms are set as 

follows: 0F I Ap p p= = =  and 1F I Aα α α= = = . Original 

variables are used, no weights are assigned to rule antecedents 

nor to different rules, and consequents are defined as 

singletons, obtained by substituting the highest probability 

found by (21) with 1, the others with 0. 

 

 
Fig. 2 Fuzzy partitions of two variables calculated by the reference 

method. 
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The first comparison can be made among different shapes of 

MFs, going from binary, through trapezoidal, to sigmoidal 

MFs. CPPFs given by the simple system in these three cases 

are shown in Fig.3, where CPPFs reflect the shape chosen for 

MFs, and the observations given in Section II.B can be 

repeated. Measures of performance are listed in Table I.A, 

where it can be seen that in all three cases the same CE is 

obtained, while an improvement of SCE is obtained with fuzzy 

systems with respect to crisp one. Using trapezoidal or 

sigmoidal MFs gives very similar results, therefore for the 

following runs the sigmoidal shape is chosen, in order to 

ensure derivability. 

If the type of norms (11) and (12) is changed by varying 

Fp  and Ip , as explained in Section II.C, then the CPPFs 

result very similar. If Ap  is varied (see Fig. 4), then the first 

difference can be detected by comparing the case of 0Ap =  

with others: in the null case, the separation between regions in 

which different classes are associated can be drawn by 

orthogonal segments connected by an angle, while in the other 

cases, the segments are connected by a curve, as can be seen 

by comparing Fig. 4 (a) and (c) (top views). Another 

significant variation happens for values of 2Ap < , different 

from 0 and 1, i.e. CPPFs flatten around the probability of 0.5, 

as can be seen in Fig. 4 (b). The evaluation of performances 

reveals that only varying Ap  has significant influence on 

results, and in particular, if it assumes values of 0, 1 and +∞  

the best results are obtained, as can be seen by Table I.A. 

Therefore, since Fp  and Ip  can be chosen equal to 0, 1 or 

+∞ , in order to have simple norms, the choices of 1 or +∞  

can be done for Ap  in order to improve performances and 

obtain curve class separation. For the following runs, the same 

settings of the reference method are chosen. 

If soft norms are used as in (13) and (14), by varying 

parameters Fα , Iα  and Aα  as explained in Section II.C, then 

the class posterior probabilities are mainly influenced by the 

variation of Fα  and Iα , as can be seen in Fig. 5. In 

particular, surfaces flatten when these two parameters 

decrease. On the other hand, in Table I.A it can be seen that 

the best performances are obtained when soft norms are not 

used. If a soft norm is used for aggregation, no significant 

effect is gained, but a complication is added. Therefore, for the 

following runs, 1F I Aα α α= = = . 

In Fig. 6 (top views), the axes rotation due to the variation 

of D in (15) from 0.2−  to 0.2  is shown. From the analysis of 

results, a value of 0.12D = −  was found to minimize CE, 

while a value of 0.08D = −  minimizes SCE, as reported in 

Table I.B. This is in accordance with the observation that 

original variables are not necessarily the best, and the use of 

their linear combination can often improve system 

performances. However, in this case the improvements are not 

great enough to justify the great loss of comprehensibility due 

to the use of linear combination of variables in the rule base, 

especially for applications like medicine, where interpretability 

has fundamental importance. In the following, original 

variables are kept. 

 

 
Fig. 3 Functions of class posterior probabilities by using (a) binary, 

(b) trapezoidal and (c) sigmoidal MFs. 

 

 

 
\ 

Fig. 4 Functions of class posterior probabilities by using (a) 0Ap = , 

(b) 0.5Ap =  and (c) 1Ap = . 

 

 
Fig. 5 Functions of class posterior probabilities by using soft norms: 

(a) 0Fα = , 1Iα = , 1Aα = , (b) 1Fα = , 0Iα = , 1Aα = , (c) 1Fα = , 

1Iα = , 0Aα = , (d) 1Fα = , 1Iα = , 1Aα = . 
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Fig. 6 Axes rotation: (a) 0D = , (b) 0.2D = − , (c) 0.2D = . 

If different weights are assigned to the antecedents of the 

rules, the CPPFs change the amount of dependence from 

different variables, as can be seen in Fig. 7: at the limit of 

some weight equal to 0, the dependence from the 

corresponding variable disappears; in this case, the surfaces 

approach the value of 0.5 in the region where there are two 

different rules in which the antecedent with weight 0 changes, 

the antecedent with weight 1 is the same, and the conclusions 

are opposite. Even if the use of these weights adds a 

meaningful complication to the interpretability of the system, it 

could be an advantage for performances in some applications. 

However, in the examined case, the optimal settings 

correspond to not applying them, as can be seen in Fig. 8. 

Therefore, antecedent weights are not applied in the following. 

 

 

 

 

TABLE I.A 

PERFORMANCES OF DIFFERENT SYSTEMS 
Settings 

 Reference Shapes Norm types Soft norms 

Shape: 

Binary=B 

Trapezoidal=T 

Sigmoidal=S 

S B T S S S S S S S S 

pF 1 0 0 0 0,2    +∞  1 1 1 1 1 

pI 1 0 0 0 0, +∞    0 1 1 1 1 1 

pA +∞  0 0 0 { }0,1  0 0,2    +∞  +∞  +∞  +∞  

αF 1 1 1 1 1 1 1 1 0 1 1 

αI 1 1 1 1 1 1 1 1 1 0 1 

αA 1 1 1 1 1 1 1 1 1 1 0 

D 0 0 0 0 0 0 0 0 0 0 0 

UCSw  1 1 1 1 1 1 1 1 1 1 1 

BCw  1 1 1 1 1 1 1 1 1 1 1 

{ },low low
W  0.35 1 1 1 1 1 1 1 1 1 1 

{ }.low high
W  0.02 1 1 1 1 1 1 1 1 1 1 

{ },high low
W  0.04 1 1 1 1 1 1 1 1 1 1 

{ },high high
W  0.59 1 1 1 1 1 1 1 1 1 1 

{ },low low B
p −

 1 1 1 1 1 1 1 1 1 1 1 

{ },low low M
p −

 0 0 0 0 0 0 0 0 0 0 0 

{ },low high B
p −

 1 1 1 1 1 1 1 1 1 1 1 

{ },low high M
p −

 0 0 0 0 0 0 0 0 0 0 0 

{ },high low B
p −

 0.66 1 1 1 1 1 1 1 1 1 1 

{ },high low M
p −

 0.34 0 0 0 0 0 0 0 0 0 0 

{ },high high B
p −  0 0 0 0 0 0 0 0 0 0 0 

{ },high high M
p −

 1 1 1 1 1 1 1 1 1 1 1 

Performances 

CE 0.047 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.345 - 0.112 

SCE 0.039 0.112 0.069 0.077 0.077,0.079    0.084 0.079,0.248    0.080 0.117 0.250 0.080 
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Fig. 7 Antecedent weights: (a) 0UCSw =  and 1BCw =  , (b) 1UCSw =  

and 0BCw = . 

Rule weights and conclusions have been already optimized 

by means of the reference method. The influence on CPPFs of 

each one and both of them is shown in Fig. 9. Starting with 

parameters described above, it can be noticed that the 

application of optimized rule conclusions scales the CPPFs, 

therefore the interclass separation only slightly changes, but 

the height of CPPFs changes instead; on the other hand, if rule 

weights are applied, then the regions ascribed to different 

classes are significantly changed. As a consequence, as can be 

seen in Table I.B, the use of optimized rule conclusions does 

not improve much CE, but improves SCE significantly if rule 

weights are not applied. The application of rule weights 

significantly improves both CE and SCE, and in this case using 

optimized conclusions gives a further improvement. Therefore, 

the use of rule weights and conclusions in the form of different 

classes with respective probabilities, in particular of rule 

weights, can be very advantageous; however, the choice 

depends on the relative importance given to performances and 

interpretability. 

 

 

TABLE I.B 

PERFORMANCES OF DIFFERENT SYSTEMS 
Settings 

 Axes rotation Antecedent weights Rule weights Rule conclusions Reference 

Shape: 

Binary=B 

Trapezoidal=T 

Sigmoidal=S 

S S S S S S S S 

pF 1 1 1 1 1 1 1 1 

pI 1 1 1 1 1 1 1 1 

pA +∞  +∞  +∞  +∞  +∞  +∞  +∞  +∞  

αF 1 1 1 1 1 1 1 1 

αI 1 1 1 1 1 1 1 1 

αA 1 1 1 1 1 1 1 1 

D 0 -0.12 -0.08 0 0 0 0 0 

UCSw  1 1 1 0 1 1 1 1 

BCw  1 1 1 1 0 1 1 1 

{ },low low
W  1 1 1 1 1 0.35 1 0.35 

{ },low high
W  1 1 1 1 1 0.02 1 0.02 

{ },high low
W  1 1 1 1 1 0.04 1 0.04 

{ },high high
W  1 1 1 1 1 0.59 1 0.59 

{ },low low B
p −

 1 1 1 1 1 1 1 1 

{ },low low M
p −

 0 0 0 0 0 0 0 0 

{ },low high B
p −

 1 1 1 1 1 1 1 1 

{ },low high M
p −

 0 0 0 0 0 0 0 0 

{ },high low B
p −

 1 1 1 1 1 1 0.66 0.66 

{ },high low M
p −

 0 0 0 0 0 0 0.34 0.34 

{ },high high B
p −

 0 0 0 0 0 0 0 0 

{ },high high M
p −  1 1 1 1 1 1 1 1 

Performances 

CE 0.112 0.102 0.103 0.345 0.345 0.052 0.112 0.047 

SCE 0.080 0.077 0.076 0.135 0.117 0.041 0.060 0.039 
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Fig. 8 (a) CE and (b) SCE as antecedent weights are varied. 

 

 
Fig. 9 (a) No rule weights and single class conclusions; (b) optimized 

rule weights; (c) optimized rule conclusions; (d) reference method. 

IV. CONCLUSION 

Various degrees of freedom which characterize the 

modeling of a rule-based fuzzy system for classification were 

analyzed, with the aim of individuating the possible settings 

and complications of a simple system which can improve the 

classification performances, taking into account the loss of 

interpretability connected with them. The following 

conclusions can be drawn: i) the trapezoidal shape of fuzzy 

sets is preferable with respect to others frequently used, such 

as triangular and Gaussian, and the sigmoidal shape adds 

derivability with the same number of parameters; ii) simple 

norms, like Mamdani (not for aggregation), Product, and 

Łukasiewicz ones can be adopted, while the use of soft norms 

should be avoided; iii) axes rotation can be advantageous, but 

the performance improvement can be small with respect to the 

loss of comprehensibility; iv) using weights for rule 

antecedents can be advantageous, but not in the examined 

case, however the associated loss of interpretability is 

significant; v) the use of rule weights strongly improves the 

system performances, therefore it is recommended, even if 

interpretability somehow decreases at the same time; vi) the 

definition of rule conclusions in the form of different classes 

with respective probabilities furnishes an improvement with 

respect to single class conclusions, with an associated slight 

increase of complexity. A recently developed method [5] 

results in accordance with these conclusions, and allows to 

obtain the best performances with respect to all the other 

cases. 
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Abstract - This work is focused on the research of energy 

optimal scheme of SC thrust vector control during the 

interorbital maneuvers.  

The methodological novelty of the proposed decision is 

development of transformation algorithms for initial systems 

of differential equations and connection formulae between 

the unknown parameters of SC motion and conjugate 

variables. It helps to avoid the above-mentioned difficulties. 

Thus, the algorithm is proposed for analytical decision of 

differential equations for the conjugate variables which 

provides the possibility to determine the structure of optimal 

control avoiding the complicated calculation procedures. 

Besides the proof is given of the Hamiltonian identical 

equality to zero and the conjugate variable corresponding to 

a subsatellite-point longitude along all the flightpath. It 

makes possible to elaborate additional dependencies, 

connecting the unknown parameters in the initial point of 

trajectory. Along with the use of transversality conditions in 

the boundary points of trajectories these transformations 

also allow reducing the multi-parameter boundary problem 

of the SC optimal trajectory search to the two-parameter 

one, which provides high level of efficiency during 

calculation.  

The structure of thrust vector optimal control is 

determined. The fact is proved that for a wide range of 

boundary conditions, weight and power characteristics of 

SC the maximum number of SC engine burns equals two. At 

the first burn the SC is transferred from the initial orbit to 

the interim one, which has a cross point with the final orbit, 

where velocity and radius-vector of SC are respectively 

equal to the specified values. At the second burn, in the 

cross-point of orbits, the trajectory angle is adjusted. 

On the whole the proposed methodological approach can 

be used as the basis of wide range of tasks aimed at 

optimization of interorbital flights and corrections and it can 

be introduced for the planning of perspective missions of 

near and outer space.  
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I. INTRODUCTION 

The control process of spacecraft quite often requires the 

conducting of dynamic operations. Basing on the SC 

operation experience one can see the need for the space 

debris avoidance maneuvers from time to time and 

correction for maintaining of orbital parameters. Besides, 

the powered maneuvers are conducted during SC deorbiting 

which is the final stage for the most SC. 

At the same time, all the mentioned tasks connected with 

conducting of powered maneuvers are focused on the 

research for energy optimal schemes of SC control.  

The task solution of SC optimal control entails 

considerable estimate time and difficulties of computational 

architecture. That’s why it would be reasonable to use 

quasioptimal algorithms of variational task solution which 

meet the requirements due to their effective operation speed: 

the limit of errors of the algorithm output must not exceed 

several per cent with the total qualitative coincidence with 

the results of optimal control tasks.  

II. STATEMENT OF THE PROBLEM 

The motion of SC is described by differential equations, 

which is a special case of the system, described in the works 

[1,2], without regard to aerodynamic forces, enabling the SC 

to maneuver in the atmosphere, as well as centrifugal and 

Coriolis forces:  
2

2
sin cos cos ,

2 x

dV V P

dt P r m

 
       

2
cos cos sin cos ,    (1)

d V P

dt r V r mV

 
      

cos cos   sin ,
cos

d V P
tg

dt r mV


   


     

cos cos
sin ,            ,

cos

dr d V
V

dt dt r

  



   

    cos sin ,            ,
gspec E

d V dm P

dt r dt P


     

where V– spacecraft velocity, θ– burnout angle, ε– angle 

between projection of velocity onto the local horizon and 

local parallel, r– radius vector connecting Earth’s centre and 

spacecraft centre of mass, λ and φ – geographic longitude 

and latitude respectively, m – spacecraft mass, ρ – 

atmospheric density, μ – product of gravitational constant by 

Earth’s mass, Px – front surface reduced load, Cx – 

aerodynamic drag coefficient, P – engine thrust, Pspec – 
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specific thrust, gE – gravitational acceleration on earth’s 

surface, α – angle between thrust vector projection on a 

motion plane and spacecraft velocity vector, β – angle 

between thrust vector and SC motion plane.  

Besides, in case of SC unperturbed motion with the 

switched off engine the correlation is true between the 

course angle ε and latitude φ 

cos cos .                               (2)C    

The SC was controlled by change of propulsive efforts, 

characterized by the thrust value P and its orientation 

relative to SC velocity vector α and β:  

 ,    0 ,       .  (3)mixP P               

The SC initial state was determined by the orbital 

parameters of earth satellite vehicle and it’s mass in the 

fixed moment of time to: 

 

   

   

0 0 0 0 0

0 0 0 0

0 0 0 0

                ( ),        0,    ,   

,               ,

               ,             .           (4)

V V t t

r r t t

t m m t

  

 

 

  

 

 

   End of trajectory is the point on the earth surface (hR=0) 

with the specified geographic coordinates  

   ,              .                        (5)R R R Rh h    

   The intermediate conditions were also taken into account: 

velocity and burnout angle at the moment when SC reaches 

the atmospheric conditional boundary were set (hend=100 

km):  

 ( ),             .                       (6)ent ent e entV V h h  

   The research for the development of approximately 

optimal control algorithms for SC were based on the optimal 

control theory: for a SC which motion is described by the 

equations system (1) and the relation (2), it is necessary to 

find the control laws P(t), α(t), β(t), providing extremum of 

functional 0  minF fJ m m m      with the 

constraints (3), edge (4), (5) and intermediate (6) conditions.  

The peculiarity of the given problem solution as 

compared to the SC maneuver tasks in the atmosphere is 

that the control process finishes before SC re-entry, i.e. the 

landing point deviation from the specified one is fully 

determined by the SC state vector at the moment of engines’ 

closedown. It allows performing the optimal control task 

only in the extra-atmospheric phase, considering that the 

propulsion system is switched on at the initial moment of 

time: Po=Pmax, and the end point is determined by the 

conditions (6) and lateral displacement of the re-entry point 

Lent in relation to the plane of initial orbit. The value Lent is 

calculated depending on the orbital parameters (4) and 

geographic coordinates λR and φR.  

III. OPTIMALITY CONDITIONS 

We used maximum principle of Pontryagin in order to 

solve the variational task [3].  

We introduce the Hamiltonian  

1 2,                         (7)H PF F   

where 
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The conjugate variables φi (i=1,2,…,7) are determined by 

the following relations: 
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The laws of parameter variation α, β and Ρ with optimal 

control are determined from the Hamiltonian maximization 

condition. The relations for calculation of optimal values α 

and β are obtained from the conditions    /     0H              

and  / 0 :H      

2
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   With a help of inequation  
2 2 2 2/ 0,    / 0H H         we will establish the 

membership of angles   and   to one of the two quadrants: 
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The engine thrust possesses the boundary values: 

1  with  0maxP P F   and  

 1 0        with   0  13P F   

Let’s prove that there are no more than two powered 

flight phases.  

The expression    has a switchover function in the thrust 

optimal control. In order to determine the number of burns it 

is necessary to examine the function F1, which, according to 

[4], is calculated from the equation Vent and Lent,  
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Considering the formulae (9) and (10) we get 

1
1

1
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IV. ANALYTIC ALGORITHM OF OPTIMAL MANEUVER 

CALCULATION 

In order to investigate the behavior of curve F1 we 

transform the mathematical model of SC motion, as the 

equation (14) cannot be solved analytically. Let’s consider 

that SC flight with the running engine is determined only by 

active forces and during the coast flight – only by 

gravitational forces. Suppose that angles α and β, as well as 

trajectory angle θ change insignificantly during the powered 

flight. Then the differential equations for conjugate variable 

ψ1, influencing the function F1, take the form: 

1
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In contexts of the made assumptions in both cases  
˙

*

2 20,  that is     .С    

We show that  
˙

1 0 .0   with      Rt t t t     The 

equation for 
1   with   0P   considering (9) and (10) is 

transformed in the following way: 

 2 2 21 1 .
cos cos
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sin cos sin

dt mV

 
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 
   

As the expression 
1 / cos   has the same sign as 

cos   (q. v. (12)), the inequality is true ψ1≥0 with P≠0. 

The sign of the variable ψ1  with P=0 depends on the sign 

of the constant ψ2 =C
*
, which is determined from the 

following considerations. In order to transfer SC from earth 

satellite orbit to a descending trajectory, angle α in the 

process of powered flight should be in the range of 

/ 2      . Then from the equation (11) we obtain 

that ψ1 ≤0, and with the help of equation (9) determine that 

ψ2=C
*
≤0  Hence, ψ1≥0 during the coast flight. At that, the 

analysis of dependence ψ1 showed that the conjugate 

variable ψ1 jumps at the moment of engine thrust P 

switching. Hence we can conclude that the variable ψ1 

during all the considered flight phase of SC changes its sign 

no more than two times.  

Thus, considering the condition (14) we may conclude 

that the maximum number of zeros of function F1, as well as 

the number of SC engine thrust switchings, equals two. 

Besides in this case the switchings are made from P=Pmax to 

P=0, and then to P=Pmax again. 

Thus, the laws of thrust vector optimal control are 

characterized by the dependencies (9), (10), (13). In order to 

obtain the numerical evaluation of optimal trajectory it’s 

necessary to solve the boundary value problem which 

consists in iteration of 10 N(=10) parameters at the 

beginning of a trajectory (seven-parameters vector of 

conjugate variables ψi0 and values of control functions (P0, 

α0, β0), with which the final edge conditions are fulfilled.  

Some boundary values of conjugate variables can be 

obtained on account of transversability condition [4]: 
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As the variations δε and δφ with t=t0 are interdependent 

ones, the transversality condition is fulfilled in case if the 

following equality occurs  

30 60 0.                                  (16)      

On the other hand, the variations δε and δφ are related by  

0
q q
 

 

 
 

 
 

where  cos cos .q C      
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Therefore the condition (16) will be achieved if the initial 

values ψ30 and ψ60 are chosen to realize the relation  

30 60 

00

60 0 0 30

          or     

         .                    (17) 
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With t=tR the equation (15) due to arbitrariness of 

variations δm, δt, δλ is possible only if 

7 51,    0,     0.R RH     

As the variables t and λ do not constitute in an explicit 

form the right parts of the system (1), we can conclude that, 

the Hamiltonian H and the conjugate variable ψ5 are 

identically equal to zero: 

50,      0.                              (18)H    

The equations (9), (10), (17), (18) and the equality 

defined in the problem statement P(t0) =Pmax provide six 

constraint equations between ten initial parameters. The 

deficient four equations necessary for initial estimate of 

boundary problem solution can be got introducing the 

assumptions about vanishing of switching function at the 

initial instant and impulse character of engines’ operation. 

From the first assumption follows: 
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In view of equation (18) and (19) we get: 
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   Using the second equation and solving the Keplerian 

motion equations [5], we may determine initial orientation 

angles of thrust vector α0 and β0 at the moment of SC 

reentry: 
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If the single-burn SC transfer to the finite point with the 

coordinates r=rent, V=Vent, θ=θent and LL=Lent the two-burn 

transfer is considered. The first burn of the value V1 with 

α0=π provides SC reentry with the specified values Vent and 

Lent, and with the help of the second burn    , given with 

        the final value θ is adjusted. At that the initial 

value of angle    is always determined by the formula (22). 

Thus, the mentioned analytical dependencies enable us to 

find the first approximation for the boundary task solution. 

V. PERFORMANCE ANALYSIS OF MANEUVER SCHEMES 

The conducted analysis of numerical results reveals the 

structure of thrust vector optimal control with minimum of 

active mass. The calculations were made with variation of 

altitude h0 and inclinations i0 of earth satellite circular orbits, 

initial SC mass m0, reduced frontal surface load Px, thrust P 

and specific thrust Pspec of the propulsion device, spacecraft 

reentry conditions Vent, θent, Lent in the range: 
0 0

0 0

0 2

300 700 km,        40 80 ,   

kg
  500 2500 kg,       500 200 ,

m
x

h i

m P

   

   
 

0 0

1000 5000 kg,     250 450 s,  

   6,5 8 km / s,      15 5 ,

spec

ent ent

P P

V 

   

     
 

 0 800 km.         23entL   

The following values were used as nominal values of 

varied parameters: 
0

0 0 0

2

500 km,   55 ,    2000 kg,  

  1000 kg / m ,    2000 kg,    320 s,x spec

h i m

P P P

  

  
 

 0    7,4  / , 11 . 24ent entV km s     

It is showed that for all the variation range of parameters 

the optimal control consists in two- burn ignition: at the 1
st
 

burn the SC is transferred from the satellite orbit to the 

descending trajectory, at the 2
nd

 burn the reentry parameters 

are corrected. The thrust vector orientation at the 1
st
 burn 

consists in the following: angle α is constant and equals ~ 

180
0
, angle β slightly changes from the initial value β0, lying 

in the range from 120
0
 to 180

0
, depending on the value of 

lateral displacement Lent, by±1÷2
0
.  

The analysis of results provides opportunity to establish 

general principles of optimal control and derive a non-

iterative algorithm on their basis. It involves the use of 

control programs with the constant thrust vector orientation 

at 1
st
 burn: β=β0, where β0 is calculated by the formula (23). 

The finish of 1
st
 burn corresponds to SC velocity to the 

value providing during the further coasting flight the reentry 

with the specified velocity Vent. At the 2
nd

 burn, angle β ≈ 0, 

and angle   either equals 90
0
 if there’s a need to reduce 
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angle with the increase of |θent|. The start of 2
nd

 burn is 

chosen so that its finish will correspond to the moment of 

SC reentry (h=hent=100 km). As one would expect, the 

duration of the 1
st
 burn is considerably greater than of the 

2
nd

 burn.  

Application of such algorithm will not lead to the 

considerable increase in fuel consumption     in 

comparison with mFmin: the differences do not exceed 

1÷2%. The supposed control will be called suboptimal 

control. 

0

500

150 300 450

m,  kg

Fig. 1. Dependencies of SC final mass  and mass  ΔmF1

and ΔmF2  on the lateral displacement  Lent (the variant of 

nominal initial data) 

Solid lines – suboptimal control; 

dashed lines – the one-burn scheme

ΔmF1

ΔmF2

mf

Lent, km/s

  
Figure 1 presents the dependencies of SC finite mass mf, 

spent at the 1
st
 and 2

nd
 burns mF1 and mF2 , on the lateral 

displacement Lent. For comparison there are the results of 

fuel mass calculation mF1, necessary with the use of 

spacecraft one-burn deorbiting scheme and corresponding to 

the spacecraft finite mass mf. Analyzing this data, we should 

note a considerable efficiency of the proposed deorbiting 

scheme. Thus, the increase of SC finite mass δmf  is ~ 180 

kg. 

As we should expect, with approximately optimal control 

the fuel mass mF1 monotonically increases with the 

increase of value Lent: the change of Lent from 0 to 600 km 

leads to increase of mass mF1 from 430 to 660 kg. The fuel 

mass mF2 changes less: in the same variety range Lent mass 

mF1 reduces from 190 to 160 kg. On the whole for nominal 

values of variable parameters (24) the SC finite mass is ~ 

1200-1400 kg. 

900

1100

1300

1500

400 500 600

-8 -11 -15

Fig. 2. Dependencies of SC final mass  on altitude h0, initial mass m0, 

velocity Vent , trajectory angle θent

Solid lines – suboptimal control; 

dashed lines – the one-burn scheme

mf, kg
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The results presented on Fig. 2, demonstrate specific 

influence of variable parameters (h0, m0, Vent, θent) on the 

finite mass mf  and on the efficiency of mass increase δmf 

using two-burn SC deorbiting pattern. Considering them one 

can see that the finite mass mf is increasing with the altitude 

increase of earth satellite orbit h0, initial mass m0 and with 

reducing of SC reentry velocity Vent and absolute value of 

trajectory angle θent. Thus, the change of h0 from 400 to 600 

km leads to increase of mf from 1265 to 1380 kg, mass 

change m0 from 1,5 to 2,3 t leads to increase of mf from 995 

to 1660 kg, reducing of reentry velocity Vent from 7,6 to 7,2 

km/s leads to increase of mf from 1310 to 1325 kg, change 

of trajectory angle from -15
0
 to -8,5

0
 – results in the increase 

of mf from 1110 to 1490 kg (Lent=300km). 

The power characteristics of engine P and Pspec, reduced 

frontal surface load Px and inclination of earth satellite orbit 

i0 scarcely affect the finite mass of SC.  

The efficiency of δmf increase due to application of the 

proposed scheme is provided in all the variation range of 

variable parameters, presented on fig. 2. Besides the high 

intensity of mf increase is revealed for greater values m0, 

absolute values θent  and smaller altitudes h0: δmf  achieves ~ 

270 kg. 

VI. CONCLUSION 

Thus the represented materials show the possibility and 

big power gain of SC two-burn deorbiting pattern in the 

wide range of boundary conditions, design, mass and power 

characteristics of SC and engine. It should be noted that the 

proposed methodological approach can be applied also for 

the solution of tasks of thrust vector optimal control during 

interorbital maneuvers and correction for maintenance of SC 

orbital parameters in the specified limits. 
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Abstract— in this paper, we introduce a novel keyword 

extraction algorithm, which identifies text descriptive terms in the 
titles of scientific articles. The identified terms can serve as search 
keywords for retrieving research articles form digital scientific 
databases and/or repositories. Our algorithm relies on the vector 
space model to represent the article titles and treats every term in a 
title as a vector with each vector containing three features namely, the 
number of characters a term has, the importance or else the strength 
of the term in the title and the relative order or else the position of the 
term in the title. Based on the weight our algorithm computes for 
each of the above features it assigns every term in the article’s title 
with a score indicating the suitability of that term as search keyword 
that could retrieve its corresponding article in the top ranking 
position. The experimental evaluation of our proposed algorithm on 
real scientific data proves its effectiveness in detecting text 
descriptive keywords and verifies our assumption that in the case of 
scientific publications title terms are expressive of the articles’. 
 
 

I. INTRODUCTION 

eyword-based approach is user friendly and easy to apply with 
an acceptable retrieval precision, while semantically rich 
ontology addresses the need for complete descriptions of text 

retrieval and improves the precision of retrieval [1]. Keyword 
extraction is a significant technique for text retrieval, Web page 
retrieval, text clustering, summarization, text mining, and so on. By 
extracting appropriate keywords, we can easily choose which 
document to read to learn the relationship among documents [2]. A 
trivial algorithm for indexing is the unsupervised Term Frequency 
Inverse Document Frequency (TFIDF) measure [3], which extracts 
keywords that perform frequently in a text, but that don’t perform 
frequently in the rest of the corpus [4,5]. It is computationally 
efficient and performs reasonably well [6]. The term “keyword 
extraction” is used in the context of text mining [3]. Keyword 
extraction has also been treated as a supervised learning problem [4, 
5, 7], where a classifier is used to classify candidate words into 
positive or negative instances using a set of features. Other research 
for keyword extraction has also taken advantage of semantic 
resources [8], Web-based metric, such as PMI score (point-wise 
mutual information) [7], or graph-based algorithms (e.g., [9] that 
attempted to use a reinforcement approach to do keyword extraction 
and summarization simultaneously) [6]. 
Relative scientific work has been carried out, where Frequent Terms 
(FT) are considered crucial [10], thus are extracted first, in order to 
extract keywords from a single document. Another interesting 
research has been carried out, where an alternative approach occurs. 
 

 

A proposed algorithm [11], where not only term frequency is 
measured or other statistics, but in addition the usage of professional 
indexers is implemented.  
Furthermore, TFIDF weighting measure is combined with the vector 
space method for this purpose [12]. The TFIDF very relevant for the 
document is commonly used in IR to compare a query vector with a 
document vector using a similarity or distance function such as the 
cosine similarity function. However, the problem focuses on the 
disharmony with the Shannon-like theory [13]. More details are 
given in section II.A. The algorithm proposed in this paper can be 
considered novel, since it is not based not on the frequency where a 
term occurs (TF/IDF) which considers every word in a document 
equally weighted, but it inserts 3 variables that constitute each word 
uniquely identified. In a correlation between the two algorithms, in 
TF/IDF algorithm the angle of a word vector and the component 
vector represents the term frequency when in the proposed angle it 
represents 3 unique variables that provide a unique vector identity for 
each word. 
It is known, that the Ontologies are related to a model of knowledge, 
and knowledge in turn to information. Thus, it makes sense to 
introduce the concept of entropy and mutual information, as defined 
by Shannon for information theory in [14], on ontologies. Entropy 
and mutual information in turn enables us to define a distance 
measure formally. With this distance a sound foundation is given for 
the capturing of the inherent structure of ontology. Consequently, in 
our work, we attempt to use a new algorithm which is creating in the 
philosophy of TFIDF algorithm giving simultaneously a solution to 
Shannon-like model disharmony.  
This paper is organized as follows:   

• Section II provides the theoretical and practical implications of 
this study which includes the related TF/IDF algorithm, the 
basis of the algorithm and the ranking criterion. 

• Section  III  describes  the experimental  design  analyzed the data 
collection part,   the implementation of the algorithm as well as  
the retrieval and evaluation results 

• Section IV presents the discussion and the future plan. 

 

II. METHODOLOGY 

A. Vector Space Model 
The TF/IDF algorithm is the best known weighting scheme for 
terms in information retrieval until know. This is based on 
three components  

• Document Frequency (DF) 
• Inverse Document Frequency (IDF) 
• Term Frequency (TF) 

And is implemented by the formula  

Keywords Extraction from Articles’ Title for 
Ontological Purposes  
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/ _ _ _ _ _TF IDF Term Frequency X Inverse Document Frequency=
 
Or via the equation 1. 

( ), , 101 log *logt d t d
t

w
Ntf
df

 
= +  

 
                (1) 

A characterization of algorithm is that the TF/IDF score (or, 
weight) for a term increases with the number of occurrences in 
a document (TF component). Moreover it increases when 
considering how rare the term is across the entire collection 
(IDF component).  However, this is based on a continuously 
dynamic training procedure. Furthermore, this technique 
demands multi relationships between the terms and texts. The 
most significant problems are referred in the searching 
procedure using weighted terms [12, 13]. 
In particular, the core of the problem is that it is difficult to 
identify a single event space and probability measure within 
which all the related random variables can be determined. 
Without such a unifying event space, any procedure that 
contains matching and/or mixing different measures local and 
global that may well be unacceptable in terms of a Shannon-
like theory [13]. A more serious problem occurs, when we 
search using weighted terms, we typically take the query terms 
ignoring all the other terms in the vocabulary. It is difficult to 
realize how such a practice could make sense in a Shannon-
like model: every term in the document must be supposed to 
transmit information as well as any other. That is, the existence 
of a term ki would carry. Then an amount of information log P 
(ki) is produced irrespective of whether or not it is in the 
query. There is not any connect for the amount of information 
to the specific query. So we would have no explanation for 
leaving it out of the estimation [13]. However, the similarity of 
the typical IDF formulation to a component of entropy has 
inspired other researchers [14] to make connections, 
sometimes somewhat differently from the connection 
suggested above. 

 

B. The Basis of the Algorithm 
The feature extraction is based on vector space model 

theory. In more details, we considered that the title of a 
published document depicts a determined vector (vs) which is 
unique. This technique creates an auto-correlation mechanism 
which is unique from each document and this practice gives a 
solution to Shannon-like model because each document is 
downgraded in term locally. Thus, a stable-single event space 
is created for each document with computing probability 
measure. Taking into account this consideration, we assume 
that each word of a specific title represents of a vector (vw) 
which consists of three (3) features namely, the number of 
characters (w), the strength (s), and the order in the title (n) 
(see equation 2).                                                                          

                  ( ) [ ]
0

ni
w i ii

V i s w
=

=


                               (2) 

Where,                       0 00 0s w= ∧ =             
 

 
For this reason, we normalized the vector (vw) and we 

obtained the equivalent vector 

                       0
0

0

ni
n wi i

we ni i
w i

V
V

V
=

=

=

=







                                       (3) 

As strength (s) we use an encoding measure and for 
simplification reason we defined the ASCII encoding [15], 
more details of this procedure is given in the experimental 
part.  

Furthermore, the vector (vs) depicted as the resultant vector 
(vs), see equation 3. 

                      ( )

0

n
i

s we
i

V V
=

= ∑
 

                                              (4) 

 

C. The Ranking criterion 
The proximity rankings of documents in a keyword search 

can be estimated, by using the assumptions of document 
similarities theory [16], by comparing the deviation of angles 
between each document vector and the original query vector is 
the resultant vector (vs) which represents the dominant 
orientation vector of the title. The calculation of the cosine of 
the angle between the vectors, is defined by equation (5). 

                     
( )

( )
( )cos

i
i we s

i
we s

V V
V V

θ =
 

 

                                     (5) 

 
 
The new ranking of  

0

( )
1 0min cos

j

n

jr rιθ
=

+  = −                (6) 

Where ( )
0 min cos ir θ =    

 

D. The novelty of the Algorithm 
Taking into account the sections II.A and II.B the 

calculation of documents vectors can be calculated into two 
different techniques.  

In the classical vector space model theory using the TF/IDF 
algorithm the document vector is extracted using multivariate 
components i. 

                      1 2,, ...,s iU w w w =                                    (7) 

In the proposed method the document vector vs is extracted 
using the three aforementioned components[ ]i ii s w . In 

other words the proposed method uses stable size of document 
vector (dimension 3). 

In the same way, the query vector of the proposed vector 
has the same dimensionality while the classical vector has i 
dimensionality. 

A vector space model iV


 is adopted instead of vector sU


 

where the i variable is replaced by variable r (see equation 6). 
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The reason of this replacement took place because variable r  
is considered as a very important factor in the semantic theory 

[17]. The replacement was made deliberately since vector iV


 

represents the influence’s degree through variable r  because 
this will lead in a new ranking procedure according to its 
influence. 

                         [ ]i i i iU r s w=


                                 (8)                                                     

Finally, in both cases the relevance rankings of documents 
in a keyword search can be calculated, using the assumptions 
of document similarities theory, by comparing the deviation of 
angles between each document vector and the original query 
vector where the query is represented as the same kind of 
vector as the documents (see fig. 1). 

 
Fig. 1. The query procedure between query vector and document 

vector 
 
The matching calculation is implemented via the cosine of 

the angles (θ,φ example see fig. 1) between the vectors, instead 
of the angle itself, see equations (5,6). 

 

III. EXPERIMENTAL PART 

A. The Data Collection 
The next step of the experiment lies in using an internet 
browser to visit Google Scholar in order to gather titles from 3 
different Classes from Dewey Classification. In detail, from 
each Class we choose 10 titles from 10 different subclasses, 
that way we gather a sample of 181 titles totally from 3 
different Dewey Classes. These Titles are: knowledge, 
systems, bibliographies, catalogs, libraries, biographies, 
topology, publishing, manuscripts and Algebra. Therefore our 
total title sample is approximately 181 titles. Continuing with 
the methodology steps followed, after already explaining the 
algorithm that extracts the 3 most dominant keywords and 
before inserting the title to the algorithm for processing, the 
step that needs to be done is a preprocessing of the title. The 
title is filtered in an automatic way in order to remove words 
considered as “non keywords”, such as stop words. In this 
paper we consider as a valid keyword, words that belong to the 
part of speech noun or compound noun. After the title is 
filtered, the next step is to apply the algorithm to each title. All 
the results for each separate title are being registered. The 

output that is generated every time returns the three most 
dominant words that are considered as keywords for every 
title. In the next step we test the output in order to measure our 
experiment success rate. We search in Google Scholar (in title) 
using the exact output of the algorithm and carry out a 
statistical research of the total results.  In order to be more 
precise we will present in detail an example/sample taken from 
our research. The whole process begins once we have selected 
a title of an article, which was obtained by using Google 
Scholar. Our search term was “Knowledge” and the title 
obtained “Advances in knowledge discovery and data mining”. 
Now, the obtained title must be preprocessed, before applying 
the algorithm. By using POS software, we keep words that 
based on the part of speech they belong they can be considered 
as valid keywords. All stop words must be cleared and also 
part of speech that for the purposes of this research must be 
excluded.  Therefore, from the original title what is left is 
“Advances knowledge discovery data mining”. At this point 
we can apply the algorithm to the title that is left in order to 
export the three most dominant keywords of the sentence. 
After the algorithm is applied, we continue the experiment by 
testing whether our results are successful. To do so, we must 
visit Google Scholar again and by searching only in title, with 
the three most dominant keywords we check the results. The 
first result we find out of 181 results is the original title. 
 

B. Implementation of the Algorithm 

According to sections (II.A, II.B, III.A) we implement the 
proposed procedure using the aforementioned example 
according to the following steps: 

Step 1. In the pre-processing procedure the title “Advances in 
knowledge discovery and data mining” is filtered in the 
eliminated one “Advances knowledge discovery data mining” 
using the rule of section (III.A)   
Step 2. We applied the algorithm by using the equations 1& 2 
for the extraction of the vw features. This implemented by the 
following code of Matlab and the results are presented in 
Table I: 
num1=double(‘Advances knowledge discovery data mining’); 
 k1=find (num1==32); 
 k2=length(k1); 
 sol1=[]; 
 for i=2:1:k2; 
     j=i-1; 
     t=num1(k1(j)+1:k1(j+1)-1); 
     sol=[i,length(t),sum(t)]; 
    sol1=[sol1;sol]; 
 end 
          t=num1(1:k1(1)-1); 
         solbeg=[1,length(t),sum(t)]; 
                           t=num1(k1(k2)+1:length(num1)); 
         sollast=[k2+1,length(t),sum(t)]; 
         sol1=[solbeg;sol1;sollast]; 
  % sol1=Vw word vector 
  % word normalization vector Vwe 
     d1=sol1/norm(sol1); 
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Table I. The Features of Vw 

Words Order No. 
Characters 

Strength 

Advances 1 8 805 
knowledge 2 9 960 

discovery 3 9 984 

data 4 4 410 

mining 5 6 642 

 
Step 3. We applied the algorithm by using the equation 3 for 
the extraction of the resultant vector (vs) features. This 
implemented by the following code of Matlab  “ u=sum(d1)” 
and the results are presented in equation 7: 

( ) ( ) [ ]
55

0 0

0.0085    0.0204    2.1524i i
s we s

i i

V V V
= =

= =∑
                            (7) 

Step 4. This implementation according to equations 4 and 5 
give the following results in Table II. 
 

Table II. The angle between the resultant (vs) and the word (vw) 
Words Cosθ Ranking 
Advances 0.1572 3 
knowledge 0.1069 2 

discovery 0.0547 1 

data 0.3332 5 

mining 0.2202 4 

 
As result of this procedure the words “discovery, knowledge 
and Advances” are selected as the optimum triple keywords.  
 

C. The Retrieval Results 
According to previous stage, 181 triple keywords are 
extracted from corresponding Scholar Google titles. In the 
retrieval procedure each of the 181 triple keywords are 
given as queries in Scholar Google machine in order to 
obtain the corresponding answers. Furthermore, we 
investigate if the primary keyword for collection of the 
articles contains in the extracted triple keywords. More 
details, about the order of this answers regarding the score 
of the successful trial of retrieval the correct title is given 
in Table III. 

Table III. Retrieval Results regarding to 181 triple words 
Order of 
success Queries 

Present of  
primary 
Keyword 

1 156 155 

2 14 12 

3 3 2 

4 0 0 

5 1 1 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 1 0 

11 2 0 

12 1 0 

13 1 0 

14 0 0 

15 0 0 

16 0  

17 1  

 
Furthermore, if we considered that x is the order of the 
successful retrieval using the triple words and y is number of 
queries. Then there is a polynomial n degree 

  1
1 2 1( ) ...n n

n np x p x p x p x p−
+= + + + +                     (8) 

Where                        ( )2min ( )i i
i

p x y − 
 
∑                          (9) 

Then using the following code of Matlab 
c = polyfit(x,y,5); 
xfit = linspace(min(x),max(x),length(x)); 
yfit = polyval(c,xfit); 
plot(x,y,'o',xfit,yfit,'--') 
 
we calculate that the robust fit polyonym is n=5 degree (see 
fig. 2) 
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Fig. 2. The polynomial fit regression with r2=0.9219 

 
Then the polynomial of this experiment is determined by 
equation (8) 

5 4 3 2( ) -0.0071 0.3566 -6.7615 +59.1588 -233.5057 323.0271p x x x x x x= + +     (8)  
 

D. Evaluation of the Results 
For the evaluation of the collected data the probability density 
function (pdf) is used. The aim of this adoption focuses on the 
determination of the maximum width of the interval (window) 
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x=[1,…,17] values. These values correspond to the order of 
successful article retrieval in Scholar Google search. In this 
way, we ask to found the robust interval window of values 
with the highest probability of searching scores. We typically 
proceed by investigating at a diagram (see fig. 2) of our data, 
and demanding to match it to the form of a smooth probability 
Gaussian density function, and rather one that is easy to work 
with. The Gaussian distribution is normally useful when the 
values a random variable takes are grouped near its mean, with 
the probability that the value falls below the mean 
corresponding to the probability that it falls above the mean 
[18]-[19]. 
In this stage we depict the density probability of integer values 
of polynomial with x=[1,…,17] which are presented in Table 
IV: 

 
Table IV. Polynomial Values Calculation 

x values  P values 

1  142.2682 

2    44.0373 

3    -0.4620 

4   -13.1717 

5   -10.0314 

6  -1.8303 

7     4.9408 

8 7.2375 

9     4.6098 

10    -1.6499 

11    -9.3588 

12   -16.2957 

13   -21.0530 

14   -23.8887 

15   -27.5784 

16   -38.2673 

17   -66.3222 

 
If   ( )f x   is the normal distribution { }1 2,..., 17,p p pχ ∈  then we 

calculated the normal density probability function (see 
equation 10) 

[ ]Pr ( )
b

X
a

a X b f x dx≤ ≤ = ∫                               (10) 

a=1 and b=17  (see fig. 3), then we ascertain that the most 
probable value of x is 3. 

 
Fig. 3. The probability density function of p values 

As an interpretation of this result is that the proposed method 
for a triple keyword query gives an accurate retrieval ranking 
into the first 3 positions.  

Furthermore, in order to evaluate the sensitivity and specificity 
of our method [20] we consider that the success scores are 
ranged between 1 and 3 interval space, as obtained by the 
probability density function (see fig. 2). In our case, we 
considered as true positive scores, all the articles which 
retrieved in the first second and third order via the triple query 
vector. As false positives scores are considered the articles 
which the primary keyword does not present in the triple 
keywords. Finally, true negative scores consider the rest scores 
(beyond of the three first orders). Then, the Table III is 
transformed into Table IV. 

Table V.    Retrieval Success Results regarding to 181 triple 
words 

True Positive False Positive True Negative 

151 11 8 

sensitivity 0.90 

specificity 0.58 

 

The Sensitivity relates to the test's ability to identify positive 
results. 

This can also be written as: 

_ _ _ 151
0.90

_ _ _ _ _ _ 168

number of true positives
sensitivity

number of true positives number of false positives
= = =

+

 

Specificity relates to the test's ability to identify negative 
results. This can also be written as: 

_ _ _ 11
0.58

_ _ _ _ _ _ 19

number of true negatives
specificity

number of true negatives number of false positives
= = =

+

 

 

IV. CONCLUSIONS 
We have presented a new keyword extraction algorithm that 

detects the most important terms in the titles of scientific 
papers, which are then employed as search keywords for 
retrieving articles form digital scientific online resources. In 
particular, the core of the problem lies in the fact that it is 
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rather difficult to identify a single event space and probability 
measure within which all the related random variables can be 
determined. Our algorithm is based on the vector space model 
to represent the article titles and treats every term in a title as a 
vector, with each vector containing three features namely, the 
number of characters a term has, the importance of the term in 
the title and the relative order of the term in the title. In the 
classical vector space model theory, using the TF/IDF 
algorithm, the document vector is extracted by using 
multivariate components j, while the classical vector has j 
dimensionality. 

Based on the weight our algorithm computes for each of the 
above features it assigns every term in the article’s title with a 
score indicating the suitability of that term as a search keyword 
that could retrieve its corresponding article in the top ranking 
position. The experimental evaluation of our proposed 
algorithm regarding real data proves its effectiveness in 
detecting the most suitable keywords in the articles' title and 
indicates that title terms may be sufficient for representing the 
article semantics, when it comes to scientific publications, 
which is to be investigated in the future. Currently, we are in 
the process of enriching our algorithm with additional features 
from the articles' contents such as the abstract and the 
keywords authors indicated for their articles. Moreover, to 
address the issue of synonyms and polysemy, that are not 
included in this experiment. In addition, we plan to employ the 
identified keywords for building an ontology that could be 
employed as a repository of search term for conducting text 
retrieval tasks in scientific online repositories.  

Furthermore, in order to evaluate the sensitivity of our 
method we consider that the success scores are ranged between 
1 and 3 interval space, such as obtained by the probability 
density function. 

Finally, we intend to release the ontology that will be 
developed so that it could be employed by other researchers 
for performing semantic retrieval tasks. Entropy and mutual 
information in turn enables us to define a distance measure 
formally. With this distance a sound foundation is given for 
the capturing of the inherent structure of ontology. 
Consequently, in our work, we attempt to use a new algorithm 
which will be created in the philosophy of TFIDF algorithm 
giving simultaneously a solution to Shannon-like model 
disharmony.  

 
 

REFERENCES   
 
[1] H. Wang, S. Liu, L.T. Chia. “Does ontology help in image retrieval? A 

comparison between keyword, text ontology and multi-modality 
ontology approaches”. In Proceedings of the 14th Annual ACM 
International Conference on Multimedia. 2006. pp. 109–112. 

[2] Y. Matsuo, M. Ishizuka, “Keyword extraction from a single document 
using word co-occurrence statistical information”. International Journal 
on Artificial Intelligence Tools. 2004. Vol. 13, pp. 157–169. 

[3] M. Rajman, R. Besancon “Text mining – knowledge extraction from 
unstructured textual data”. In Proceedings of the 6th Conference of 
International Federation of Classification Societies. 1998. 

[4] E. Frank, G.W. Paynter, I.H. Witten, C. Gutwin, C.G. Nevill-Manning.  
“Domain-specific keyphrase extraction”. In Proceedings of IJCAI, 
1999, pp. 688–673. 

[5] Y.H. Kerner, Z. Gross, A. Masa, “Automatic extraction and learning of 
keyphrases from scientific articles”. Computational Linguistics and 
Intelligent Text Processing, 2005, pp. 657–669.  

[6] Liu F. Liu, Y Liu. “Automatic keyword extraction for the meeting 
corpus using supervised approach and bigram expansion”. In 
Proceedings of IEEE SLT. 

[7] P. Turney, “Coherent keyphrase extraction via web mining”. In 
Proceedings of IJCAI, 2003, pp. 434–439. 

[8]  G. Carenini, R.T. Ng, X. Zhou, “Summarizing emails with 
conversational cohesion and subjectivity,” in Proceedings of ACL/HLT, 
2008. 

[9] A. Janin, D. Baron, J. Edwards, D. Ellis, G. Gelbart, N. Norgan, B. Pe- 
skin, T. Pfau, E. Shriberg, A. Stolcke, and C. Wooters, “The icsi 
meeting corpus,” in Proceedings of ICASSP, 2003. 

[10] Matsuo, Y., Ishizuka, M. “Keyword extraction from a single document 
using word co-occurrence statistical information”. International Journal 
on Artificial Intelligence Tools. 2004. Vol 13, pp. 157–169.  

[11] Hulth, A., “Improved automatic keyword extraction given more 
linguistic knowledge”. In Proceedings of the 2003 Conference on 
Empirical Methods in Natural Language Processing. 2003. Association 
for Computational Linguistics, pp. 216–223 

[12] P. Soucy και G. W. Mineau, ‘Beyond TFIDF weighting for text 
categorization in the vector space model’. IJCAI, 2005, Vol. 5, pp 
1130–1135. 

[13] Robertson, S. “Understanding Inverse Document Frequency: On 
theoretical arguments for IDF”. Journal of Documentation, 2004, Vol. 
60 (5), pp. 503–520. 

[14] C. Blake, ‘A comparison of document, sentence, and term event spaces’, 
In Proceedings of the 21st International Conference on Computational 
Linguistics and the 44th annual meeting of the Association for 
Computational Linguistics, 2006, pp. 601–608. 

[15] M. Poulos, S. Papavlasopoulos, V. Chrissikopoulos, “A text 
categorization technique based on a numerical conversion of a symbolic 
expression and an onion layers algorithm”. Journal of Digital 
Information, 2006, Vol. 1 (6). 

[16] Salton, G., Wong, A., Yang, C. S. “A vector space model for automatic 
indexing”. Communications of the ACM. 1975. Vol. 18, pp. 613–620. 

[17] Harispe S. et al. “Semantic measures for the comparison of units of 
language, concepts or entities from text and knowledge base analysis”. 
Arxiv. 2013. Vol. 1310, 1285. pp. 1-159.  

[18] Parzen, E. “On estimation of a probability density function and mode”. 
The annals of mathematical statics. 1962. Vol. 33, pp. 1065-1076 

[19] Abramowitz, M., Stegun, I. A. (Eds.). "Probability Functions." Ch. 26 in 
Handbook of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 1972, pp. 925-
964, 

[20] M. Poulos, G. Bokos, N. Kanellopoulos, S. Papavlasopoulos and M. 
Avlonitis. “Specific selection of FFT amplitudes from audio sports and 
news broadcasting for classification purposes”. Journal of Graph 
Algorithms and Applications. 2007. Vol. 11(1). pp. 277–307  

 
 
 
 
 
 
 
 
 
 

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 125

http://www.amazon.com/exec/obidos/ASIN/0486612724/ref=nosim/weisstein-20�
http://www.amazon.com/exec/obidos/ASIN/0486612724/ref=nosim/weisstein-20�
http://scholar.google.gr/citations?view_op=view_citation&hl=el&user=b1O4PYcAAAAJ&citation_for_view=b1O4PYcAAAAJ:LkGwnXOMwfcC�
http://scholar.google.gr/citations?view_op=view_citation&hl=el&user=b1O4PYcAAAAJ&citation_for_view=b1O4PYcAAAAJ:LkGwnXOMwfcC�
http://scholar.google.gr/citations?view_op=view_citation&hl=el&user=b1O4PYcAAAAJ&citation_for_view=b1O4PYcAAAAJ:LkGwnXOMwfcC�


  

 
Abstract- This text generally describes the architecture of 

an agent-based model for pulmonary tuberculosis in the 
zone of Usme (Bogotá, Colombia), product of a master's 
thesis in Information Sciences and Computing of District 
University "Francisco José de Caldas" [1]. First comes the 
introduction, then the tools and concepts that allow the 
simulation, then the model is exposed from a conceptual 
approach to technology-society relationship, and finally it is 
disclosed the author’s findings. 
 

Key words: Agents-Based Models, Geographic Automata 
System (GAS), Epidemiologic simulation, complex 
Systems. 

 

I.  INTRODUCTION 
 

The technological edge thinks forward, looking for ways to 
understand it, study and intervene in the world over time 
towards a particular purpose. So it makes models that attempt 
to reproduce actual facts and allows a better understanding of 
the relationship of humans with them, appearing technologies 
with that purpose as Agent-Based Models and Geographic 
Automata System, among others [2]. 
 

But the future is thought from the uncertainty, because the 
world is complex and multiple, set of systems with the general 
characteristics of not to be reversible, not to be accurately 
predicted, to develop nonlinear interdependent relationships, 
and to have appearance of order (emergency), being 
necessary to go beyond the deterministic mathematical formal 
schemes [3, 4]. 
 

The bio-social systems, being complex, cannot be predicted 
with accuracy nor are reversible, so they have a constitution 
order from the simple to the complex, allowing the passage 
from chaos to order at the time called edge of chaos, where 
self-organization emerges, which is the coordination of the 
parts’ behaviors of a system without any central power or 
external coercion that lead them. Jhon Stwart Kauffman 
formulated a hypothesis of a global connection between all 
parts of a physical system, that after a certain time, due to the 
energy accumulated between these, by inertia was that these 
associated themselves synergistically and generate patterns 
(self- adaptive systems) [3, 4]. 
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Current knowledge have the task of describing the 

complexity of the world we inhabit, so in this case it is 
intended to represent the nonlinear and interdependent 
relationships of a community in the middle of a tuberculosis 
epidemic, in order to predict the scenarios of this complex 
system [4, 5], explaining the construction of a Agent-Based 
Model for Tuberculosis in Usme’s zone, and thinking about 
the origin and social horizon of technology. 

II. TOOL AND BASIC CONCEPTS FOR THE MODEL 
 

A.  Geographic Automata System (GAS) 
 

Between 1999 and 2001, Paul M. Torrens and Itzhak 
Benenson created Geographic Automata System (GAS) for 
modeling phenomena on real spaces, from individual 
computer entities within the system: agents. On the one hand, 
they modified the classical Cellular Automata (CA), which is 
a system in one, two or three dimensions, consisting of 
partitions called cells, which acquire ways to present: states, 
from a default set of them, ranging from relations with its 
neighboring cells, their neighborhood (Figure 1), through 
pre-established transition- state rules, in a sequence of 
moments called evolution system [6, 7]. 
 

And on the other hand, they placed those entities that change 
over time (A. Figure 2) on a Geographic Information System 
(GIS), which is a set of layers that describe the geographic 
characteristics of a place, from the general to the specific 
(Figure 2 B). Thus, agents are related to real spaces, 
preserving the neighborhood concept in his role for the 
change of state (Figure 1), but not only on generic objects 
such as cells, but sometimes on entities with own 
characteristics and mobility: specific sites , people, vehicles, 
etc. (C. Figure 2) [2, 6].  
 

 
Fig 1. Types of neighborhood in cellular automata which allows the 

evolution of the system. Neighborhood A: Von Newman neighborhood, with 
octagonal neighbor cells. Neighborhood B: Moore neighborhood, with 

octagonal and diagonal neighbor cells [5]. 

A Geographic Automata System (G), is defined as the set of 
automatas (K), which vary from state (S) over time, through 
transition rules (Ts), developed at specific locations (L), from 
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mobility rules (if any) of each one (ML), considering its 
neighborhood (N) at every time, called Tick, and the criteria 
of relationship they have with this (RN) (Figure 3) [7, 8]. 
Where, thanks to this set, It is able to see the interdependent 
relationships between the conditions of each area (population 
density, healthiness, etc.), and each agent (location, nutrition, 
origin, economic status, etc.) [9].  

 
 

Fig 2. Integration of CA and GIS in the constitution of GAS. 
 

 
Fig 3. Representation of a Geographic Automata System (GAS) [8]. 

 
First, the geographic information of Usme Central zone, was 

registered with ArgGis, application that allows to enter raster 
data type of a land, generating a GIS shapefiles (.shp) [10]. 
And then again, as Framework it was used Repast, which is a 
set of Java classes and methods linking agents with a GIS, 
allowing focusing on the modeling of the relevant attributes of 
the phenomenon, because this program already contains the 
multi-threaded programming, where in pseudo-parallel way 
for each Tick, transition rules are executed for all agents run, 
and also it provides a graphical interface of the simulation 
[11]. 
 

B. Usme zone 
 

Usme is a local and administrative subdivision of Bogotá, 
which was incorporated into the city in 1990, because before 
that it was a town. So today some rural practices persist 
(agriculture, small farms, artisanal slaughtering), where 
according to figures consulted (data from 1999 to 2007 that 
varied in the study of late 2011, the same year it was 
supported the thesis on the model), 84.9% of its land 
(18,306.52 hectares) was rural and 15% urban, preserving 
some natural resources (now damaged by mining, 
urbanization and the tanning of leather) as water sources (21 
in urban sector, 23 in rural sector, 11 rivers, 2 dams and 3 
ponds.) [12]. 
 

Its population consisted of 51% female and 49% male, 
34.8% of the population was under 15 years and 2.5% over 
60, there being a high economic dependence, where on 
average 100 people were dependent of every 59, workers 

mostly with low levels of schooling and informal jobs. In 
addition, from 1995 to 2005, amidst the paramilitary 
phenomenon nationwide, this zone received 8.2% of the 
displaced population that came to Bogotá by the violence 
[12].  

 
Thus, according to the Unsatisfied Basic Needs Indicator 

(NBI, by the Spanish acronym), which considers the 
shortages at home: a) housing with physical or structural 
defects, b) lack of basic services or deficiencies in drinking 
water and feces disposal, c) overcrowding (2 persons/5m2), 
d) high economic dependence (1 productive person / 3 or 
more dependents), e) truancy (at least one child between 7 and 
11 do not regularly attend a school), and f) Misery, when the 
home has two or more of the above conditions, it was found 
that Usme was 9, 1% of homes in NBI, with 1% in misery. 
Fact also reflected in the 51% of the population below the 
"poverty line" indicator that arises from considering the 
minimum subsistence income for a person [13]. 
 

C. Tuberculosis Pulmonar (TB) 
 

Illness from the bacteria Mycobacterium tuberculosis, 
native bovine and adapted to the human (zoonoses), which 
attacks places rich in mucous membranes (such as the lungs) 
and develops according to: the strength of the micro-organism 
to survive and be transmitted (virulence), the opposition that 
the body makes to the micro-organism (resistance), ease that 
people have to acquire and develop the disease 
(hypersensitivity) and the morphology of the affected tissues 
(genesis of the pattern infectious) being vulnerable to 
ultra-violet rays. It manifests in cough with coughing up 
phlegm or blood, evening sweating, fever, fatigue and 
unintentional weight loss.. Phases of development are: the 
attack or the arrival of bacillus in the body, then its 
logarithmic growth and the progressive activation of cells 
infected into other tissues, then there is an immunity, delayed 
as the body's inadequate response to disease, thus leading to 
the destruction of tissue and the transmission of new one [14].  
 

Diagnosis is made by biochemical reaction of cultivated 
samples. To eradicate it is used treatment shortened 
supervised (DOTS), the antibiotic rifampicin, isoniazid, 
Pyrazinamide, and Ethambutol, over a period of 48 weeks, 
extending in the case of a relapse to 63, and whose success or 
failure (even fatal), depend on conditions of life of the 
infected as food, hygiene, wholesomeness in the habitat and 
permanence in the treatment, since deaths from TB are 
commonly associated with poverty and undernutrition [15]. 

III. AGENT-BASED MODEL FOR TUBERCULOSIS IN 
USME 

A.  Simulation’s time and space 
  

In architecture model time and space simulation, as the first 
condition for the interdependence between agents is carried 
out in the middle of tuberculosis outbreak as a complex 
system were established. On the one hand TimeProject whose 
TimeProject constructor class is created generated internal 
time model, allowing the passage of the  method step(). And 
moreover the Global class, entering shape files and generates 
graphical output interface was created, also it determines the 
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amount of Tick equivalent to every hour (1 hour = 1 Tick) , 
the number of initial agents in each state, that the 
epidemiological model of pulmonary tuberculosis (SIR 
model) are: Susceptible (which could be infected), infected 
(disease carrier) and Recovered (who overcomes the 
infection), and the amount of each type of agent , which under 
Usme socioeconomic conditions are: Housewife, Worker, 
Student, Deplaced and Homeless, which enter as parameters 
via setValuesFromParameters() method of that class [1] (A.  
Figure 4). 

 
Therefore, States and agents that is different in the middle of 

a space and a time shared, determine that the Organization of 
the information in a complex system should be a dynamic 
structure that contains the particularity of the elements and 
their no-lineal relationships, and don’t simply a collection of 
attributes. 
 

B. Contexts 
 

Contexts are joint that grouped the agents of a system and 
the relationships between them. Thus, MainContext class is 
the generic context that through the build() method, load the 
global timeline, originates and controls the contexts of spaces 
and people, and is the time and the particular space of these 
agents. Subsequently determined the context of each place: 
Home (HomeContext), workstation (WorkPlaceContext), 
study location (StudyPlaceContext) and entertainment venue 
(EntertainmentPlaceContext), dynamically created by 
reflection (in the execution of the program), through the 
method createSubContext() in the class CityContext, 
referencing their positions from the tract (class RoadContext), 
the intersections of these and the boundaries between places 
(class JunctionContext). In the same way, with the class 
PersonContext was created the possibility of dynamically 
generating the contexts of agents -sets of sites and other 
agents-: HousewifeContext, WorkerContext, StudentContext, 
DeplacedContext, HomellessContext  (B. Figure 4). 

 
The location of the agents was determined by the rules of 

movement (ML) of each, using for this parametric class 
AgentContext and getGeography() method. And the location 
of the sites was performed using the same method name 
PlaceContext parametric class (C. Figure 4). 

 
Due to the needed for information on the TB outbreak 

(major focus of infection, more infected population trend of 
spread of the disease, etc.), which would act on this, the 
dynamic generation of contexts allowed the development of 
the non-linear relationships between the different agents in a 
period of time, loading and processing the increased volume 
of information in the model thanks to the architecture of the 
program, through reflection, extended the possibilities of 
development of the system. 

 
C. Places 

  
Parametric classes system can evolve on the geographical 

conditions of Usme, which is very important for the 
relationship between the demographic conditions of a region 
and the spread of an epidemic (TB in this case), where the 
different types of places and their characteristics were 
determined and verified with the abstract class Place, with the 

attribute listPerson created an arrangement for certain amount 
of agents inside, regardless of their type, verify with the 
method getOvercrowdingCondition() the overpopulation 
(boolean data), on the basis of the capacity of the place 
(method getPeople Capacity()), and the number of people in 
it (method getAmountPerson()) [1].  

 

 
Fig 4. Time and space model, and training contexts through parametric 

classes.  
 

The specific locations and attributes were defined with 
HomePlace classes (households), WorkPlace (work sites), 
StudyPlace (study sites), EntertainmentPlace (entertainment 
venues) and Route (tracks), which inherit of the class Place 
attributes as the maximum area place (MaxArea...), high 
capacity (MaxAmount...), many people (amountPersons), 
capacity (peopleCapacity), use, management, geometry, 
number of people per state (amountSusceptible, 
amountInfected, amountRecovered), among others. 
 

Calculation of amounts by State was performed on the 
method step() -different class TimeProject step() method, and 
later exposed the Person class step() method-, and the 
distribution of agents by States was random from classes of 
each place: Work Place, Study Place, Home Place, 
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Entertainment Place, trough the method 
getRandomStudyPlace, getRandomHomePlace, 
getRandomWorkPlace, and getRandom EntertainmentPlace, 
respectfully (A. Figure 5). 
 

The description of Usme geography through Shape files and 
their inclusion in the system, allowed to generate scenarios 
appropriate for studying the TB epidemic in the actual 
conditions of this place, as a requirement of a model oriented 
to care for the life of the population, through the generation 
and the study of patterns in the spread of this disease.  

 

 
 

Fig. 5. Architecture of sites Agents model.  
 

D.  Agents  
 

It determined each agent-specific property so that they can 
evolve relationship tailored to the reality of the TB outbreak: 
daily places of movement, origin in the case of displaced 
persons, etc. Why the particular agents were created 'Worker', 

'Housewife', 'Student', 'Deplaced for violence' and 'Street 
people', through classes, Worker, Housewife, Student, 
Deplace and Homeless, respectively. 

Previous classes inherit from the Person class attributes of 
localization in each place (currentLocalization), routes of 
movement (route), location at every moment of the system 
(currentTick), identification (id), employment status, medical 
service, stratum, previous infection by HIV and TB, type of 
person, State of health (healthFactor) and number of health 
(numberHealthFactor), which is verified by the 
verifyHealthFactor() method According to the infections 
activate method infect(), which passes the person State 
Susceptible to infected (first passive, then contagious). 
  

Although it must be clarified that home and the places of 
development of each agent are attributes in each particular 
class (Worker, Student, Housewife, Homeless, Deplaced etc.), 
and is thus allowing you to determine routines on different 
types of agent through parameters that are entered as Schedule 
(specific cases) in the classes of every kind of person (B. 
Figure 5). 
 

E. Rules of transition  
 

Rules of transition between the States of SIR 
epidemiological model are identical for all agents (TABLE 
I.): susceptible to passive infected, and hence a contagious 
agent, then be recovered, however the times varied 
considering multiple living conditions of Usme (TABLE II.), 
where the method infect() of class Person activated particular 
rules contained in the classes of each type of agent making it 
easier in some cases to the acquisition of disease, and 
likewise, hampering its recovery (average increase of 
vulnerability, TABLE II) [1].  

TABLE I: TRANSITION RULES. 

State 
change 

Susceptible 
to Infected 
liability 

Infected 
liability. From 
Infected 
Contagious 

Infected to 
Recovered 

Time (1 
Tick = 
actual 1 
hour). 

12 Tick 96 Tick Tick 4032 (24 
weeks): Assuming 

completion of 
treatment of 48 

weeks. 

 
According to the conditions of life in each agent, for 

example, the time 12 Tick in the vicinity of a contagious, 
necessary to move from Susceptible to passive infected, agent 
reduced by the average decrease in 1/8, 1/6, or 1/4 of the 
number healht Factor attribute, as there was an average delay 
of 1/8, 1/6, or 1/4 in raising that attribute according to the 
conditions of table 2, to move from infected to retrieved, for a 
population chosen randomly according to the percentage of 
population affected, with the following conditions: 1 in every 
4 people in overcrowded housing was inadequate, 1 in 3 
people in destitution was in misery by NBI, 1 in 4 people with 
poor nutrition in the NBI1 in 3 people with chronic 
malnutrition was on the same indicator, as gaps in living 
conditions have problems shared, setting such conditions 
through schedule in each type of agent [9]. 
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TABLE II.: IMPACT ON VULNERABILITY FACTORS ATTRIBUTE 
PERCENTAGE WITH POPULATION AFFECTED 

NUMBERHEALHTFACTOR. 

Vulnerability Factor Average increase in 
vulnerability. Attribute 
numberHealhtFactor () 

<= 0.2 = infected.  

Scale of 0-1.  

% Affected 
Population 3

Poor nutrition  

 

1/8 30% 

Chronic malnutrition 1/6  15% 

Overcrowding 1/4  5% 

Housing inadequate 1/6  2% 

Households with NBI 
(1 Home = Average of 
4 People) 

1/8 9.1% 
households = 

36.4% 
population 

Misery as NBI ¼ 1% of 
households = 

4% 
population  

Homelessness ¼ 6% 

 

F. A CASE 
 

With a total amount of 500 agents, 20% love House, 
workers 25%, 25%, 15% and 15% displaced students of 
street, 5% initial of infected, recovered 20% and 75% 
susceptible, were obtained data from Table III.  

 
TABLE III: AGENT TYPES OF INFECTION BY TICK. 

 
Agents Infected% (of the 

total) for Tick.  T= 1 
T= 200 T= 528 T= 

4032 
Housewife 

 
1% 1.2% 3.8% 0.2% 

Worker 1% 1.8% 4.2% 0.4% 

Student 1% 1.4% 3.4% 0.2% 

Displaced 1% 2% 3.6% 0.8% 

Homeless 1% 1.6% 4.2% 0.6% 

TOTAL 
INFECTION 

5% 8% 19.2% 2.2% 

 
The resulting data is inferred that infection levels rise first in 

patients with immune deficiencies related to bad nutrition, 
poverty, and inadequate conditions of habitat (housing 
overcrowding or free services: NBI), nothing that although 
the highest proportion of agents corresponded to a type 
(workers and students), harder those infected in that 
eradicating the disease, they are those who described under 
very poor conditions of existence (Street and displaced 
inhabitants), which, if they had not taken into account would 
have caused a uniform tendency in the simulation behavior, 
without allowing to see the auto-organising patterns of the 
disease from the actual conditions to be able to act on this.  
 

 
3 Estimated figures weighting of survey data quality of life and 

social diagnosis of the town, considering older vulnerabilities for 
IDPs and resident street [9, 10].   

IV.  CONCLUSIONS 
 

1) The dynamic construction of contexts from parametric 
classes (T:Microsoft.VisualStudio.Test Tools. execution. 
agent context and Place Context) in the architecture of the 
model allowed a greater volume of information loaded and 
processed, reducing the lines of code and optimizing the 
performance of the machine, but projecting a greater 
precision of the simulation to the real conditions of the 
phenomenon in Usme (special agents(: street people, 
displaced persons, and specific conditions: NBI, nutrition, 
overcrowding) at all times, making this program as a support 
tool that could be used by local health authorities. 
 

2) The creation of Time Project and Global classes with 
their respective methods, and the union coherent types of 
agent to these, incorporating in a single set all elements of the 
simulation, is the architecture of the system as a Framework 
for the creation of models of epidemics-targeting GAS, 
regardless specific geography in which develops and 
simulated disease now that the creation of common space and 
time, and the possibility of agents to act is through these by 
means of dynamic contexts, create the basic conditions for 
any model can develop. 
 

3) The model is created for the study of infection and the 
spread of tuberculosis taking into account the social 
dynamics, adopt to different fields and learn behaviors and 
theoretical but reliable of a possible epidemic statistics 
without ethical implications, and allowing the application of 
preventive methods and control large scale. 
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Abstract—When using wide pre-stressed reinforced concrete 

beams for realization of prefabricated concrete slabs beside their 
mechanical disadvantages with respect to the regular ones, their 
increased risk of brittle failure and other uncertainty in their behavior 
have to be considered. Since in structural design structural height 
might be imposed, wide beams with all their disadvantages become 
the right solution. But how the mechanical behavior of the 
prefabricated floor system can be influenced in case of fire? The 
paper presents numerical modeling for prefabricated floor system 
using wide reinforced concrete beams considered together with the 
corresponding double floor with precast slab and concrete topping, 
subjected to fire in different fire scenarios, establishing the scenario 
with the highest risk on the structural stability.  

 

I. INTRODUCTION 
N practice of precast concrete structures several structural 
solutions are widely spread. Double floor systems are 

assuring the necessary speed in structure realization as well as 
the structural flexibility, which, in combination with use of 
wide pre-stressed reinforced concrete beams, presents 
countless benefits, but at the same time raises questions with 
respect to their mechanical behavior when subjected to 
loadings. Provisions of existing design codes are not clearly 
covering all the possible load situations according to [1], 
neither use of wide pre-stressed reinforced concrete since 
either code provisions are not covering or the structural system 
used [1] has no or limited references in codes and practice. 
From fire resistance point of view the degree of fire resistance 
is established according to [3], which is establishing the 
necessary fire resistance of each structural element. According 
to provisions of [2] fire resistance is assured by foreseeing 
specific concrete cover of reinforcement. Use of pre-stressed 
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slab elements can avoid excessive deformations and postpone 
the appearance of cracks [4], and as consequence the excessive 
exposure of reinforcement to fire. Due to the decreased 
structural height of wide beam floor systems their sensibility to 
fire is crucial. Studies on wide reinforced concrete beams 
subjected to fire shows that in numerical analysis the beam 
supposed to different fire scenarios has an adequate behavior 
for the imposed fire resistance degree [5], but their behavior as 
part of the floor system needs further investigations. 

II. PROBLEM FORMULATION 
For studying the behavior of the wide pre-stressed reinforced 
concrete beam subjected to different fire scenarios a floor 
system using this type of beam is considered [6], as presented 
in Fig. 1. 

Fig. 1 floor system layout 

For the modeling the floor system effective width of the beam 
has been considered (Fig. 2) according to the clause 5.3.2.1 of 
[1], taking into consideration the used concrete and 
reinforcement quantity, quality and disposal.  
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Fig. 2 effective width of the beam 

 
 The total double floor thickness is 17 cm, build up by a 8 
cm precast floor of C40/50 class concrete and a 8 cm topping 
of C25/30. The main wide beam reinforcement is presented on  
Fig. 3. Its total length is 7.86 a, while the cross-section is 
25x120 cm. The concrete quality used is C30/37, with 
longitudinal and transversal reinforcements PC52 type and 
active reinforcements of St1660 type having 12.9 mm 
diameter. For the analysis Abaqus FEM code [7] has been 
used, with different material law for both concrete and steel, 
for every change of temperature. For concrete it has been used 
the C3D8T solid elements:  an 8-node thermally coupled brick, 
tri-linear displacement and temperature and for the 
reinforcements the T3D2T elements: a 2-node 3-D thermally 
coupled truss. The analysis was done in three steps: in the first 
one the pre-tensioning was done and in the second one the 
gravity loads were applied for both a static general analysis 
being used. In the third step a transient coupled temperature-
displacement analysis have been used [8][9][10][11][12]. 

 
Fig. 3: main wide beam reinforcement 

For the analysis of the beam taking into account the 
effective width of the beam three different fire scenarios have 
been used [5],considering two hours from the curve presented 
in figure 4.  

 
Fig. 4: ISO 834 standard fire curve [2] 

III. MODELING OF THE BEAM ON FIRE 
In order to investigate the flanged wide reinforced concrete 

beam subjected to fire analyses have been performed using 
Abaqus finite element analysis. Results for the three scenarios 
are presented in the followings: 

A. Scenario I 
The first scenario of fire takes into consideration acting of 

the fire along the whole length and aside the whole width of 
the flanged beam (Fig. 5). 

 
Fig. 5: Scenario I of fire action 

 

 
Fig. 6: Displacement after two hours of fire, d=10.96 cm 

 
 

 
Fig. 7: Concrete plastic equivalent strain from compression, 

PEEQ=7.61E-3 
 

 

 
Fig. 8: Concrete plastic equivalent strain from tension,  

PEEQT=9.59 E-3 
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Fig. 9: Steel plastic equivalent strain, PEEQ=9.50E-3 

 
Fig. 10: Temperature distribution on concrete after two hours of fire, 

Tmax=1052ºC 
 

 
Fig. 11: Temperature distribution on steel after two hours of fire, 

Tmax=981.6 ºC 
 

Fig. 12: Time versus maximum temperature curve on concrete 
 

 

 
Fig. 13: Displacement – maximum temperature diagram 

B. Scenario II 
The second scenario of fire considers the fire acting in the 

middle of the opening on a strip of 0.50 m wide, aside the 
whole width of the flanged beam (Fig. 14).  

 
Fig. 14: Scenario II of fire action 

 

 
Fig. 15: Displacement after two hours of fire, d=1.087 cm 

 

 
Fig. 16: Concrete plastic equivalent strain from compression, 

PEEQ=1.90E-3 
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Fig. 17: Concrete plastic equivalent strain from tension, 

PEEQT=3.71E-3 
 

 
Fig. 18: Steel plastic equivalent strain, PEEQ=4.08E-3 

 

 
Fig. 19: Temperature distribution on concrete after two hours of fire, 

Tmax=978.7ºC 
 

 
Fig. 20: Temperature distribution on steel after two hours of fire, 

Tmax=913.9 ºC 
 

 
Fig. 21: Time versus maximum temperature curve on concrete 

 

 
Fig. 22: Displacement – maximum temperature diagram 

C. Scenario III 
In the third scenario of fire it have been considered acting 

on a strip of 0.50 m wide near the support, aside the whole 
width of the flanged beam (Fig. 23).  

 
Fig. 23: Scenario III of fire action 

 

 
Fig. 24: Displacement after two hours of fire, d=0.072 cm 
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Fig. 25: Concrete plastic equivalent strain from compression, 

PEEQ=4.39E-3 
 

 
Fig. 26: Concrete plastic equivalent strain from tension, 

PEEQT=5.14E-3 
 

 
Fig. 27: Steel plastic equivalent strain, PEEQ=6.78E-3 

 

 
Fig. 28: Temperature distribution on concrete after two hours of fire, 

Tmax=969.4ºC 
 

 
Fig. 29: Temperature distribution on steel after two hours of fire, 

Tmax=908.4 ºC 

 

 
Fig. 30: Time versus maximum temperature curve on concrete 

 

 
Fig. 31: Displacement – maximum temperature diagram 

IV. DISCUSSION 
The three scenarios taken into consideration in the 
investigation presents possible situation of fire acting on the 
beam. When comparing results obtained for flanged wide 
reinforced concrete beam with respect to the independent wide 
reinforced concrete beam [5] one can remark similar behavior 
of the beams under the same external load, but deflection of 
the beam, internal stresses in concrete and reinforcements as 
well as internal temperature are of more reduced values. 

Comparison of the results for the three scenarios is 
unnecessary since the load given by the fire in the first 
scenario is incomparable with the other two scenarios. Even so 
we can remark the increased risk for the stability of the 
element for scenario I since after one hour it reaches excessive 
deformation (beyond l/100), where the concrete cover of the 
tensioned reinforcements is already inexistent. For scenarios II 
and III the deformation occurred is almost negligible under the 
external and fire loads. 
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V. CONCLUSION 
The behavior of the flanged wide reinforced concrete beam 

subjected to fire according to the presented numerical 
investigation can be considered highly satisfying, taking in 
consideration the designed concrete cover and the imposed fire 
resistance of the element of 15 minutes. Fire resistance of the 
beam is improved when joint with the flanges is considered 
and pre-stressing for the beam is applied, avoiding excessive 
deflection even after one hour of fire load. Temperature in the 
reinforcements reaches dangerous values after one hour of fire 
load. 

The displacements after two hours of fire are less for the 
wide beam interacting with the precast slab then the results 
only on the wide beam alone [5], 3  times less for the first and 
second scenario and almost 8 times less for the third scenario.  

Modeling the interaction of the precast slab with the 
prestressed wide beam gives a more accurate representation on 
the behavior of the beam subjected to gravity and fire loads. 
For a better understanding of the mechanical behavior the 
authors will have to do some experimental investigations in 
order to see if the numerical model is close to reality. 

REFERENCES   
[1] *** SR EN 1992-1-1-2004, Eurocode 2, Design of concrete structures. 

Part 1-1: General rules and rules for buildings, 2004. 
[2] *** SR EN 1992-1-2-2004, Eurocode 2, Design of concrete structures. 

Part 1-2: General rules – structural fire design, 2004. 
[3] ***. (1999). P118-99: Normativ de siguranță la foc a construcțiilor 
[4] A. Puskas, Z. Kiss, “Testing of a wide reinforced concrete beam”, The 

7th Central European Congress on Concrete Engineering, 
Balatonfüred, Hungary, 22-23 September 2011, pp. 315-318 

[5] A. Puskas, A. Chira, “Numerical Investigations on a Wide Reinforced 
Concrete Beam Subjected to Fire”, Proceedings of the 4th International 
Conference on Mathematical Models for Engineering Science - MMES 
'13, Brasov, Romania, June 1-3, 2013, pp. 169-174, ISBN: 978-1-
61804-194-4 

[6] Z. Kiss, K. Bálint, A. Puskás, “Steel or concrete structure – 
prefabricated or cast in situ? The design of a multistory building in 
Bucharest for Kika”, III, Medunarodna Savetovanke, Subotica, 8-9. 
Octobar 2009, p. 79-93. 

[7] Abaqus. Abaqus Analysis User's Manual.  
[8] I. Moga, L. Moga, “Heat flow simulation through the window together 

with the wall in which is fitted in”, IASTED conference “Applied 
Simulation and Modeling” Palma de Mallorca, Spain, 29 – 31 August, 
2007, ISBN: 978-0-88986-687-4 

[9] A. Faris, A. Nadjai, S. Choi, “Numerical and experimental 
investigations of the behavior of high strength concrete columns in fire”, 
Elsevier, Engineering structures, 2010. 

[10] K. Venkatesh, R. Nikhil, “A simplified approach for predicting fire 
resistance of  reinforced concrete columns under biaxial bending”, 
Elsevier, Engineering structures, 2012. 

[11] Qing-Hua Tan,Lin-HaiHan n, Hong-XiaYu, Fire performance of 
concrete filled steel tubular (CFST) column to RC beam joint, Fire 
Safety Journal, 2012 

[12] Anil Agarwal , Lisa Choe , Amit H. Varma ,,Fire design of steel 
columns: Effects of thermal gradients’’ Elsevier, Journal of 
Constructional Steel Research, 2014. 

 
 
A. Puskás is Assistant Professor at Faculty of Civil Engineering of Technical 
University of Cluj-Napoca, Romania, since 2007. He received the B.S. and 
Ph.D. degrees in civil engineering in 1995 and 2012, respectively, from 
Technical University of Cluj-Napoca, Romania, and M.S. degree in Business 
Administration from Faculty of Business of Babes-Bolyai University, Cluj-
Napoca, Romania, in 2005. In 2013 he graduated a Postgraduate Course in 

Sustainable Urbanization at Technical University of Cluj-Napoca, Romania 
and participated in a short course in Sustainability: Principles and Practice at 
Massachusetts Institute of Technology, Cambridge, United States. 

He joined Technical University of Cluj-Napoca, Romania in 2003 as 
Teaching Assistant. From 2000 he have also worked as Structural Designer, 
leading or participating in design of several steel, concrete, masonry or 
wooden structured industrial and public buildings. Since 2005 he is also 
Technical Director of a privately owned construction company, with 
extensive activity in industrial and public building design and realization. He 
has authored more than 30 Journal and Conference papers. His current 
interests include pre-stressed concrete design, sustainable structural solutions, 
sustainability of structures and their environmental impact as well as waste 
recycling in construction industry. 

Dr. Puskás is member of The International Federation for Structural 
Concrete, The American Concrete Institute, Association of Environmental 
Engineering and Science Professors, Romanian Green Building Council and 
Association of Structural Designer Civil Engineers. 
 
A. Chira is Assistant Professor at Faculty of Civil Engineering of Technical 
University of Cluj-Napoca, Romania, since 2014. He received the B.S. and 
Ph.D. degrees in civil engineering in 2008 and 2011, respectively, from 
Technical University of Cluj-Napoca, Romania,  

He joined Technical University of Cluj-Napoca, Romania in 2010 as 
Teaching Assistant. In 2007 he started to work as Structural Designer, being 
involved  in the design of concrete, steel or masonry both industrial and 
public buildings.  

Dr. Chira is member of research team ,,Computational Modeling and 
Advanced Simulation in Structural and Geotechnical Engineering’’. 
 

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 137



 

 

 

Keywords— complex dynamical systems, modeling languages, 
equation-based models, hybrid systems. 

 
Abstract— OpenMVL project is a research project devoted to 

mathematical problems of equation-based modelling and simulation 
of complex dynamical systems. Open source tool OpenMVLSHELL 
developed by A.A. Isakov is presented. OpenMVLSHELL transforms 
a model written in Model Vision Language to a system of algebraic-
differential equations. Hereby OpenMVLSHELL automatically builds, 
analyzes, reduces, and solves systems of algebraic-differential 
equations. The numerical software of OpenMVLSHEL is available for 
augmenting by users. User can test and compere effectiveness of his 
own methods with OpenMVLSHELL’s methods using built-in set of 
test problems. 
 

I. INTRODUCTION 
Visual tools for modeling and simulation of complex 
dynamical systems are used in research, industry, and 
education. Simulink (StateFlow, Simmechanics, 
SimPowerSystems, etc. - MathWorks), Dymola, Ptolemy are 
only a few well-known names of such tools [1]. It is possible 
marking out universal and unified tools among them. 
Universality assumes ability of building a model of any needed 
type using universal tool only. Commonality requires using 
unified modeling language for model specification and its 
well-defined interpretation (See Unified Modeling Language 
(UML) for example). Modeling and simulation of complex 
dynamical systems using universal and unified tools may be 
disjoint on stages: 
 

• Specification of an equation-based model. 
• Building a system of equations using component 

equations and connection equations. 
• Reducing of a system. 
• Numerical solution of current equations. 
• Visualizing of solution (behavior of model).  

 
Modules of tools for modeling and simulation of complex 
dynamical systems answerable for Building, Reducing, and 
Numerical Solution may be considered as special kind of 
numerical software. Numerical software and numerical 
libraries are generally accessible and have open source usually 
(Netlib for example). 

 
 

Open source tool OpenMVLSHELL developed by A.A. 
Isakov deals with mathematical and numerical problems   of 
modeling and simulation of complex dynamical systems. 
OpenMVL Project (http://dcn.ftk.spbstu.ru/) opens for Users 
numerical software of universal and unified visual tools 
MvStudium and Rand Model Designer (www.mvstudim.com; 
www.rand-service.com), developed by MvStudium Group.  

II. OPEN SOURCE TOOLS FOR MODELING AND SIMULATION OF 
COMPLEX DYNAMICAL SYSTEMS 

Modern tools automatize modeling and simulation of physical 
or technical, real or projectible complex objects. Complex 
objects demand complex models: classical dynamical and 
hybrid systems are among them. They keep on key role in 
equation-based modeling. Traditional problems of numerical 
solution of large scale and sparse hybrid algebraic-differential 
equations are supplemented by problems of their building, 
analyzing, and reducing.  This is specific character and main 
distinction of numerical software for modeling and simulation 
of complex dynamical systems from traditional numerical 
libraries for solving algebraic, differential, and algebraic-
differential equations. OpenMVL project is a research project 
devoted to mathematical problems of equation-based 
modelling and simulation of complex dynamical systems. 
The OpenModelica Project [5, 6] has been choosing as 
prototype of OpenMVL [7]. 
 OpenModelica: 
 

• is open source and free of charge tool, 
• provides users object-oriented technology of modeling 

(without graphical interface), 
• allows playing with the model and carry out complex 

computational experiments. 
 

If OpenModelica Project draws user’s attention and 
demonstrates possibilities of object-oriented modeling, then 
OpenMVL deals with problems of numerical software needed 
for object-oriented modeling of complex dynamical systems 
only. 
A hybrid system with local continuous behavior in the form of 
sparse and large scale algebraic-differential equations is the 
main mathematical model for complex dynamical systems. 
Blocks with «contacts-flows» connection equations («acausal» 
blocks [5]) and hybrid systems as their component model may 
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cause difficulties if we want building executable code for all 
permissible current systems of equations for whole model 
beforehand (Fig.1).  
 

 

 

 

 

 
 
Fig. 1. «Acasual» blocks with «contacts-flows» and hybrid 
component equations. 
 
 Tools used Modelica overcome this problem restricting local 
behavior equations in hybrid system.  Model Vision Language 
(MVL) has no such limitations.  This is only one distinction 
between Modelica, MVL, and other Modeling Languages [1]. 
There are many others, and it is important starting discussion 
about Standard for tools of modeling and simulation of 
complex dynamical systems. Open source tools such as 
OpenModelica or OpenMVLSHELL may be considered as 
prototypes for workable Standard. Any Standard fixes progress 
and issues the challenges. Standard implies reproducibility 

modeling and simulation results for different tools if they 
follow Standard.   
Standard should touch on classification of permissible: 
 

• model types (systems of algebraic equations, system of 
ordinarily differential equations, systems of  
algebraic-differential equation), 

• methods of decomposition and aggregation of 
component models (causal, «acausal» blocks, 
«agents» and so on) , 

• methods of analyzing, reducing and approximation of 
models, 

from the point of view of numerical software for modeling and 
simulation of complex dynamical systems. 
Standard is able to prescribe compulsory list of 
 

• numerical methods, 
• and instruments for computational experiments 

 
for comparison results of simulation. 

We are going argues only classification of models and list on 
numerical methods used in MvStudium Group’s tools in this 
paper.  
Component «Analyzer» recognizes a model types and 
component «Solver» suggests and calls acceptable numerical 
method in OpenMVLSHELL. 

III. OPENMVL PROJECT 
OpenMVL Project with OpenMVLShell (Fig. 2) tool:  
 

• is open source project,  
• based on Model Vision object-oriented modeling 

Language  with  UML-based diagrams for hybrid 
systems (Behavior-Charts or for short B-Charts) for 
specification of a model  under consideration (Fig. 
3.). 

 
 

 
 

Fig 2. OpenMVLShell structure diagram    

 
OpenMVLShell:  
 

• has Editor for model specification; 
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• build executable code interacting with User;  
• has Test-bench for plying with model and plotting 

results (Fig.4). 
 

 
Fig 3. Modelling in OpenMVLShell. 

 
For building and playing with Model: 
 

• download a Model written in MVL (any Model Vision 
tool can save graphical specification of a model as 
MVL-text); 

• build executable Model with help of OpenMVLShell; 
• call executable Model. 

 

 
 

Fig 4. A numerical experiment in  OpenMVLShell. 
 
Component «Solver» calls numerical methods in compliance 
with results of syntactic analysis of equations written by User.  
In the rest of the paper: 
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«Analyzer» distinguishes between:  
 

1. Systems of nonlinear algebraic equations (NAE) begin 
by substitutions ()Sub .  

NAE: 


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2. Systems of linear algebraic equations (LAE): 
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3. Systems of ordinary differential equations: 
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4. Systems of algebraic-differential equations: 
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Fig 5. Possible structures of solved systems. 
Effectiveness depends on structure of solved system. 
OpenMVLShell distinguishes between sparse and non-sparse 
systems, and systems with the special structure (Fig. 5). 
Solvers of systems of linear algebraic equations take into 
account their sparseness. 
«Solver» for NAE, ODE, and DAE can call «automaton», 
standard (built-in), users’, and debugging methods (Fig. 6). 
«Automaton» is used on default. The goal of «Automaton» is 
to find solution at any cost. It may be a set of sequentially 
executable software implementation of numerical methods. 
 

 
Fig. 6. Structure of a «Solver». 
 
OpenMVLShell and all MvStudium Group tools have two-
level numerical library. Lower level contains software 
implementation of numerical methods for NAE, LAE, ODE, 
DAE written in Fortran. 
NAE: Newton and Powell methods. 
LAE: LINPACK solvers for non-sparse systems and systems 
with special structure (band and so on); Sparse Solvers. 
ODE: Solvers from ODEPACK [9]; Hairer and Wanner 
Solvers from [8]. 
DAE: ODEPACK, DASSL [10], DASPK [11]. 

 

IV. CONCLUSION 
Number and complexity of tools for modeling and simulation 
of complex dynamical systems increases permanently. They 

should be standardized. OpenMVL is open project used now 
for research and education [2, 3, 4] (http://dcn.ftk.spbstu.ru/).  
We suggest using it as start point for future Standard. Joint us! 
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Abstract—The typical design of the weapon system using 

separated propellant charge is not beneficial enough to the muzzle 

velocity because of the ignition delay of additional charge. The new 

method of the precisely timed electric ignition has been developed. 

Contributions of the timed ignition to the ballistic output of weapon 

have been modelled and model has been supported by experimental 

shootings results. The muzzle energy of the projectile fired with 

timed ignition has been increased by more than 25 percent compared 

to the projectile fired from typical weapon. 

 

Keywords—Interior ballistics, gun, separated charge, muzzle 

velocity, timed ignition, electric ignition.  

I. INTRODUCTION 

HE concept of gun using separated propellant charge is 

described in [1,4,6,7], it is a weapon system designed to 

produce high muzzle velocity alongside preserving the 

maximum pressure limit. The design of the weapon is 

distinguished with the use of at least one additional chamber 

placed alongside the barrel bore. The additional propellant 

charge is placed inside the additional chamber and ignited 

during the shot. The only method of ignition of the additional 

propellant had been the way of utilization of hot powder gases 

from barrel bore produced during the shot by burning of basic 

charge. This method does inflict ignition delay. The ballistic 

efficiency does drop as a result of any delay of ignition. If the 

new method of electronically driven timed ignition is used, 

the ballistic performance of the system is increased 

significantly, whereas the main advantage of not breaking the 

maximal ballistic pressure limit is maintained. 

 

 
Fig. 1 – Historical concept of weapon system using separated 

propellant charge with ignition by hot gases (by Lyman and 

Haskell in 1883). 
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II. PROBLEM FORMULATION 

The ballistic performance of the weapon could be measured 

by the kinetic energy of the projectile. If the energy 

conservation equation (1) is observed and the work done by 

propellant gases is expressed, the weapon performance could 

be enhanced by increasing the ballistic pressure of propellant 

gases accelerating the projectile: 

 2

0

1
d

2

úl

q ús p l m v , (1) 

where cross-section surface is represented by s, ballistic 

pressure by p, the l does stand for projectile travel, lú for 

barrel length, mq is mass of projectile and vú is projectile’s 

muzzle velocity. However the high pressures inside the barrel 

are limited to the highest value of pressure pmax, because of 

the barrel strength limitation. This fact does lead to pressure 

development optimization resulting in the ideal rectangular 

pressure course illustrated in the following figure. 

 
Fig. 2 – Ideal pressure course. 

 

Typical pressure courses are not closed enough to the ideal 

one, it could be refined by the way of placing additional 

charges alongside the barrel (see Fig.1) to help reduce the 

effect of the pressure curve decreasing branch.  

The process of shot evolution does begin ordinary, starting 

with initiation of basic propellant charge placed inside the 

main cartridge chamber. After the certain amount of time 

projectile is moving inside the barrel bore, being accelerated 

by the propellant gases of the basic charge. While the 

projectile does travel, it releases volume in which the basic 

propellant charge does burn and does enable propellant gases 

to expand and ballistic pressure to drop. At this time 

projectile should pass the flash hole and should connect the 

volume of burning gases to the volume of additional chamber 

with additional propellant. Hot gases intrude the additional 

chamber through flash hole and ignite additional propellant 

in order to produce more gases and reverse the pressure drop 

behind the projectile. 

Timed ignition of separated charge 

Michal Kovarik 

T 
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The described process of ignition of additional propellant is 

significantly time-consuming and does impede full utilization 

of system with separated propellant charge (see Fig.4). If the 

ignition of additional propellant charge could be timed 

precisely to the moment when projectile does pass the flash 

hole, the obstacle of ignition delay would be removed. 

Therefore the pressure course should be improved and higher 

muzzle velocity should be produced. 

III. MODEL 

Following the objective of physical action description the 

mathematical model was assessed. The core of the model of is 

based on the thermodynamical description of geometrical 

theory of propellant combustion consisting of following 

equations: 
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where ψ stands for the relative quantity of burnt-out 

powder, κ, λ, μ are geometric characteristics of the powder 

grain, z is the relative burnt thickness of the powder grain, p 

is the ballistic pressure and pz is the primer pressure, f is the 

specific energy of propellant, ω is the mass of the propellant 

charge, mq is the mass of the projectile, φ is the fictivity 

coefficient of the projectile, s is the cross-section area of bore, 

m, u1, ν are rate of burning coefficients, Ik is the pressure 

impulse of ballistic pressure, l is the projectile travel as lψ is 

the relative length of initial combustion volume, Θ is the heat 

parameter of powder expansion, Δ stands for the loading 

density, δ for the powder mass density and α is the covolume 

of powder gases.  

This model of the interior ballistics has to be modified in 

order to description of the weapon utilizing additional serial 

chambers. In the case of system with additional propellant 

charge, every combustion space has to be described 

separately. The main issue is mathematical description of the 

propellant gases flow between the chamber and barrel bore, 

the problem is mainly represented by the assuming the flow 

rate of the propellant gases through the ignition channel and 

the generation of the propellant gases mixtures. 

The flow rate of the propellant gases mpr is dependent on 

the difference in the internal pressure in barrel bore p and 

internal pressure in the additional chamber p1. If the 

condition 
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is met, the propellant gases will flow by the critical velocity 

and flow rate will be  
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where the outflow coefficient ξ*  is given by 
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If the condition (9) is not met, the coefficient ξ* is 

substituted by the outflow coefficient ξ given by 
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The coefficient κk defines local flow conditions of the 

particular channel design, it has been assessed according to 

the Cibulevky theory. 

The equations for mathematical description of the 

propellant gases mixture are based on the Dalton’s law 

p = ∑pi, the total pressure exerted by the mixture of non-

reactive gases is equal to the sum of the partial pressures of 

individual gases. When βi represents partial mass of i-th 

portion 

 i

i





 , (13) 

then the mixture could be characterized by the quantities: 

 1
i i i

f f 


  , (14) 

 

i
i i

i

f

f



 

 




, (15) 

 1
i i i   


  , (16) 

and 

 1
i i i iT r T

r
 


  , (17) 

where gas constant r is equal to r = ψ-1∑βi·ψi·ri. 

Described mathematical model conforms the preconditions 

and simplifications of no heat transfer between barrel and 

propellant gases, uniform dispersion of the propellant burning 

products inside the barrel bore, neglect of wave process in the 

gases, merely simplification of the influence of the primer, 
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quantification of energetic losses are by means of the 

fictiveness coefficient, minimization of the gases leakage, 

constant the heat capacity ratio during the shot generation 

and others which are perceptible from the equations notation 

itself, for example combustion rate law u = u1(m+pν). 

The solution of the presented system could be found by the 

numerical method only. The Runge-Kutta 4th order method 

has been used and the appropriate procedures were built 

under the environment of Matrix Laboratory software. 

Parameters and constant values were given by 

characteristics and properties of the gun and ammunition 

used during following experimental shootings. The calculated 

pressure course of chosen gun fired as an ordinary weapon 

(with basic propellant charge only) is illustrated in following 

figure. 
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Fig.3 – Pressure course of chosen gun. 

 

The comparison of the numerical model results for the 

chosen case of weapon system designed as a weapon system 

with one additional propellant charge utilizing the ‘gas 

ignition’ and the same weapon system with the precisely 

timed ignition are depicted in the next figures (the safe 

reduced experimental additional propellant charge was 

modelled for correspondence between the computation and 

the experiment). 
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Fig.4 – Pressure course in the case of ‘gas ignition’. 
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Fig.5 – Pressure course in the case of timed ignition.  

 

The numerical analysis of the mass of additional propellant 

charge and time of ignition for the chosen weapon system was 

made and the resulting pressure course for the most profitable 

feasible solution is shown in the Fig. 6. 
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Fig.6 – The best feasible pressure course.  

 

Numerical values of the calculated maximum pressures and 

relevant muzzle velocities are summarized in the following 

table. 

 

Table I. – Calculated values of velocities and maximal pressures.  
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IV. EXPERIMENT 

A. Weapon 

The experimental weapon was the modified smooth-bored 

barrel of calibre 12.7×107 and length of 100 bores. The three 

additional chamber were placed alongside the bore, just first 

was utilized.  

 
Fig.7 – The best feasible pressure course.  

The additional chamber was designed as a hollow volume 

inside the screw and placed into the first position. Flash holes 

were drilled to the barrel and inclined to the barrel bore axis. 

The barrel was supported at the placement of additional 

chamber by the steel rings and the additional chamber was 

mechanically sealed. The electric ignition wire passage 

opening in the screw’s head was left. 

 
Fig.8 – The additional chamber.  

The barrel was fit to the universal breech UZ-2000 and gun 

carriage STZA providing remote initiation.  

B. Ammunition 

The experimental ammunition consist of projectile, basic 

charge and additional charge. Monolithic brass projectiles 

were used instead of the common line production because of 

the mass variation. 

 
Fig.9 – The experimental projectile.  

The basic charge was placed inside the brass case adjusted 

to the pressure measurement according to C.I.P. standards. 

The propellant was 7-hole single based deterred powder. The 

mass of the basic charge was set to constant 9 g. Every charge 

was reweighted. 

The additional propellant charge was integrated into the 

screw of additional chamber. It consist of electric initiator F3 

(EMS PATVAG) in the hollow volume of the support casing, 

composite contact casing of crezol-formaldehyde resin, and 

the assembly of contact screw placed inside the composite 

pin. In the case of ‘gas ignition’ the assembly without electric 

equipment was used. 

 

Fig.10 – The additional charge assembly.  

The double-based small-grained spherical powder with the 

high vivacity was used as the additional propellant. Because 

of the manipulation reasons it was placed inside the micro-

foil pre-perforated bag.  

 

C. Arrangement 

The arrangement of the measuring chain is depicted in the 

Fig. 12. The action started by the time delay setup on the 

timing unit from personal computer by the means of the 

developed digital interface. Then the sufficient electric charge 

was stored in the capacitive high-voltage unit. The 

mechanical initiation of the basic propellant charge caused 

the rise of the ballistic pressure. The value of the pressure was 

measured by the piezoelectric sensor. The charge signal was 

transformed to voltage signal and observed by the timing unit 

in real-time. After the pressure threshold had been reached, 

the timing unit counted delay and sent the control signal to 

the switch unit. The high-voltage circuit was closed and 

initiator ignited the additional propellant. The laser gates 

were used to measure projectile velocity and ballistic analyzer 

recorded signals. 
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Fig.12 – The measuring chain (PC-personal computers, BA-ballistic 

analyzer, NZ-charge-voltage transducer, ČJ-timing unit, SJ-switch 

unit, VN-high voltage unit, LH-laser gates, arrows-signal lines).  

D. Results 

The experimental comparison between systems of typical 

gun, ‘gas ignition’ and ‘timed ignition’ has been made. The 

same types and amounts of propellants were used.  The 

pressure courses are compared in the Fig. 13 (refers to 

Fig.3-5). Analogously the ‘best solution’ pressure course was 

measured (Fig.14 does relate to Fig.6). 

 

Fig.13 – The comparison of measured pressure courses. 

 

 

 
Fig.14 – The measured best feasible solution pressure course. 

 

Numerical values of the measured maximum pressures and 

relevant muzzle velocities are summarized in the following 

table. 

 

Table II. – Measured values of velocities and maximal pressures.  

 
 

V. CONCLUSION 

The timed ignition of separated propellant charge does 

result in the muzzle velocity increase compared both to the 

typical gun and to the gun utilizing the gas ignition of the 

separated propellant charge. Although the reliability of the 

model is limited, the effect to pressure curves is in 

accordance. If the more detailed description of the weapon 

system with separated propellant charge was focused, it 

should incorporate the hydrodynamic theory, though the 

solution would become complicated due to its demands for 

values acquaintance of considerable amount of unknown 

quantities. The utilization of one additional chamber with 

timed ignition does produce equivalent increase in muzzle 

velocity compared to use of three additional chambers ignited 

by hot gases [13]. 
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Abstract—To investigate and analyze the obesity or overweight 
situation among 7 to 12 year old children in 2013 and its relation to 
blood pressure, pulse, vital capacity index. To provide scientific 
evidence for different level governments to make corresponding 
preventative strategies and intervention measures. This paper take 7 
to 12 year old children in 11 primary schools as investigation objects; 
measure their height, weight, blood pressure, pulse and vital capacity 
index and screen the overweight and obesity according to the 
standard made by WGOC. The overweight rate of 7 to 12 city boys, 
city girls, country boys, country girls in 2013 is respectively 
14.54%,7.06%,7.35%,1.97%. The obesity or overweight rate of them 
is respectively 23.85%,13.02%,11.38%,3.82%. The overweight rate 
and the obesity rate have different trends as the age grows. The 
overweight rate and the obesity rate at different ages are different in 
genders and town-country difference. The overweight children’s and 
obesity children’s blood pressure, pulse of are higher than the normal 
children’s, but their vital capacity index is lower than the normal 
children’s. BMI is very positively related to the diastolic blood 
pressure and systolic blood pressure (except girls), while BMI is 
obviously negatively related to vital capacity index. The school and 
the children’s parents cooperate to strengthen the food management 
of obesity or overweight children, train them good dietary habits, do 
exercise to build their physique, improve their health level. 

Keywords: Children obesity or overweight, physical health index, 
Western China 

I.  INTRODUCTION 
In recent years, as the dietary pattern and life style changes 

and the living standards improves, Childhood obesity is 
developing in Children, which seriously influences the 
children’s health, and it has been an important public health 
matter. According to the survey, childhood obesity cannot only 
cause social psychological problems to the children [1], but 
also increase the risk of obesity to them in their adulthood and 
blood pressure, diabetes, dyslipidemia and other diseases 
related to obesity which often happen in adulthood occur in 
their childhood [2-5].  

In [11], in comparisons among age–sex–BMI percentile 
groups, systolic and diastolic blood pressure values were 
higher in obese and overweight groups than in normal weight 
groups for both sexes. Although BMI among girls was higher 
than among boys in all three percentile groups, there were no 
significant differences between sexes with respect to blood 
pressure values. The present findings emphasize the 
importance of the prevention of obesity in order to prevent 
future related problems such as hypertension in children and 

adolescents. In [12], this paper aimed to investigate the ability 
of BMI and waist circumference, single and combined, in 
identifying children who are at risk of hypertension and in 
influencing absolute blood pressure values. High blood 
pressure is strongly associated with excess weight. Waist 
circumference improves the ability of BMI to identify 
hypertension in obese children. Waist circumference is related 
to absolute blood pressure values in all weight classes. In [13], 
this paper aimed to determine the prevalence of overweight in 
US children using the most recent national data with measured 
weights and heights and to examine trends in overweight 
prevalence. The prevalence of overweight among children in 
the United States is continuing to increase, especially among 
Mexican-American and non-Hispanic black adolescents. In 
[14], this paper aimed to examine the extent of blood lipid 
abnormalities in overweight children and to determine whether 
the prevalence of dyslipidemia is different in overweight 
children with elevated blood pressure (BP) compared with 
overweight children with normal BP (NBP). The high 
prevalence of dyslipidemia found in this overweight sample 
supports recent recommendations to collect plasma lipid levels 
in not only overweight children with BP ≥90th percentile but 
also in all overweight children. In [15], this paper aimed to 
examine tracking and predictiveness of childhood lipid levels, 
blood pressure, and body mass index for risk profile in 
adulthood and the best age to measure the childhood risk factor 
levels. Childhood blood pressure, serum lipid levels, and body 
mass index correlate strongly with values measured in middle 
age. These associations seemed to be stronger with increased 
age at measurements. In [16], although the influence of obesity 
on ventilatory function has long been recognized, the nature of 
the relationship and the mechanisms are not yet clear. The 
purpose of this report was to examine the effects of overall 
obesity and fat distribution on ventilatory function. Body fat 
distribution has independent effects on ventilatory function 
after adjustment for overall obesity in men. The finding that 
age modifies this association has implications for future 
research. 

The paper analyzed the 7-12 year old children’s physical 
health monitoring data in Lanzhou, gained the children’s 
overweight, obesity popularity situation among different 
economic social groups in Lanzhou cities and countries, 
analyzes the relation between childhood obesity and blood 
pressure, pulse, vital capacity index and then provide scientific 
evidence for different level government to make corresponding 
preventative strategies and intervention measures. 
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II. 2. RESEARCH OBJECTS AND METHODS 

A. Research objects 
Through taking whole group at random as sample, classify 

Lanzhou according to the town and the country. According to 
the social economic and cultural development level, divide 
them into up, middle and low level. According to the 
requirements of National Student Physique and Health 
Research Group, it choose 4188 students at 7 to 12 years old in 
11 schools as researching objects, among which are 1279 city 
boys, 991 city girls, 1116 country boys and 812 country girls. 

B. Investigation Methods    
The age of children is full age according to the birthdates 

and the measure dates. It strictly obeys the National Student 
Physics and Health Monitoring Implementing Rules to measure 
their heights, weight, blood pressure, pulse and vital capacity. 
The survey screws are professional medical personnel who 
have taken uniform training, and they use the same mode 
measuring apparatus. Before being used, the apparatuses has 
been checked and corrected in uniform, and the site quality 
control measures all meet the demand. They applies vertical 
height and weight complex measurement apparatus, the unit of 
height being m (meter) and being precise to 0.01m and the unit 
of weight being kg (kilogram) and being precise to 0.1 kg. 
When measuring the blood pressure, the children tested should 
sit down and be quiet with the up arm at the same level as the 
heart, measure the brachial artery on right up arm for twice, 
and take the mean value of the two continuous tests as the 
tested children’s blood pressure (kpa).It applies cylinder vital 
capacity measurement apparatus to measure vital capacity. 
Before being used, the cylinder vital capacity measurement 
apparatus should be checked and corrected, measure it for three 
times and take the largest vital capacity value as the vital 
capacity value, finally account the vital capacity index[vital 
capacity (mL)/(kg)]. When measuring the pulse, the checkers 
put their fore-fingers and middle fingers onto the cross stripes 
in wrist of the children and near the thumbs. Normal pulse is in 
regular rhythm and uniform force, the fingers are flexible. 

C. Diagnostic Criteria  
 Count the index (BMI) by using height and weight. BMI= 

Weight/height2 (㎏ /㎡). Screen the overweight and obesity 
according to the standard made by Working Group of Obesity 
in China ,WGOC. In order to get rid of the interference caused 
by malnutrition, they set up a comparison between the 
malnutrition children and the normal children according to the 
Students’ Standard Height and Weight Table.  

D.  Statistical Method 
Input the data by using Excel software and analyze the data 

by using SPSS19.0 software. The measurement data shall be 
shown in mean data±s. The comparison of rateχ2 to check and 
exact probabilities in fourhold table. T check will be used to 
analyze when comparison between two groups is made, but 
one-way ANOVA T Test is will be used to analyze between 
more  than two groups. BMI and blood pressure, pulse, vital 
capacity index will be used as Pearson to analyze.  

III. 3. RESULTS 

A.  Overweight and obesity situation 
1) General situation 

As shown in Table 1, the city boys’ overweight rate, 
obesity rate and overweight+ obesity rate are highest, while the 
country girls’ are lowest. By comparison, we learn that the city 
boys overweight rate, obesity rate, overweight + obesity rate is 
respectively higher than the city girls’ (P<0.01) and the country 
boys’ (P<0.01). The city girls’ and the country boys’ 
overweight rate, obesity rate, overweight+ obesity possible rate 
are higher than the country girls (P<0.01). 

2) The overweight, obesity possible rate in different 
gender children 

As shown in table 1, by comparing the city boys’ and the 
city girls’, the boys’ overweight rate at different age groups are 
higher than the girls, among which the 7 year old boys’ 
overweight rate is a bit higher than the 7 year old girls; the 8 to 
12 year old boys’ overweight rage is obviously higher than 
girls (more than doubled.) The boys’ obesity rate at different 
ages are higher than the girls, among which 9 year old boys’ 
obesity rate is close to the girls’, boys’ obesity rate at other 
ages are 2 to 7 percent higher than the girls’. The boys’ 
overweight+ obesity possible rates at different ages are higher 
than the girls’, among which the difference at 11-year-old 
reaches 15.77 percent. By comparing the city boys and city 
girls in the same ages, city boys overweight rate, overweight + 
obesity possible rate (except 7 year-old group) at the same ages 
are significantly different, and the 10-year-old group boys 
obesity rate is very different from the city girls(P<0.05 or 
P<0.01). 

Through comparison between the country boys’ and 
country girls’, the country girls’ overweight rate, obesity rate, 
overweight + obesity rate is very low, in detail, the 8 to 10  
year-old group country girls’ possible rate is 0, 11 to 12 year 
old country girls’ possible rate is higher than the country boys’. 
By comparing the country boys’ and country girls’ at the same 
age, 8 to 11 year-old group country boys’ overweight rate, 7-
year old and 9-year old groups obesity rate, 7 to 11 year old 
group overweight + obesity possible rate is significantly 
different from the country girls’.  

3) The city children’s and the country children’s 
overweight, obesity possible rate 

As shown in table 1, the city boys’ overweight rate, obesity 
rate, overweight + obesity rate at different ages are higher than 
country boys’, among which the differences in 10-year old 
group overweight rate, overweight + obesity rate and 7-year 
old group obesity rate are largest, they respectively are 11.68 
percent, 18.16 percent, 8.26 percent. By comparing the boys at 
the same age group, 8 to 10-year old group city boys’ 
overweight rate, 7 to 8-year old group and 10-year old group 
overweight + obesity rate are obviously different from the 
country boys ( P<0.05 or P<0.01). 

 By comparing the city girls and country girls, the 11-year 
old group country girls’ obesity rate and 12-year old group 
overweight rate, obesity rate, overweight + obesity rate are 
higher than the city girls’; the overweight rate, obesity rate, 
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overweight + obesity rate at other ages group are higher in the 
city girls. By comparing the city girls and country girls at the 
same age group, the 7-year old group city girls’ overweight rate, 

overweight + obesity rate , 7 to 9-year old group obesity rate is 
greatly different from the country girls’(P<0.05 or P<0.01). 

TABLE I.  7 TO 12 YEAR OLD TOWN AND COUNTRYSIDE CHILDREN’S OVERWEIGHT AND OBESITY POSITIVE RATE IN LANZHOU (2013) 

Area Age 
Boy Girl 

Testing 
Person Overweight  obesity 

Overweight and 
obesity 

Testing 
Person 

Overwei
ght  obesity Overweight 

and obesity 

City 7 216 20(9.26) 26(12.04)△△  46(21.30)△△  189 16(8.47)
△  

15(7.94
)△△  31(16.40)△△  

 8 237 29(12.24)*△△  22(9.28)△  51(21.52)**△△  169 10(5.92)
△  

8(4.73)
△  18(10.65)△△  

 9 236 31(13.14)**△△  19(8.05) 50(21.19)*△△  197 11(5.58)
△  

15(7.61
)△△  26(13.20)△△  

 10 226 44(19.47)*△△  25(11.06)*△  69(30.53)**△△  161 18(11.18
)△△  7(4.35) 25(15.53)△△  

 11 188 34(18.09)** 16(8.51) 50(26.60)**△  120 6(5.00) 7(5.83) 13(10.83) 

 12 176 28(15.91)** 11(6.25) 39(22.16)** 155 9(5.81) 7(4.52) 16(10.32) 

 Total 1279 186(14.54)**△△  119(9.30)**△△  305(23.85)**△△  991 70(7.06)
△△  

59(5.95
)△△  129(13.02)△△  

Countryside 7 238 15(6.30) 9(3.78)* 24(10.08)** 190 5(2.63) 0(0) 5(2.63) 

 8 211 9(4.27)* 8(3.79) 17(8.06)** 137 0(0) 0(0) 0(0) 

 9 189 8(4.23)* 8(4.23)* 16(8.47)** 139 0(0) 0(0) 0(0) 

 10 186 15(8.06) ** 8(4.30) 23(12.37)** 112 0(0) 0(0) 0(0) 

 11 145 17(11.72)** 6(4.14) 23(15.86)* 102 0(0) 7(6.86) 7(6.86) 

 12 147 18(12.24) 6(4.08) 24(16.33) 132 11(8.33) 8(6.06) 19(14.39) 

 Total 1116 82(7.35)** 45(4.03)** 127(11.38)** 812 16(1.97) 15(1.85
) 31(3.82) 

Note: the number in ( ) is the possible rate/%. Comparison between children in different genders: Comparison between children 
in town and in country: Δ means P,0.05; ΔΔ means P<0.01. 

4) Children’s overweight, obesity possible rate at different 
age groups 

Boys’ overweight rate grows as the age increases. City 
boys’ obesity rate falls as the age increases. The country boys’ 
obesity rate stays at about 4 percent. City boys’ overweight + 
obesity possible rate first grows and then falls. The country 
boys overweight + obesity possible rate first falls and then 
grows. Through inspection, the city (F= 12.82, P=0.025), the 
country (F=15.42, P=0.009) boys’ overweight rate at different 
ages are greatly different. 

The city girls’ overweight, obesity, overweight + obesity 
possible rate all falls as the age grows. The country girls’ 
overweight, obesity, overweight + obesity possible rate grows 
as the age grows. Through inspection, the country girls’ 
overweight rate (F=37.95, P=0.0000), obesity rate (F=37.95, 
P=0.0000), overweight + obesity rate (F=58.91, P= 0.0000) at 
different age groups are greatly different.  

B. Comparison of Obesity-or-overweigh children’s and 
normal children’s blood pressure, vital capacity index 
The boys’ and girls’ diastolic blood pressure, systolic blood 

pressure and pulse: the obesity group > the overweight group> 
the normal weight group. Vital capacity index: the normal 
group > overweight group > obesity group. Through 
comparison, the boys’ and the girls’ overweight group, obesity 
group and the normal weight group’s diastolic blood pressure, 
systolic blood pressure, pulse ( except girls), vital capacity 
index is statistically different (P<0.05 or P< 0.01).  

 

 

 

TABLE II.  TABLE 2   COMPARISON OF LANZHOU OVERWEIGHT GROUP, OBESITY GROUP AND NORMAL WEIGHT GROUP CHILDREN’S BLOOD PRESSURE, PULSE, 
VITAL CAPACITY INDEX (±S) 
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Type 

Boy Girl 

Testing 
Person 

diastolic 
blood 
pressure 
(kPa) 

systolic blood 
pressure (kPa) 

Pulse 
(time/min) 

Vital capacity 
index 
(mL)/(kg) 

Testing 
Person 

diastolic 
blood 
pressure 
(kPa) 

systolic blood 
pressure 
(kPa) 

Pulse 
(time/min) 

Vital capacity 
index 
(mL)/(kg) 

comparison 1703 69.32±7.61** 107.92±9.68** 86.18±7.37 48.95±11.68** 1408 69.34±7.14 106.66±8.96** 86.59±7.19 43.45±11.32** 

Overweight 268 72.17±9.04** 112.54±10.13** 87.63±7.62* 40.29±8.47** 86 72.38±7.79** 111.63±9.01** 87.23±7.81 35.69±7.93** 

obesity 164 75.36±8.46** 117.44±10.09** 88.99±8.04** 34.48±7.98** 74 74.63±8.25** 115.27±9.53* 88.47±10.52 29.12±4.93** 

Note: * means P<0.05, ** means P<0.01. 

C. 3.3. Correlation analysis between BMI and blood 
pressure, pulse, vital capacity index 

TABLE III.  CORRELATION ANALYSIS BETWEEN CHILDREN’S BMI AND 
BLOOD PRESSURE, PULSE, VITAL CAPACITY INDEX IN LANZHOU 

Gender Index R value P value 
Boy diastolic blood 

pressure 
0.194 0.000 

 systolic blood 
pressure 

0.190 0.000 

 Pulse -0.020 0.475 
 Vital capacity 

index 
-0.365 0.000 

Girl diastolic blood 
pressure 

0.046 0.161 

 systolic blood 
pressure 

0.055 0.097 

 Pulse -0.002 0.939 
 Vital capacity 

index 
-0.270 0.000 

It applies Pearson to analyze the correlation of BMI and 
diastolic blood pressure, systolic blood pressure, pulse and vital 
capacity. BMI is positively related to the diastolic blood 
pressure and systolic blood pressure (except girls); BMI is 
negatively related to vital capacity index. 

IV. 4. DISCUSSION 

A. Current situation of Children obesity or overweight in 
Lanzhou 2013 and the causes 
The overweight rate announces the early popular trend, the 

obesity or overweight rate reflects the popular situation, the 
obesity rate reflects the popular level [6].The thesis shows that 
7 to 12 –year old city boys’ , city girls’, country boys’ an 
country girls’ overweight rate is respectively 14.54 percent, 
7.06 percent, 7.35 percent and 1.97 percent. The obesity rate is 
respectively 9.30 percent, 5.95 percent, 4.03 percent and 1.85 
percent. The obesity or overweight possible rate is respectively 
23.85 percent, 13.02 percent, 11.38 percent, 3.82 percent. The 
boys’ is higher than the girls’ and the city’s is higher than the 
country’s, which is in accordance with the reported results [7]. 
The city boys are the most easy to join the group of obesity-or- 
overweight, so measures should be taken. The overweight and 
obesity possible rate differs in genders and city-country at all 
the age groups, among which the city and country boys’ 
overweight rate at 10 to 12-year old group is higher than those 
at other age groups; country girls’ overweight rate, obesity rate 
at 11 to 12 –year old grows sharply, and they are the most 

dangerous group to get obesity or overweight. The latest 
American report shows that the childhood obesity rate in 2009 
to 2010 is 16.9 percent [8]. In cities of Guangdong province, 7 
to 14-year old students’ overweight rate is 11.1 percent, the 
obesity rate is 7.2 percent [9]. In Zhangjiakou city, 7 to 12-year 
old children’s overweight rate is 13.01 percent, obesity rate is 
14.25 percent [10]. By comparison, Lanzhou- children 
overweight rate, obesity rate in 2013 are lower than that in 
developed countries and the large or medium cities in China. 
Compared with the Lanzhou (2013) city boys’, city girls’ and 
country boys’ overweight rate, obesity rate grows, while the 
country girls’ overweight rate and obesity rate falls.  

B. The relation between childhood obesity and blood 
pressure, pulse, vital capacity 
The human beings’ cardio system and breath system is a 

symbol of a person’s health and they also influence the human 
beings’ lifespan, working duration and working efficiency. 
Blood pressure, pulse and vital capacity is a key physical index 
of the heart, vessels and lungs, thus they mean a lot to the body 
and the health. 

Obesity is an important factor to cause high blood pressure. 
The gradually increasing blood pressure rate coexists with the 
sharply growing obesity or overweight. The research shows, 
the overweight children and the obesity children’s diastolic 
blood pressure, systolic blood pressure are higher than normal 
weight children. BMI is positively related to the diastolic blood 
pressure, systolic blood pressure, which is in accordance with 
the research results in recent years[11-13]: prove that 
overweight and obesity is an important factor to cause the 
children blood pressure to be higher. Obesity children’s 
growing blood pressure may be a compensatory mechanism. 
As the adipose tissue increases, the vascular bed increases, then 
the capacity increases, thus the output per pulse and the output 
from the heart increases. As the heart contains a larger capacity 
in a long time, the chambers of the heart grow, the myocardium 
grows thicker and the weight of myocardium increases. 
Meanwhile, as the adipose tissue in and out of the myocardium 
is easy to cause damage to the myocardium, the diastolic 
function of left chamber falls[14]. It’s reported that the blood 
pressure has tracks. The original high blood pressure at 
adulthood can date back to the childhood. As the blood 
pressure in childhood grows, the blood pressure in adulthood 
and the risk of high blood pressure at adulthood rise greatly 
[15]. Therefore, to conduct children blood pressure and prevent 
the children from high blood pressure is very important. 
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Vital capacity is one of the most important indexes to 
reflect the human beings’ lung function. The vital capacity is 
not only related to the anatomy capacity of the lungs, but also 
related to the ventilator function and the contractility of the 
lungs. Obesity causes the ventilator function to fall, thus the 
blood circulation property becomes abnormal and the 
hypoxemia forms, which finally damages the ventilator 
function. The research founds that overweight, obesity 
children’s vital capacity index is lower than the normal weight 
children’s. BMI is negatively related to the vital capacity index. 
Note: the obesity children’s ventilator functions grows far 
behind the normal children’s, because the extra fat 
accumulating in the chest and the belly can take mechanism 
action to the chest and the belly, action of the chest and the 
diaphragm is limited, then the ventilator block grows causing 
the ventilator function to fall, finally the vital capacity and the 
ventilator adjustment changes [16]. The research has not found 
the relation between pulse and BMI, but the close relation 
between pulse and individual action may influence the relation 
between pulse and BMI. 

Childhood obesity mainly is a kind of pure obesity. The 
parents and the school should strengths the health education 
onto their children or students; help them to believe in the 
conception that health is the most important. They should take 
some necessary long-term interfere actions to control the 
dietary habit of “high energy, high fat”, increase their exercise 
strength, change their bad lifestyle to prevent or control obesity 
and other complications. 
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Abstract — The current research is aimed at implementing and 

validating software procedures by proposing new algorithms that 
receive data from inertial navigation systems/sensors (data acquisition 
equipment) and provide accurate navigation information. In the first 
phase, our concern was to implement a real-time evaluation criterion 
with the intention of achieving real-time data from an accelerometer. 
It is well known that most errors in the detection of position, velocity 
and attitude in inertial navigation occur due to difficult numerical 
integration of noise. The main goal of this study was to propose a 
signal processing algorithm, based on the Wavelet filter, used along 
with a criterion for evaluating and updating the Wavelet’s optimal 
level of decomposition, for reducing the noise component. We 
performed numerical simulations using signals received from an 
accelerometer and analyzed the numerical results to see whether the 
improved Wavelet (proposed method) can be used to achieve more 
precise information on a vehicle. 

 
Keywords — signal processing; wavelet transform, partial directed 

coherence method.  

I. INTRODUCTION 

The aim of the our scientific research is to develop  
advanced algorithms able to determine the optimal level of 
decomposition for the Wavelet method and to implement these 
algorithms in a miniaturized inertial measurement units in order 
to obtain accurate data regarding the vehicle displacement. 

Apart from the indisputable benefits of size reduction, 
reliability, manufacturing costs and power consumption, the 
miniaturization of sensors and by default of inertial 
measurement systems (INS) caused a number of problems 
related to their performance degradation. As a result of 
miniaturization, stochastic (noise of the system) and 
deterministic errors occurred [1-4]. 

 The inertial sensors noise, major source of errors for 
inertial navigation systems, is characterized by a constant 
power throughout the frequency spectrum, that reflects the 
dynamics of mobile systems - which are intended to be 
monitored (generally in the range 0-100 Hz). Therefore, this 
type of noise filtering in the 0-100 Hz band is not 
recommended.  

This noise component that overlaps over the output of the 
sensors, cannot be totally eliminated but it can be influenced 
by stochastic processes [5]. 

The development and also the optimization of advanced 
algorithms for improving the performances of miniaturized 
inertial sensor and inertial measurement units are extremely 
important topics in the field of aerospace navigation systems. 

The practical challenge of the study under discussion was to 
develop and validate a complex algorithm that would process 
the signals received from accelerometers, and later from INS, 
remove the noise and offer precise information regarding the 
vehicle displacement. 

Therefore, an improved wavelet filter was proposed, used 
to remove the noise detected during measurements, in order to 
obtain a better accuracy of the measurements. The optimal 
order of the wavelet filter (the optimal decomposition level) 
was calculated using a correlation analysis function applied to 
the signals achieved from the accelerometers and the real 
speed signals applied to the accelerometers (considered as 
reference signals). 

II. PROPOSED METHOD 

The Wavelet transform is a very powerful tool for the 
signal feature extraction and noise reduction and offers 
effective localization in time and frequency domains. 

In order to analyze signals, the continuous Wavelet 
transform (CWT) can be considered as a tree decomposition of 
the signal (the Wavelet decomposition tree), a combination of 
a set of basic functions, obtained by means of dilation and 
translation of a single prototype Wavelet function )(tψ  called 
the mother Wavelet, as illustrated in Fig. 1 [6].  

In practice, the dual tree consists of two discrete Wavelet 
transforms working in parallel. The branches of the tree are 
interpreted as the real part, respectively, the imaginary one of 
a complex wavelet. Thus the complex wavelet transform is 
obtained. 

The continuous Wavelet transform ),)(( τψ sfW , of the signal 
)()( 2 RLtf ∈ can be determined as: 
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where, ψ denote the complex conjugate of ψ .  

 
Fig.1- Wavelet decomposition tree  

 
A wavelet filter acts as an averaging filter or a filter that 

detects details when a signal is decomposed with wavelets. A 
part of the consequent wavelet coefficients match with details 
in the data set. The detail significance is proportional with  the 
amplitude of the waves -  if  they are small, they can be left 
out, without essentially influencing the data set main features 
[7]. The main idea of thresholding is to set all coefficients that 
are below a specific threshold at zero value. In order to 
rebuild the data set these coefficients are utilized in an inverse 
wavelet transform [8]. Deficiencies and design issues of such 
decomposition lead to the development of new processing 
methods.  

We decided to propose a new method for estimating the 
optimal level of decomposing for the wavelet filter. 

We are introducing a new time frequency approach, an 
extension of the Partial Directed Coherence (PDC) method, to 
assess coupling dynamics information in multivariate dynamic 
systems [9].  

PDC approach is able to detect direct and indirect 
couplings between two time series. PDC is based on an m-
dimensional multichannel autoregressive model (MAR) and 
uses an MAR process with order p: 

 ൥ݔଵሺ݊ሻݔڭேሺ݊ሻ൩ ൌ ∑ ௥ሺ݊ሻܣ ൥ݔଵሺ݊ െ ேሺ݊ݔڭሻݎ െ ሻ൩௣௥ୀଵݎ ൅ ൥ ଵܹሺ݊ሻڭேܹሺ݊ሻ൩ (2) 

Where the  w vector is the white noise and Ar matrices are 
expressed by means of  the next formulation: 

ሺ݊ሻݎܣ   ൌ ൥ܽ11ሺݎ, ݊ሻ ڮ ܽ1ܰሺݎ, ݊ሻڭ ݆ܽ݅ሺݎ, ݊ሻ ,ݎ1ሺܰܽڭ ݊ሻ ڮ ܽܰܰሺݎ, ݊ሻ൩ (3) 

with r=1,.., p model order. ܽ௜௝  parameters represent the linear 
interaction effect of ݔ௝ ሺ݊ െ  ௜ሺ݊ሻ. They are estimatedݔ ሻ ontoݎ
by  means of an adaptive autoregressive approach [10], the 
main advantage of which  is the possibility of analyzing time-
varying signals by updating the calculations for each time 
sample under investigation.  

By calculating the Fourier transform of Ar(n) matrix, more 
specific by calculating A(n, t) coefficient matrix in frequency 
domain: 

,ሺ݊ܣ  ݂ሻ ൌ ܫ െ ∑ ௥|௭ୀ௘೔మഏ೑௣௥ୀଵିݖ௥ሺ݊ሻܣ  (4) 
where I  is the identity matrix, a number of time-varying 
measurements of connectivity can be established. 

The PDC coupling estimation between two time series (Xi 
and Xj) was defined by Baccala et al. [11] as: 

 
),(),(

),(
)(

fnafna

fnA
n

j
H
j

ij
ij

Δ
=π   (5) 

where )(nijπ is the correlation parameter, (.)H the 
Hermitian transpose, Aij(n,f) the Ar(n) ,the  Fourier transform 
of the matrix  in the frequency domain, aj(n,f) the j’th column 
number of the matrix A(n,f), n the number of windows and f, 
the frequency. 

The ijπ parameter normalization conditions in the frequency 

domain ( )( fijπ ) were defined as:  

 ∑ =≤≤ =
m
i ijij ff 1 1)(,1)(0 ππ   (6) 

for all 1 ൑ ݆ ൑ ݉ values.  
These measures were considered to provide information 

on the presence and level of causal correlation between two 
time series (Xi and Xj) as follows: 

a) high values reflecting a directionally linear influence 
from Xj to Xi, meaning that, for values equal to 1, all 
the causal influences originating from Xj are directed 
towards Xi, 

b) low values (≈0) suggesting the absence of any causal 
correlation from Xj to Xi, meaning that Xj does not 
influence Xi. 

In order to estimate the coupling level (CL) between two 
time series belonging to the same system and to estimate the 
optimal level of the wavelet filter, the calculation of a new 
parameter was proposed, by employing the following 
equations:  ܽ ൌ ሺܺ݅ܥܦܲ   ݊ܽ݁݉ ՜ ݆ܺሻܾ ൌ ሺܺ݅െ1ܥܦܲ   ݊ܽ݁݉ ՜ ݆ܺെ1ሻ

ܮܥ ൌ  ൝ܹ݈ݒܮݐ݌݋ ൌ ݈ݒܮ݈ܽݑݐܹܿܽ ൅ 1, ݂݅ ܽ െ ܾ ൐ ݈ݒܮݐ݌݋0ܹ ൌ , ݈ݒܮ݈ܽݑݐܹܿܽ ݂݅ ܽ െ ܾ ൌ ݈ݒܮݐ݌݋0ܹ ൌ ݈ݒܮ݈ܽݑݐܹܿܽ െ 1 , ݂݅ ܽ െ ܾ ൏ 0    (7) 

 
where, ܹ݈ܽܿݒܮ݈ܽݑݐ is the Wavelet’s actual level and ܹ݈ݒܮݐ݌݋ is the Wavelet’s optimal level of decomposition. 

These measures provide information on wavelet coefficient as 
follows: a) if the previous value is lower than the current value 
then the order of the wavelet decomposition is equal to the 
previous value plus 1. b) if the previous value is higher than or 
equal to the current value, then the optimal order of 
decomposition is equal to  the previous value.  

The main idea of the optimization algorithm is illustrated in 
Fig. 2, where a signal received from an accelerometer is 
processed and analyzed by using the Wavelet transform until 
an optimal level of decomposition is established and the useful 
signal is achieved [10]. This elementary structure was 
proposed and studied in order to obtain a further general tuning 
method for the inertial sensor denoising, with the wavelet 
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method. In this new general structure, the reference signals 
will be provided by a GPS, while the disrupted input signals in 
PDC are the outputs of the inertial navigation system (INS) 
(Fig. 3).  

Filtered signal Signal from 
accelerometer

Wavelet 
Denoising PDC

Optimal level of decompozition

Reference 
signal

 
 Fig.2 - The logical scheme/mathematical algorithm proposed for improving 

the signals acquired from an accelerometer 
 

Filtered signalInertial sensors 
signals INSWavelet 

Denoising PDC

Optimal level of decompozition

GPS

 
Fig. 3 – The architecture of the general tuning method for the inertial sensor 

denoising with wavelet method  
 

For the here-presented study we simulated noisy and 
noiseless (clean) signals received from a miniaturized 
accelerometer in order to acknowledge an offline tuning of the 
wavelet function used in the denoising process of the 
accelerometer. The noiseless signals were used as reference 
signals (equivalent to the signals received from a GPS device) 
to correct the errors of the accelerometer. The noisy signals 
were correlated with the noiseless signals, by applying 
equation 7, in order to achieve the optimal level of 
decomposition of the wavelet filter leading to - after the 
accelerometer calibration - the achievement of more accurate 
acceleration data. 

In simulations, a sinusoidal signal, generated by using the 
wnoise Matlab function for “Noisy wavelet test data”, Fig. 4, 
was considered as a reference signal. This signal was corrupted 
by different types of noise (additive Gaussian white noise) as it 
may be seen in Fig. 5.  

The method was implemented in Matlab for testing and 
validation after the mathematical problem was established.  

 

 
Fig 4 - Original signal 

 

 
Fig. 5 - Signal corrupted with additive Gaussian white noise 

 

III. RESULTS AND DISCUSSIONS 

By applying the proposed algorithm to the corrupted signal, 
using as reference the original signal (equivalent to the GPS 
signal), the ܹ݈ݒܮݐ݌݋ and CL achieved values were recorded in 
Table 1. According to equation 7, we can observe that the 
optimal level of decomposition is 10 for CL = 0.851520.  

Table 1. ܮܥ ࢒࢜ࡸ࢒ࢇ࢛࢚ࢉࢇࢃ 
2 0.142700 
3 0.289110 
4 0.552780 
5 0.795460 
6 0.811420 
7 0.811610 
8 0.812420 
9 0.835450 

10 0.851520 
11 0.811660 
12 0.793500 
13 0.778150 
14 0.770220 

 
For a visual comparison of the coupling level between the 

corrupted and the original signals, the coupling level diagrams 
for five different coupling levels were plotted by means of a 
short time implementation, with a window of 300 sample 
length, Figures 6 and 7. In both figures, y-axis represents the 
number of windows and the x-axis represents the normalized 
frequency between 0 and 1.  

As it can be seen in all  coupling diagrams, transitions from 
coupling to uncoupling, from strong level of couplings 
(represented in red color and shades of red) towards the 
absence of coupling (represented in blue color and shades of 
blue) are visible; an absence of coupling – a predominantly 
blue color is visible in Figure 6 suggesting that for ܮܥ ൌ 0.289110 , the investigated signals are uncorrelated or the 
level of correlation is very low and the achieved data   
corresponds in a limited propotion with the real data (the 
original signal). We are interested in achieving the highest 
level of coupling between the signals, CL values ≈ 1. A higher 
level of coupling can be seen in figure 8, for CL = 0.851520, 
where the predominantly red color  suggests the presence of a 
strong level of coupling between the two signals. This level of 
coupling  indicates that, for ܮܥ ൌ ݈ݒܮ݈ܽݑݐܹܿܽ  0.851520  ൌ10 is the ܹ݈ݒܮݐ݌݋.  
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Fig 6 - Signal achieved for ܹܽܿ3=݈ݒܮ݈ܽݑ 

 
Fig. 7 – The coupling level diagram for ܮܥ ൌ ݈ݒܮ݈ܽݑݐܹܿܽ , 0.811420  ൌ 6 

 

 
Fig. 8 – The coupling level diagram for ܮܥ ൌ 0.851520, for which  ܹ݈ܽܿݒܮ݈ܽݑݐ ൌ ݈ݒܮݐ݌݋ܹ  ൌ 10 

 

 
Fig. 9 - Signal achieved for ܹܽܿ14=݈ݒܮ݈ܽݑݐ 

The sinusoidal signals achieved for different ܹ݈ܽܿݒܮ݈ܽݑݐ were displayed in figures 10, 11, 12, 13 and 14.  
After a careful visual inspection of figures 10 - 14 one 

can see that as the CL level increases, the signal achieved is 
more similar to the original signal but when/after  CL = 14,  
the signal shape changes and turns into a sinusoidal signal,  
which loses the characteristics of the original signal. Also from 

the visual inspection we concluded that sinusoidal signal 
achieved for ܹܽܿ10=݈ݒܮ݈ܽݑݐ, which may be seen in Fig. 11 
is/ was the optimum level of decomposition - ܹ݈ݒܮݐ݌݋.  

 
Fig. 10 - Signal achieved for ܹܽܿ1=݈ݒܮ݈ܽݑݐ 

 
Fig. 11 - Signal achieved for ܹܽܿ3=݈ݒܮ݈ܽݑݐ 

 
Fig. 12 - Signal achieved for ܹܽܿ6 = ݈ݒܮ݈ܽݑݐ 

 
Fig. 13 - Signal achieved for ܹ݈ܽܿݒܮ݈ܽݑݐ ൌ  10=݈ݒܮݐ݌݋ܹ

Ch1 <-- Ch 2

 

 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ch1 <-- Ch 2

 

 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ch1 <-- Ch 2

 

 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ch1 <-- Ch 2

 

 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 156



 
Fig. 14 - Signal achieved for ܹܽܿ14=݈ݒܮ݈ܽݑݐ 

 
By using the proposed configuration from Figure 3, the 

correlation between useful signals, signals received from an 
accelerometer or an inertial measurement unit/INS can be 
tracked and corrected by using signals received from a GPS 
device (in a pre-calibration phase of the INS). This correlation 
becomes less clear when the signals achieved from the INS 
become correlated with the signals received from GPS, the 
correlation level reaches values close to 1, resulting in reduced 
errors of the navigation system (caused by the noise).  

IV. CONCLUSIONS 
This is a topical issue which brings significant 

improvement in the inertial navigation systems signal 
processing having a clear-cut role in positioning investigations.  

The purpose of this research was to improve the 
performance of inertial navigation systems and their level of 
accuracy for situations when the GPS becomes unavailable. An 
improved version of the Wavelet filter was proposed for 
filtering/denoising the signals received from an accelerometer.  

We intend to implement this algorithm for pre-calibrating 
a two-dimensional navigation system in the horizontal plan in 
order to improve its accuracy in positioning. By establishing 
the best coupling level of signals received from INS and GPS, 
using the GPS signal as reference, the optimal level of 
decomposition of the wavelet transform can be established and 
the proposed algorithm can be implemented in the inertial 
measurement unit as a real-time evaluation criterion with the 
purpose of achieving real-time data. 

 

REFERENCES 
 
[1] A. Lawrence, "Modern inertial technology: 

navigation, guidance and control.," Springer Verlag, 
New York, 1993. 

[2] R. Ramalingam, G. Anitha, and J. Shanmugam, 
"Microelectromechnical Systems Inertial 
Measurement Unit Error Modelling and Error 
Analysis for Low-cost Strapdown Inertial Navigation 
System," Defence Science Journal, Vol. 59, No. 6, 
Nov. , pp. 650-658, 2009. 

[3] T. D. Tan, L. M. Ha, N. T. Long, N. P. Thuy, and H. 
H. Tue, "Performance Improvement of MEMS-Based 

Sensor Applying in Inertial Navigation Systems," 
Research - Development and Application on 
Electronics, Telecommunications and Information 
Technology, No. 2 , Posts, Telematics & Information 
Technology Journal, pp. 19-24, 2007. 

[4] D. G. Eqziabher, "Design and Performance Analysis 
of a Low-Cost Aided Dead Reckoning Navigator," A 
Dissertation submitted to the Department of 
Aeronautics and Astronautics and the committee on 
graduate studies of Stanford University in partial 
fulfillment of the requirements for the degree of 
doctor of philosophy, Stanford University, February, 
2004. 

[5] H. Haiying, " Modeling inertial sensors errors using 
Allan variance," UCEGE reports number 20201, 
Master’s thesis, University of Calgary, September, 
2004. 

[6] T. Chan and C. J. Kuo, "Texture Analysis and 
Classification with Tree-Structured Wavelet 
Transform," IEEE Transactions on Image Processing, 
Vol. 2, No. 4, October, 1993. 

[7] H. Khorrami and M. Moavenian, "A comparative 
study of DWT, CWT and DCT transforms in ECG 
arrhythmias classification " Expert Systems with 
Applications, 2010. 

[8] M. Alfaouri and K. Daqrouq, "ECG Signal Denoising 
By Wavelet Transform Thresholding," in American 
Journal of Applied Sciences 5 (3): pp: 276 – 281, 
2008. 

[9] F.-C. Adochiei, S. Schulz, I.-R. Edu, H. Costin, and 
A. Voss, "A new normalised short time pdc for 
dynamic coupling analyses in hypertensive pregnant 
women.," BMT 2013, GRAZ, 19-21 September, 2013. 

[10] T. Milde, L. Leistritz, L. Astolfi, W. H. R. Miltner, T. 
Weiss, F. Babiloni, and H. Witte, "A new Kalman 
filter approach for the estimation of high-dimensional 
time-variant multivariate AR models and its 
application in analysis of laser-evoked brain 
potentials " Neuroimage 50 960-9, 2010. 

[11] L. A. Baccala and K. Sameshima, "Partial directed 
coherence: a new concept in neural structure 
determination.," Biol. Cybern., 84,  463-474. 

 
 
 
 

 
 

 
 

200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-8

-6

-4

-2

0

2

4

6

8

10

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 157



 

 

 
Abstract—In evolutionary algorithms the recombination operator 

considered to be one of the key operators that allows the population 
to progress towards higher fitness solutions. In this paper we re-
examine the Simulated Binary Crossover (SBX) operator and propose 
an exploratory version of the SBX operator that allows the 
Multiobjective Evolutionary Algorithms (MOEAs) to search large 
landscapes efficiently. The proposed Exploratory Crossover Operator 
(ECO) is applied to the Non‐dominated Sorting Genetic Algorithm II 
(NSGAII), under the Zitzler-Deb-Thiele’s (ZDT) set of test functions. 
The relevant results are compared with the results derived by the 
same MOEA by using its typical configuration with the SBX 
operator. The experimental results show that the proposed 
Exploratory Crossover Operator outperforms the classical Simulated 
Binary Crossover operator, based on two performance metrics that 
evaluate the proximity of the solutions to the Pareto front. 
 
Keywords—Multiobjective optimization; evolutionary algori-

thms; crossover. 

I. INTRODUCTION 
ECOMBINATION or crossover operators are being used 
by the Evolutionary Algorithms along with the selection 

and mutation operators in order to evolve a set of solutions 
towards higher fitness regions of the search space. Each one of 
the aforementioned operators is designed in order to facilitate 
different needs, for instance the crossover operator is 
responsible for the search process while the mutation acts as a 
diversity preserving mechanism. Further, the various 
recombination techniques can be divided into distinct 
categories based on the selected representation. For instance, 
there is a substantial number of recombination operators that 
use binary encoding for the representation of chromosome, to 
name just a few recombination operators that belong to this 
category, one-point crossover, n-point crossover, uniform 
crossover and arithmetic crossover. Binary representation, 
however, can be problematic in tasks that require a high 
numerical precision [1]. Real coding is more suitable 
representation for continuous domain problems, where each 
gene represents a variable of the problem. One of the most 
popular real coded crossover operators that has been applied to 
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a considerable number of multiobjective evolutionary 
algorithms (MOEAs), is the Simulated Binary Crossover 
(SBX) [2].  In this work we propose a new strategy to improve 
the performance of SBX operator by introducing an 
exploratory version of the SBX operator that allows the more 
efficient exploration of the search space.    

    The rest of the paper is structure as follows. In section II, 
a description of the Simulated Binary Crossover (SBX) is 
given and in section III the proposed Exploratory Crossover 
Operator (ECO) is presented. The experimental environment 
is presented in section IV. Section V presents the performance 
metrics. In section VI we test the performance of the proposed 
ECO by using the Zitzler-Deb-Thiele’s (ZDT) set of test 
functions. Finally, section VII analyzes the results and 
concludes the paper. 

II.  SIMULATED BINARY CROSSOVER (SBX) 
   The simulated binary crossover (SBX) operator was 
introduced by Deb and Agrawal [2] in 1995. It uses a 
probability distribution around two parents to create two 
children solutions. Unlike other real-parameter crossover 
operators, SBX uses a probability distribution which is similar 
in principle to the probability of creating children solutions in 
crossover operators used in binary-coded algorithms. In SBX 
as introduced by [2] each decision variable xi, can take values 
in the interval: ݔ௜

(௅)  ≤ ௜ݔ ≤ ௜ݔ
(௎), ݅ = 1, 2, … , ݊. Where ݔ௜

(௅) 
and ݔ௜

(௎) stand respectively for the lower and upper bounds for 
the decision variable i. In SBX, two parent solutions  ݕ(ଵ) and 
 :generate two children solutions ܿ(ଵ) and ܿ(ଶ) as follows (ଶ)ݕ
 
 

1. Calculate the spread factor β: 
 

ߚ = 1 + 
2

ݕ (ଶ) − (ଵ)ݕ (ଵ)ݕ)ൣ݊݅݉  − ,((௟)ݕ (௨)ݕ) − ݕ (ଶ))൧ 

 
2. Calculate parameter a :   

 
ߙ = 2 −  (ఎ೎ାଵ)ିߚ
 

3. Create a random number u between 0 and 1. 
 
u          [0, 1]; 
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4. Find a parameter  ߚ௤ with the assistance of the 
following polynomial probability distribution: 
 

௤ߚ  =  

⎩
⎪
⎨

⎪
⎧

   
ଵ(ݑܽ)  (ఎ೎ାଵ)⁄ ݑ ݂݅                  ≤ 1

ܽ ,
   

൬
1

2 − ݑܽ
൰

ଵ (ఎ೎ାଵ)⁄

 ݁ݏ݅ݓݎℎ݁ݐ݋ 

�  

 
The above procedure allows a zero probability of creating any 
children solutions outside the prescribed range ൣݔ(௅),  .൧(௎)ݔ
Where ηc is the distribution index for SBX and can take any 
nonnegative value. In particular, small values of ηc allow 
children solutions to be created far away from parents and 
large values of ηc allow children solutions to be created near 
the parent solutions.    
 

5. The children solutions are then calculated as follows: 
 
ܿ(ଵ) = 0.5ൣ൫ݕ(ଵ) + ൯(ଶ)ݕ − (ଶ)ݕ|௤ߚ  ൧|(ଵ)ݕ −
 
ܿ(ଶ) = 0.5ൣ൫ݕ(ଵ) + ൯(ଶ)ݕ + (ଶ)ݕ|௤ߚ  ൧|(ଵ)ݕ −

 
The probability distributions as shown in step 4, do not create 
any solution outside the given bounds ൣݔ(௅),  ൧  instead they(௎)ݔ
scale up the probability for solutions inside the bounds, as 
shown by the solid line in Fig. 1. 

 
 

 
Fig. 1 Probabilities distributions for bounded and unbounded cases 
 

III. EXPLORATORY CROSSOVER OPERATOR (ECO) 
  The Evolutionary Algorithms (EAs) in order to be able to 
maintain a satisfactory level of progression towards higher 
fitness regions of the search space is necessary to exploit and 
explore efficiently the search space. The exploitation of the 
search space is done mainly through the selection operator and 
the exploration through the crossover operator. In this study 
we propose a new crossover operator named Exploratory 
Crossover Operator (ECO) due to its ability to explore 
efficiently the search space. We will start analyzing ECO 

mechanism by recalling the simulated binary crossover (SBX) 
as shown in section II, as the first two steps are common for 
both methods. Indeed as shown below first we calculate the 
spread factor β and then the parameter α in the same manner 
as the SBX.  
    However, in step 3 we follow a different strategy. As shown 
in section II that illustrates the SBX operator, a random 
number u ∈ [0, 1] is generated. If u ≤ 1/a, it samples to the left 
hand side (region between ݕ(௅)

 and ݕ(௜), otherwise if u > 1/a it 
samples to the right hand side (region between ݕ(௜)

 and ݕ(௎), 
where ݕ(௜)is the ith parent solution. 
      In ECO at this particular point as shown below we follow 
a different methodology. Specifically, instead of generating a 
random number  ݑ ∈ [0, 1], we generate two random 
numbers, u௅ ∈ [0, 1/ܽ] to sample the left hand side and a 
random number uோ ∈ (1/ܽ, 1] to sample the right hand side of 
the probability distribution. From the aforementioned process 
emerge two values of ߚ௤ , the ߚ௤

௅ that samples the left hand 
side of the polynomial probability distribution and the ߚ௤

ோ that 
samples the right hand side of the polynomial probability 
distribution. Next, as shown below in step 5 with the 
assistance of ߚ௤

௅ and ߚ௤
ோ are formulated two variants for each 

child solution. Specifically, c௅
(ଵ) and cோ

(ଵ)   are the two variants 
that emerge by substituting the  β௤

௅ and β௤
ோ to c(ଵ). 

Respectively c௅
(ଶ) and cோ

(ଶ)   are the two variants that emerge by 
substituting the  ߚ௤

௅ and ߚ௤
ோ to c(ଶ). 

    Then, by substituting to the parent solution vector at the 
position of the selected variable to be crossovered, 
respectively the c௅

(ଵ)and cோ
(ଵ)  we create two different child 

solution vectors (csv), the csv௅
(ଵ)and csvோ

(ଵ). Thanks to the 
generated csv௅

(ଵ)and csvோ
(ଵ) we are able to perform fitness 

evaluation for each one of the corresponding cases. As soon as 
we complete the fitness evaluation process, we select the best 
child solution between the two variants c௅

(ଵ)and cோ
(ଵ) with the 

assistance of the Pareto optimality framework. The same 
procedure is followed for c௅

(ଶ)and cோ
(ଶ). The proposed 

methodology allows us to explore more efficiently the search 
space and move progressively towards higher fitness 
solutions. Whenever, there is not a clear winner i.e. strong or 
weak dominance, between the c௅

(ଵ)and cோ
(ଵ) , or respectively 

between the c௅
(ଶ)and cோ

(ଶ) the generation of a random number 
allows the random choice of one of the two alternative child 
solutions.  
    The procedure of computing children solutions c(ଵ) and c(ଶ) 
from two parent solutions ݕ(ଵ) and ݕ(ଶ) under the Exploratory 
Crossover Operator (ECO) is as follows: 
 

1. Calculate the spread factor β: 
 

ߚ = 1 + 
2

ݕ (ଶ) − (ଵ)ݕ (ଵ)ݕ)ൣ݊݅݉  − ,((௟)ݕ (௨)ݕ) − ݕ (ଶ))൧ 

 
2. Calculate parameter a :   
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ߙ = 2 −  (ఎ೎ାଵ)ିߚ
 

3. Create 2 random numbers u௅ ∈ [0, 1/ܽ] and 
uோ ∈ (1/ܽ, 1]. 
 
uL           [0, 1/α]; 
 
uR           (1/α, 1]; 

 
4. Find 2 parameters β௤

௅  and β௤
௎ with the assistance of 

the following polynomial probability distribution: 
 

 β௤
௅  =  ൫ܽݑ௅ ൯

ଵ (ఎ೎ାଵ)⁄
             ,    u௅ ∈ [0, 1/ܽ],

 

β௤
ோ  = ቆ

1
2 − ோݑܽ

ቇ
ଵ (ఎ೎ାଵ)⁄

 , uோ ∈ (1/ܽ, 1] 

 
5. Thus, instead of a unique value for ܿ(ଵ) and ܿ(ଶ), we 

obtain two evaluations for each child solution that 
correspond to β௤

௅ and β௤
ோ respectivelly: 

c௅
(ଵ) = 0.5 ቂ൫ݕ(ଵ) + ൯(ଶ)ݕ − β௤

௅|ݕ(ଶ)  ቃ|(ଵ)ݕ −

cோ
(ଵ) = 0.5 ቂ൫ݕ(ଵ) + ൯(ଶ)ݕ − β௤

ோ|ݕ(ଶ)  ቃ|(ଵ)ݕ −
 
c௅

(ଶ) = 0.5 ቂ൫ݕ(ଵ) + ൯(ଶ)ݕ + β௤
௅|ݕ(ଶ)  ቃ|(ଵ)ݕ −

cோ
(ଶ) = 0.5 ቂ൫ݕ(ଵ) + ൯(ଶ)ݕ + β௤

ோ|ݕ(ଶ)  ቃ|(ଵ)ݕ −

 
6. We perform fitness evaluation for each variant child 

solution, by substituting the candidate solutions into 
the parent solution vector. 
 

7. We select the best variant between the c௅
(ଵ)and cோ

(ଵ), 
based on the Pareto optimality framework. The same 
procedure is followed for c௅

(ଶ)and cோ
(ଶ). 

Whenever, there is not a clear winner i.e. strong or weak 
dominance, between the c௅

(ଵ)and cோ
(ଵ) , or respectively between 

the c௅
(ଶ)and cோ

(ଶ) the generation of a random number allows the 
random choice of one of the two alternative child solutions. 
 

IV. EXPERIMENTAL ENVIRONMENT 
   All algorithms have been implemented in Java and run on a 
personal computer Core 2 Duo at 1.83 GHz. The jMetal [3] 
framework has been used to compare the performance of the 
proposed, Exploratory Crossover Operator (ECO) against the 

Simulated Binary Crossover (SBX) operator with the 
assistance of NSGAII.  In all tests we use, binary tournament 
and polynomial mutation (PLM) [2] as, selection and mutation 
operator, respectively.  The crossover probability is Pc = 0.9 
and mutation probability is Pm = 1/n, where n is the number of 
decision variables. The distribution indices for the crossover 
and mutation operators are ηc = 20 and ηm = 20, respectively. 
Population size is set to 100, using 25,000 function 
evaluations with 100 independent runs. 
 

V. PERFORMANCE METRICS 

A. Hypervolume 
    Hypervolume [4], is an indicator of both the convergence 
and diversity of an approximation set. Thus, given a set S 
containing m points in n objectives, the hypervolume of S is 
the size of the portion of objective space that is dominated by 
at least one point in S. The hypervolume of S is calculated 
relative to a reference point which is worse than (or equal to) 
every point in S in every objective.  The greater the 
hypervolume of a solution the better considered the solution.  

B. Epsilon Indicator Iε 
    Zitzler et al. [5] introduced the epsilon indicator (Iε).  There 
are two versions of epsilon indicator the multiplicative and the 
additive. In this study we use the unary additive epsilon 
indicator. The basic usefulness of epsilon indicator of an 
approximation set A (Iε+) is that it provides the minimum 
factor ε by which each point in the real front R can be added 
such that the resulting transformed approximation set is 
dominated by A. The additive epsilon indicator is a good 
measure of diversity, since it focuses on the worst case 
distance and reveals whether or not the approximation set has 
gaps in its trade-off solution set.  
 

VI. EXPERIMENTAL RESULTS 
A number of computational experiments were performed to 

test the performance of the proposed Exploratory Crossover 
Operator (ECO) for the solution of the ZDT1-4, 6 set of test 
functions [6]. The performance of the proposed ECO operator 
is assessed in comparison with the Simulated Binary 
Crossover (SBX) operator with the assistance of a well-known 
MOEA, namely the Non-dominated Sorting Genetic 
Algorithm II (NSGAII). The evaluation of the performance is 
based on two performance metrics that assess both the 
proximity of the solutions to the Pareto front. 
 

A. The Zitzler-Deb-Theile (ZDT) test suite 
The Zitzler-Deb-Theile (ZDT) test suite [6] is widely used 

for evaluating algorithms solving MOPs. The following five 
bi-objective MOPs named ZDT1, ZDT2, ZDT3, ZDT4 and 
ZDT6 were used for comparing the proposed Exploratory 
Crossover Operator (ECO) against the Simulated Binary 
Crossover (SBX). They have been used extensively for testing 
MOEAs and their Pareto front shapes are convex, nonconvex, 
disconnected, multimodal and non-uniform. ZDT1, ZDT2 and 
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ZDT3 use 30 decision variables and ZDT4 and ZDT6 use 10 
decision variables respectively. 
 
Zitzler-Deb-Thiele’s function N.1 ( ZDT1) problem:   

 

݊݅ܯ =  

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵ݂(ݔ) =                                            ଵݔ 

   ଶ݂(ݔ) = )ℎ(ݔ)݃  ଵ݂(ݔ), ((ݔ)݃

(ݔ)݃ =  1 +  9
29 ∑ ௜ݔ

ଷ଴
௜ୀଶ       

             

ℎ൫ ଵ݂(ݔ), ൯(ݔ)݃ = 1 − ඨ ଵ݂(ݔ)
          (ݔ)݃

� 

≥ 0 ݎ݋݂                   ௜ݔ  ≤ 1 ܽ݊݀ 1 ≤  ݅ ≤ 30 
 

 
Zitzler-Deb-Thiele’s function N.2 ( ZDT2) problem:  
 

݊݅ܯ =  

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵ݂(ݔ) =                                            ଵݔ 

   ଶ݂(ݔ) = )ℎ(ݔ)݃  ଵ݂(ݔ), ((ݔ)݃

(ݔ)݃ =  1 +  9
29 ∑ ௜ݔ

ଷ଴
௜ୀଶ       

             

ℎ൫ ଵ݂(ݔ), ൯(ݔ)݃ = 1 −  ቆ ଵ݂(ݔ)
ቇ(ݔ)݃

ଶ

        

� 

≥ 0 ݎ݋݂           ௜ݔ  ≤ 1 ܽ݊݀ 1 ≤  ݅ ≤ 30 
 

 
Zitzler-Deb-Thiele’s function N.3 ( ZDT3) problem 
 

݊݅ܯ =  

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵ݂(ݔ) =                                                                                               ଵݔ 

   ଶ݂(ݔ) = )ℎ(ݔ)݃  ଵ݂(ݔ),      ((ݔ)݃

(ݔ)݃ =  1 + 9
29 ∑ ௜ݔ

ଷ଴
௜ୀଶ           

                                               

ℎ൫ ଵ݂(ݔ), ൯(ݔ)݃ = 1 −  ඨ ଵ݂(ݔ)
(ݔ)݃  − ቆ ଵ݂(ݔ)

ቇ(ݔ)݃ sin൫10ߨ ଵ݂(ݔ)൯ 

� 

≥ 0 ݎ݋݂                  ௜ݔ  ≤ 1 ܽ݊݀ 1 ≤  ݅ ≤ 30   
 

 
Zitzler-Deb-Thiele’s function N.4 ( ZDT4) problem 
 

݊݅ܯ =  

⎩
⎪⎪
⎨

⎪⎪
⎧ ଵ݂(ݔ) =                                                                                       

   ଶ݂(ݔ) = )ℎ(ݔ)݃  ଵ݂(ݔ),                                                 ((ݔ)݃
(ݔ)݃ =  91 +  ∑  (ଵ଴

௜ୀଶ ௜ݔ
ଶ − 10 cos(4ݔߨ௜))                       

ℎ൫ ଵ݂(ݔ), ൯(ݔ)݃ = 1 − ඨ ଵ݂(ݔ)
(ݔ)݃

                                            

� 

≥ 0   ݎ݋݂        ଵݔ  ≤ 1,    − 5 ≤ ௜ݔ  ≤ 5,         2 ≤  ݅ ≤ 10 
 

 
Zitzler-Deb-Thiele’s function N.6 ( ZDT6) problem 
 

݊݅ܯ =  

⎩
⎪⎪
⎨

⎪⎪
⎧   ଵ݂(ݔ) =  1 − exp (−4ݔଵ)݊݅ݏ଺(6ݔߨଵ)      

   ଶ݂(ݔ) = )ℎ(ݔ)݃  ଵ݂(ݔ),      ((ݔ)݃

(ݔ)݃ =  1 +  9 ቈ
∑ ௜ݔ

ଵ଴
௜ୀଶ
9 ቉

଴.ଶହ

   
               

ℎ൫ ଵ݂(ݔ), ൯(ݔ)݃ = 1 −   ቆ ଵ݂(ݔ)
ቇ(ݔ)݃

ଶ

            

� 

≥ 0 ݎ݋݂                 ௜ݔ  ≤ 1 ܽ݊݀ 1 ≤  ݅ ≤ 10 
 

 
 

The results in the Tables I and II have been produced by 
using JMetal [3] framework. Table I presents the results of 
ZDT1-4, 6 test functions. Specifically, it presents the mean, 
standard deviation (STD), median and interquartile range 
(IQR) of all the independent runs carried out for Hypervolume 
(HV) and Epsilon indicator respectively.  

 Clearly, regarding the HV [4], [7] indicator the higher the 
value (i.e. the greater the hypervolume) the better the 
computed front.  HV is able of capturing in a single number 
both the closeness of the solutions to the optimal set and to a 
certain degree, the spread of the solutions across the objective 
space [8]. The second indicator, the Epsilon [5] is a measure 
of the smaller distance that a solution set A, needs to be 
changed in such a way that it dominates the optimal Pareto 
front of this problem. Obviously the smaller the value of this 
indicator, the better the derived solution set. 

    Table II use boxplots to present graphically the 
performance of NSGAII under two different configurations, 
ECO and SBX respectively, for HV and Epsilon performance 
indicators. Boxplot is a convenient way of graphically 
depicting groups of numerical data through their quartiles.                                

 
 

TABLE I 
MEAN, STD, MEDIAN AND IQR FOR HV AND EPSILON 

 
 Problem: ZDT1 NSGAII 
 ECO SBX 

HV. Mean and Std 6.60e-012.9e-04 6.59e-013.2e-04 
HV. Median and IQR 6.60e-013.5e-04 6.59e-014.8e-04 
EPSILON. Mean and Std 1.26e-022.0e-03 1.35e-022.4e-03 
EPSILON. Median and IQR 1.25e-023.0e-03 1.29e-022.5e-03 

 
 Problem: ZDT2 NSGAII 
 ECO SBX 

HV. Mean and Std 3.27e-012.6e-04 3.26e-012.9e-04 
HV. Median and IQR 3.27e-013.6e-04 3.26e-014.0e-04 
EPSILON. Mean and Std 1.28e-022.1e-03 1.37e-022.5e-03 
EPSILON. Median and IQR 1.24e-022.9e-03 1.30e-022.9e-03 

 
 Problem: ZDT3 NSGAII 
 ECO SBX 

HV. Mean and Std 5.15e-018.5e-05 5.15e-013.6e-04 
HV. Median and IQR 5.15e-011.1e-04 5.15e-012.7e-04 
EPSILON. Mean and Std 7.87e-031.6e-03 1.14e-023.1e-02 
EPSILON. Median and IQR 7.68e-031.8e-03 7.93e-031.9e-03 

 
 Problem: ZDT4 NSGAII 
 ECO SBX 

HV. Mean and Std 6.60e-011.1e-03 6.54e-014.1e-03 
HV. Median and IQR 6.60e-011.2e-03 6.55e-014.2e-03 
EPSILON. Mean and Std 1.27e-022.0e-03 1.66e-029.7e-03 
EPSILON. Median and IQR 1.23e-022.6e-03 1.50e-023.9e-03 

 
 Problem: ZDT6 NSGAII 
 ECO SBX 

HV. Mean and Std 3.99e-014.3e-04 3.88e-011.7e-03 
HV. Median and IQR 3.99e-015.1e-04 3.88e-012.4e-03 
EPSILON. Mean and Std 1.06e-022.2e-03 1.46e-022.1e-03 
EPSILON. Median and IQR 9.98e-032.6e-03 1.44e-022.3e-03 
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TABLE II 

BOXPLOTS FOR HV AND EPSILON 
 

Problem ZDT1 NSGAII 
       HV       EPSILON 

  ECO SBX    ECO SBX 

   
 0

.6
59

   
   

 0
.6

60
 

 0.
01

   
 0

.0
15

   
  0

.0
2 

 
 

Problem ZDT2 NSGAII 
           HV     EPSILON 

      ECO SBX ECO SBX 

  0
.3

25
5 

   
   

   
0.

32
70

 

 0.
01

   
 0

.0
14

   
   

  

 
 

Problem ZDT3 NSGAII 
        HV    EPSILON 

    ECO SBX ECO SBX 

0.
51

2 
   

   
   

0.
51

4 

    
   

   
 0

.1
0 

   
  0

.2
   

 
 

Problem ZDT4 NSGAII 
    HV   EPSILON 

       ECO SBX    ECO SBX 

   
   

   
   

  0
.6

45
   

  0
.6

55
 

   0
.0

2 
   

0.
04

   
 0

.0
6 

 
 

Problem ZDT6 NSGAII 
     HV    EPSILON 

   ECO SBX ECO SBX 

   
 0

.3
85

   
   

   
   

 0
.3

95
 

    
  0

.0
1 

   
0.

01
5 

 
 
 

 

VII. ANALYSIS OF THE RESULTS - CONCLUSIONS 
In this section, we analyze the results obtained by applying 

the Exploratory Crossover Operator (ECO) and the Simulated 
Binary Crossover (SBX) operator respectively to the NSGAII 
for solving the ZDT1-4, 6 benchmark problems. The 
assessment of the performance of the proposed crossover 
operator is done with the assistance of two well known 
performance indicators, namely Hypervolume and Epsilon 
indicator. 

     Examining the results of both indicators we notice that 
the ECO performs better for all test functions examined, 
compared with results derived by the SBX operator. 
Moreover, by applying the Wilcoxon rank-sum test we 
validated that the observed difference in ECO and SBX 
performance is statistically significant with 95% confidence 
for all test functions examined. To conclude, the analysis of 
the results suggests that the proposed Exploratory Crossover 
Operator (ECO) demonstrates superior search ability than the 
Simulated Binary Crossover (SBX). 
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Modelling of high-temperature behaviour
of cementitious composites

Jiřı́ Vala, Anna Kučerová and Petra Rozehnalová

Abstract—The computational prediction of non-stationary be-
haviour of cementitious composites exposed to high temperature,
supported by proper physical and mathematical formulations, is
a rather complicated analysis, dealing with the coupled heat and
(liquid and vapour) mass transfer and related mechanical effects.
The macroscopic mass, momentum and energy conservation
equations need to exploit available information from micro-
structural considerations. The derivation and implementation
of a computational model is always a compromise between the
model complexity and the reasonable possibility of identification
of material characteristics of all components and their changes.
The paper presents a possible approach to such analysis, supplied
by an illustrative example, confronting computational results
from a simplified model (taking only dominant physical pro-
cesses into account), with experimental ones, performed in the
specialized laboratory at the Brno University of Technology.

Index Terms—Cementitious composites, high temperature be-
haviour, poro-mechanics of multi-phase media, computational
simulation.

I. INTRODUCTION

PROBLEMS concerning cementitions composites, espe-
cially concrete both in its regular and more advanced

forms, as high-strength, stamped, (ultra-)high-performance,
self-consolidating, pervious or vacuum concrete, limecrete,
shotcrete, etc., exposed to elevated temperatures are significant
and wide ranging. The increasing interest of designers of
building structures in this field in several last decades has been
driven by the exploitation of advanced materials, structures
and technologies, reducing the external energy consumption,
whose thermal, mechanical, etc. time-dependent behaviour
cannot be predicted using the simplified semi-empirical formu-
lae from most valid European and national technical standards.
Such models as that of one-dimensional heat conduction with
(nearly) constant thermal conductivity and capacity, give no
practically relevant results for refractory or phase change
materials, thermal storage equipments, etc. – cf. [11]. Fortu-
nately, in such cases the correlation between the predicted and
measured quantities, e. g. of the annual energy consumption of
a building, can be available, to help to optimize the design of
both new and reconstructed building structures. This is not
true for high temperatures leading to partial or total collapse
of a structure, as those caused by thermal radiation during a
fire.

A lot of historical remarks and relevant references for the
analysis of structures exposed to fire can be found in [5].
The physical background for the evaluation of simultaneous
temperature and moisture redistributions under such conditions

J. Vala, A. Kučerová and P. Rozehnalová are with the Brno University
of Technology, Faculty of Civil Engineering, Czech Republic, 602 00 Brno,
Veveřı́ 95.

is based on the balance law of classical thermodynamics.
However, it is not trivial to supply a resulting system of
evolution by reasonable effective constitutive relations, valid
at the microstructural level, despite of the complicated (typi-
cally porous) material structures. Most classical approaches to
evaluate temperature and moisture redistributions rely on the
(semi-)empirical relations from [1]. The attempts to improve
them can be seen in various directions, with still open prob-
lems and difficulties everywhere. The physical and/or math-
ematical homogenization approaches applied to a reference
volume element seem to be useful. The process of cement
hydration, distinguishing between anhydrous cement scale,
cement-paste scale, mortar scale and macro-scale, handled
by specific physical and mathematical formulations, with a
posteriori scale bridging applying least squares arguments, has
been described in details, evaluating the hydration of particular
clinker phases, in [14]. However, the thermal gains and losses
from chemical reactions cannot be considered as deterministic
ones, moreover corresponding computations just in the case of
dehydration must suffer from the lack of relevant data at some
scales. The formal mathematical two-scale or similar homog-
enization, introduced in [4], needs to remove assumptions of
periodicity using stochastic or abstract deterministic homog-
enization structures; this leads to physically non-transparent
and mathematically very complicated formulations, whose
applicability to the construction of practical algorithms for the
analysis of engineering problems is not clear. From such point
of view, the most promising approach of the last years seems
to be that of [9] and (in a substantially generalized version) of
[8], replacing the proper homogenization by some arguments
from the mixture theory; this will be the principal idea even
in our following considerations in this short paper.

II. PHYSICAL AND MATHEMATICAL BACKGROUND

Following [8] (unlike [14]), for the quantification of the de-
hydration process we shall work with the hydration degree Γ,
a number between 0 and 1, as the part of hydrated (chemically
combined) water mw in its standard mass, constituted usually
during the early-age treatment of a cementitious composite.
Although the evaluation of Γ from a simple algebraic formula
is not available because it must take into account the chemical
affinity and the fact that the accessibility of water for chemical
reactions is controlled by the water content ηw inside the pores
under certain temperature T , we shall apply Γ as a known
function of such (or slightly transformed) variables.

The multiphase medium at the macroscopic level can be
considered as the superposition of 4 phases: solid material,
liquid water, water vapour and dry air, identified by their in-
dices ε ∈ {s, w, v, a}. In the Lagrangian description of motion,
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following [16], the deformation tensor F s can be derived using
the derivatives of displacements of particular points with re-
spect to Cartesian coordinate system x = (x1, x2, x3) in the 3-
dimensional Euclidean space. If ωε is a source corresponding
to certain scalar quantity φε then the conservation of such
quantity can be expressed by [3], p. 4, and [6], p. 9, as

φ̇ε + (φεvε
i ),i = ωε ; (1)

this formula contains the dot notation for the derivative with
respect to any positive time t, (. . .),i means the derivative
with respect to xi where i ∈ {1, 2, 3}, vε

i = u̇ε
i , with uε

i

referring to displacements related to the initial geometrical
configuration x0 = (x01, x02, x03) (for t = 0) and later also
ai = üi; the Einstein summation is applied to i and j from
{1, 2, 3} everywhere. For the brevity, φε will be moreover used
instead of φεηε where ηε(n, S) is the volume fraction of the
phase ε, a function of the material porosity n and the saturation
S. Clearly detF s = (1−n)/(1−n0) with n0 corresponding to
x0. The saturation S is an experimentally identified function
of the absolute temperature T and of the capillary pressure
pc, needed later; the assumption of local thermal equilibrium
yields the same values of T for all phases.

In addition to T , we have 4 a priori unknown material
densities ρε and 12 velocity components vε

i . Assuming that
vapour and dry air are perfect gases, we are able to evaluate
their pressures pv(ρv, T ) and pa(ρa, T ) from the Clapeyron
law; the capillary pressure is then pc = pv + pa − pw, with
the liquid water pressure pw, or alternatively just with pc,
as an additional unknown variable. In the deterioration of a
composite structure 2 crucial quantities occur: the mass mw

of liquid water lost from the skeleton and the vapour mass mv

caused by evaporation and desorption. The time evolution of
mass mw can be determined from the formally simple formula
mw = Γmw

0 , with m0 related to t = 0. The vapour fraction ζ
remains to be calculated from the system of balance equations
of the type (1), supplied by appropriate constitutive relations.

The mass balance works with
φε = ρε ,

ωs = −ṁw , ωw = ṁw − ṁv , ωv = ṁv , ωa = 0
in (1). No additional algebraic relations are necessary.

Since all phases are considered as microscopically non-
polar, the angular momentum balance forces only the symme-
try of the partial Cauchy stress tensor τ , i. e. τij = τji for such
stress components. The formulation of the linear momentum
balance in 3 direction is more delicate. Introducing wε

i = ρεv
ε
i

and choosing (for particular i)
φε = wε

i ,

we can evaluate, using the Kronecker symbol δ, the total
Cauchy stress σ in the form σij = τijδ

sε and finally set
ωε = σε

ij,j + ρε(gi − aε
i + tεi )

in (1) where gi denotes the gravity accelerations and tεi
the additional accelerations caused by interactions with other
phases, whose evaluation is possible from the Darcy law,
as explained lower. The constitutive relationships for the
solid phase, e. g. those between τ and us, vs, etc., need the
multiplicative decomposition into a finite number m of matrix
components F s = F s1 . . . F sm (elasticity, creep, damage, etc.
ones) to express τ(F s1 . . . F sm, Ḟ s1 . . . Ḟ sm, . . .). For ε 6= s,

Fig. 1. Fire simulation at the Brno University of Technology: laboratory
setting (upper photo), detail of real experiment (lower photo).

introducing the dynamical viscosity µε and the permeability
matrix Kε

ij , depending on ρε again, we can formulate the
Darcy law as

µερε(vε
i − vs

i ) = Kε
ij(ρε(gj − aε

j + tεj)− pε,j) . (2)
The energy balance inserts

φε =
1
2
wε

i v
ε
i + ρεκ

ε

with κε usually defined as cεT , using the thermal capacities
cε, in general functions of T and pc again, and some internal
heat fluxes qε

i , and also
ωε = (σε

ij,j + qε
i ),j + (gi − aε

i + tεi ) +$ε ,

$s = −ṁwhw , $w = ṁwhw − ṁvhv , $v = ṁvhv ,

$a = 0
into (1); two new characteristics here are the specific enthalpies
of cement dehydration hw and evaporation hv . The internal
heat fluxes qε

i come from the constitutive relation
qε
i = −λε

ijT,j − ξε
ijp

c
,j ; (3)

the first (typically dominant) additive term corresponds to the
well-known Fourier law of thermal conduction, the second one
to the Dufour effect, with some material characteristics λε

ij

and ξε
ij dependent on T and pc. Similarly to (3), it is possible

derive the diffusive fluxes rε
i = ρε(vε

i − vs
i ) with i ∈ {v, w}

in the form
rε
i = −ςεijT,j − γε

ijp
c
,j , (4)

due to the Fick law (the second additive term), respecting the
Soret effect (the first one), with some material characteristics
ςεij and γε

ij dependent on T and pc.
Now we have 4 mass balance equations, 3×4=12 momen-

tum ones and 4 energy ones, in total 20 partial differential
equations of evolution for 3 groups of variables:

R = (ρs, ρw, ρv, ρa) ,
V = (vs

1, v
s
2, v

s
3, v

w
1 , v

w
2 , v

w
3 , v

v
1 , v

v
2 , v

v
3 , v

a
1 , v

a
2 , v

a
3 ) ,

T = (T, pc,mv, ζ) ,
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Fig. 2. Time development of temperature T .

supplied by appropriate initial and boundary conditions,
e. g. for a priori known values of all variables for t = 0 of
the Dirichlet, Cauchy, Neumann, Robin, etc. types, for local
unit boundary outward normals n(x) = (n1(x), n2(x), n3(x))
in particular
• σijnj = ti with imposed tractions ti,
• (ρa(va

i − vs
i ) + ra

i )ni = ra with imposed air fluxes ra,
• (ρw(vw

i −vs
i )+rw

i +ρv(vv
i −vs

i )+rv
i )ni = rw+rv+β(ρv)

with imposed liquid water and vapour fluxes rw, rv and
some mass exchange function β,

• (ρw(vw
i − vs

i )hv − λijT,j − ξε
ijp

c
,j)ni = q̄ + α(T ) with

imposed heat fluxes and some heat exchange function α,
e. g. by the Stefan - Boltzmann law, proportional to T 4.

This seems to be a correct and complete formulation for the
analysis of time development of R, V and T .

III. COMPUTATIONAL PREDICTION

Unfortunately, a lot of serious difficulties is hidden in the
above presented formulation, e. g. the still missing “Millenium
Prize” existence result on the solvability of Navier - Stokes
equations (cf. the “mysteriously difficult problem” of [15],
p. 257), the physical and mathematical incompatibilities like
[7], as well the absence of sufficiently robust, efficient and
reliable numerical algorithms based on the intuitive time-
discretized computational scheme:

1. set R, V and T by the initial conditions for t = 0,
2. go to the next time step, preserving R, V and T ,
3. solve some linearized version of (1) with the mass

balance choice, evaluate and perform the correction εR,
4. solve some linearized version of (1) with the momentum

balance choice, evaluate and perform the correction εV ,
5. solve some linearized version of (1) with the energy

balance choice, evaluate and perform the correction εT ,

Fig. 3. Time development of pressure pc.

6. if εR, εV and εT are sufficiently small, return to 3,
7. stop the computation if the final time is reached, other-

wise return to 2.

Consequently all practical computational tools make use of
strong simplifications. The rather general approach of [8] in-
troduces the additive linearized strain decomposition instead of
the multiplicative finite strain one, ignores some less important
terms, as the kinetic energy (the first additive term in φε) in
the energy balance interpretation of (1), as well as the Dufour
and Soret effects in (3) and (4), and reduces the number of
variables, comparing (2) with the differences vε

i −vs
i with ε ∈

{v, w, a} from the momentum balance interpretation of (1),
and presents a computational scheme of the above sketched
type, applying the Galerkin formulation and the finite element
technique. Nevertheless, most engineering approaches, as [2]
or [12], endeavour to obtain a system of 2 equations of
evolution for T and pc (or some equivalent quantity) only, pre-
eliminating or neglecting all remaining ones, using arguments
of various levels: from micro-mechanically motivated physical
considerations to formal simplification tricks.

The reliability of computational results depends on the
quality and precision of input data, including the design
and identification of all material characteristics. Probably all
authors take some of them from the literature, not from their
extensive original experimental work; the variability of forms
of such characteristics and generated values, accenting those
from (2), including the formulae from [8], has been discussed
in [5]. Nevertheless, the proper analysis of uncertainty and
significance of particular physical processes lead to even more
complicated formulations, analyzed (for much easier direct
model problems) in [17] using the spectral stochastic finite
element technique, or in [10] the Sobol sensitivity indices, in
both cases together with the Monte Carlo simulations.
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Fig. 4. Time development of moisture content ρw + ρv .

Unlike most experiments in civil and material engineering in
laboratories and in situ, nearly no relevant results for advanced
numerical simulations are available from real unexpected fires,
as the most dangerous conditions for building structures,
crucial for the reliable prediction of behaviour of concrete
and similar structures. Since also laboratory experiments with
cementitious composites under the conditions close to a real
fire, as that documented on Figure 1, performed at the Brno
University of Technology, are expensive, producing incom-
plete and uncertain quantitative data anyway, the reasonable
goal of numerical simulation is to test simple numerical
models with acceptable correlation with real data, as the first
step for the development of more advanced multi-physical
models.

Figures 2, 3 and 4 are the outputs from a rather simple
two-dimensional isotropic model, neglecting mechanical loads,
strains and stresses, compatible with the slightly modified and
revisited approach of [2], combining the finite element and
volume techniques together with the iterated time discretiza-
tion scheme (the numerical construction of Rothe sequences),
implemented in the MATLAB environment. The fire is consid-
ered as the boundary thermal radiation on the left and upper
edges of the rectangle. Surprisingly some phenomena observed
in situ can be explained from the deeper analysis of results of
such seemingly simple calculations.

IV. CONCLUSION

Development of reasonable models and computational algo-
rithms for the prediction of thermal, mechanical, etc. behaviour
of cementitious composites and whole building structures, is
strongly required by the applied research in civil engineering,
which cannot be ignored, although the formal mathematical
verification of such models is not available and the practical
validation suffers from the lack of data from observations

in situ, as well as of large databases from relevant (very
expensive) experiments. The first steps, both in the sufficiently
general formulation of the problem, containing most prac-
tical computational approaches as special ones, as well as
the methodology of computational and experimental work,
sketched in this paper, should be a motivation for further
extensive research.
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Gaussian Mixture Models Approach for Multiple Fault Detection -
DAMADICS Benchmark

Erika Torres, Edwin Villareal

Abstract—In fault detection, data-driven methods are limited
by the lack of knowledge about faults. This paper presents an
approach based in statistical modeling, which uses normal oper-
ation information for training a Gaussian Mixture Model. Such
model has been widely used in speaker verification, because is
capable of mapping the observations into a multidimensional
membership function, this feature makes this algorithm very
convenient because works in a unsupervised way. This technique
uses the normal behavior data to estimate the parameters and
then classify future data according to the model. The proposed
approach consists of two stages: an offline stage, where the
Gaussian model is trained by using Expectation-Maximization
algorithm; and the online stage, where the readings likelihood
is evaluated according to the normal operation model. If the
likelihood is found to be inferior to a certain threshold, a
fault is detected. This approach may be extended to multiple
processes in science and engineering; for instance, a case study
is presented using the DAMADICS benchmark, where this
approach was validated.

Keywords—Fault Detection, Gaussian Mixture Models, Indus-
trial Processes

I. INTRODUCTION

AS the industrial processes complexity keeps increasing,
fault detection has become a critical issue in order to

meet safety, enviromental and productivity requirements.
In this regard, several approaches have been proposed,
particularly, being artificial intelligence methods the current
trend. However, one of the main drawbacks of these
methods is the implementation complexity for a real
industrial environment, which limits its appeal for most
industrial applications. Hence, approaches that may incur
in a lower complexity while keeping acceptable results are
highly favored. The approach presented in this paper aims
at this paradigm.

Computer-based solutions have been proposed to meet
the aforementioned requirements, for instance, machine
learning methods, see [1], like Bayesian Learning methods
[2], Self-Organizing Maps [3], or PCA [4],etc. The main
objective of these methods is to transform the monitoring
data (usually sensors) into statistical models, in order to
classify and detect anomalies. Since the analytical model
is not taken into account, the method remains flexible for
implementation in different environments.

However, a shortcoming of artificial intelligence methods
is the need of data from different anomalies or failures to
train the model. Some systems have low on-site failure rate,
and as a consequence, the amount of failure data available
is limited, see [5]. In this paper, a GMM approach for fault
detection is proposed, to overcome the lack of failure data, as
this method can be trained using only normal operation data.

Regarding industrial processes, failures usually occur
in sensors, actuators or processes. The main purpose of
fault detection is to evaluate symptoms, which indicate the
difference between normal and faulty states. As such, and
taking into account the performed observation, the methods
of failure detection are divided into three categories:
signal threshold, signal model and process model based
approaches, see [6].

From the taxonomy of failure detection presented
previously, the proposed approach in this paper falls within
the signal model-based category, as it extracts the statistical
features of the process from the sensor readings, where the
training is taking place off-line. As such, this approach is
suitable for real-time applications, because the operations
required for classification can be calculated in small batches
while new data is being read.

This paper is organized as follows. Firstly, A brief re-
view of GMM is presented, fault detection by using GMM
is described in Section 3. The proposed scheme is vali-
dated by simulation examples of Chemical Plant Benchmark
(DAMADICS) in Section 4. Finally, we present the conclu-
sions obtained from the implementation and discuss future
work.

II. GAUSSIAN MIXTURE MODELS

Gaussian mixture models are commonly used in
statistical analysis. In most applications, its parameters are
determined by using Maximum Likelihood and Expectation
Maximization algorithm.

As industrial processes are influenced by multiple facts,
like temperature, noise and environmental conditions, it is
required to include adequate modelling to these variables.
The GMM has the capability of representing a large class
of sample distributions, which is a very useful tool for
the characterization of multiple problems, like speaker
recognition, see [7].

In the context of fault detection systems, the usage of a
GMM for representing features distributions, is motivated
by the notion that the individual component densities can
model a set of hidden classes. In the same context, we
assume that the features in the normal operation space
correspond to different hidden classes. We assume that if we
learn a Gaussian Mixture Model with sufficient variability of
normal operation behavior, then the model will be capable
of distinguish between any state different than the normal
one. Because all the features used to train the GMM are
unlabeled, the healthy state classes are hidden in a class of
an observation that is unknown.

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 167



MAY 2014 2

The mixture model is a convex combination of unimodal
gaussian functions:

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (1)

M∑
i=1

wi = 1 (2)

where wi are the mixing coefficients and the parameters of
the of the component density functions p(x|λ) which usually
vary with i.

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

(
− (x− µi)

T (x− µi)

2Σi

)
(3)

where g(x|µi,Σi) are the component Gaussian densities. The
set of parameters is λi = (wi, µi,Σi), where i = 1, . . . ,M ,
M is the GMM model size, µi and Σi are the mean and
covariance matrix of the ith GMM component, respectively:
Finally, D is the dimension of vector x.

To determine the ”membership” of the data point x to the
ith GMM component, the loglikelihood of the data point,
of each individual model distribution is calculated using the
Equation 4 . An implementation of this algorithm for Matlab
can be found at [8].

log p(x|λ) =
T∑

t=1

log p(xt|λ) (4)

A. Expectation Maximization Algorithm for Gaussian Mix-
tures

Given a set of training vectors and a GMM configura-
tion (model size, minimum variance, which are determined
heuristically),the parameters of the GMM λ are left to be
estimated. These parameters, should lead to the best match
(in the maximum likelihood sense) for the distribution of
the training features vectors. There are several techniques
available for estimating the parameters of the GMM, being
Maximum Likelihood (ML) the most used method. The aim
of ML estimation is to find the model parameters which
maximize the likelihood of the GMM given the training data.
For a sequence of T training vectors X = {x1, . . . , xT },
the GMM likelihood, assuming independence between the
vectors, can be written as

p(X|λ) =
T∏

t=1

p(xi|λ) (5)

Unfortunately, for this expression direct maximization is not
possible. This equation, however, can be solved iteratively
using a special case of the EM algorithm. The goal of this
algorithm is to maximize the likelihood function (Equation
4) according to the parameters: means, covariances and the
mixing coefficients for all the components. The process is
divided in the following stages:

1) Initialize the means µi , covariances σi and mixing
coefficients wi, and evaluate the initial value of the
likelihood.

GMM (λ)Observation 
Vector -logP(O|λ)

Feature adquisition Model Training Scoring and Thresholding

Off-line Stage On-line Stage

Fig. 1. Block diagram for fault detection by using GMM

2) Evaluate probabilistic distance using the current pa-
rameter values

wi =
1

T

T∑
t=1

Pr(i|xt, λ) (6)

µi =

∑T
t=1 Pr(i|xt, λ)xt∑T
t=1 Pr(i|xt, λ)

(7)

σ2
i =

∑T
t=1 Pr(i|xt, λ)x2t∑T
t=1 Pr(i|xt, λ)

− µi (8)

3) Calcule the aposteriori data probabilities.

Pr(i|xt, λ) =
wig(xt|µi,Σi)∑M

k=1 wkg(xt|µk,Σk)
(9)

4) Calcule the error, which is the negative of the likeli-
hood function.

5) Go back to step 2 until the error change is very small
or the number of iterations is reached (usually 15-20).

where σ2,xt, and µi, refer to arbitrary elements of the vectors
σ2, xt, and µi respectively.

III. FAULT DETECTION USING GMM
The main advantage of using Gaussian Mixture Models,

is that the model can be trained with normal operation data,
without further information about the multiple failure states,
which can be unknown at the moment. This advantage,
allows the detection of multiple failure states even if a
particular failure is happening for the very first time.

The signals can be used directly or transformed to extract
more interesting features for the detection task. In this article
we use the raw signals to learn the model.

The principle of this method consists of two phases: a
first phase during which an statistical model is learned using
the Expectation Maximization algorithm; and a second
phase where the learned model is used to score the current
system condition, as it is shown in Figure 1. If the maximum
likelihood score exceeds certain threshold, then the detection
system triggers a failure alarm.

The proposed method described in the Algorithm 1, is
a data-based technique which mainly uses the sensor data
(consisting as well of normal operating data called xtr )
gathered during a significant period of time to adjust the
parameters of a Gaussian mixture model called λ of size
M . The threshold is obtained using validation data (also
normal operation data), called xv . The obtained model uses
log Likelihood to distinguish between data that is ”normal”,
and the data that is ”anomalous”, the data set for testing
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is called xt. In the algorithm the testing data is fed to the
model through a window of time, in order calculate the
loglikelihood when sufficient data is gathered.

Algorithm 1 Fault detection by using Gaussian Mixture
Models

1: procedure FDGMM(train data)
2: Organize train data in a matrix called xtr.
3: Set the parameters for the algorithm.
4: λ0=kmeans(xtr).
5: λ=gmmEM(xtr,M ,λ0)
6: l=loglikelihood(xv ,λ).
7: Set the likelihood threshold ε according to l,to detect

a failure.
8: for xt(1:window:end) do
9: l=loglikelihood(xt,λ)

10: if l< ε then
11: Hey, something is really wrong.
12: else
13: Everything is cool
14: end if
15: end for
16: end procedure

IV. THE TESTING BENCHMARK DAMADICS
This benchmark was proposed in 2003 [9] to help the

development of fault detection methods in a industry environ-
ment. The process has multiple sensors and actuators which
can present different types of failure, abrupt and incipient.
From the repository we use the normal behavior data to train
the model, and the failure data to test the results. The faulty
data is scarce, but we simulated 30 cases to test our approach
with the simulink tool available in the repository.

V. EXPERIMENTS

To validate the functionality of the algorithm we use the
DAMADICS benchmark. This database was created to test
fault detection algorithms with real data and simulations.
The authors provided libraries to simulate 19 types of
faults from three actuators with two different degrees
of ocurrence (Abrupt, Incipient). In this experiment we
monitor three signals: controller output, upstream pressure
and downstream pressure.

In Table I, the analysed fault types are presented, and
the fault scenarios that are derived from them. As the
monitoring of root causes for a faulty event is a very
difficult task for the operators, it follows to infer the state
of the process, from key variables belonging to it.

A. Data generation
The actuator model is simulated using Matlab Simulink

and the libraries provided in DAMADICS webpage. The
available data is separated into three sets, one for training
(1 st to 4th of November), a second for validation (5th of
November) and other for testing (October 30th, November
9th and November 17th). The observation sequences are
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Fig. 2. Normalized Loglikelihood for fault 16, corresponding to November
30th. This picture indicates that the failure occurred near to the time window
number 60.
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Fig. 3. Normalized Loglikelihood for data set, corresponding to November
17th, where multiple types of faults occurred. In this picture we can see that
three faults occurred after the time window number 50.

sensors and valves readings, whose size depends on the
failure mode, for this article we only consider the 16, 17 and
18 faults, which are general external failures. The model size
was determined heuristically, as well the minimum variance
and detection threshold.

B. Model identification

The goal of this stage is to obtain a GMM for normal
operation data. The data set concerning the failures is used
only in the testing stage. The first step uses the k-means
algorithm to locate the centroids for the initial parameters.
The second step relies in the EM algorithm to estimate

TABLE I. FAULTS UNDER ANALYSIS

Date Fault type Description

October 30th 18 Partially opened bypass
valve

November 9th 16 Positioner supply pressure
drop

November 17th 17 Unexpected pressure drop
across the valve
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Fig. 4. Upper: Histogram of Normal operation data set corresponding to November 1st to 5th for training purposes. Below: Histogram of learned Gaussian
Mixture model.

the GMM parameters, where the covariance matrices are
set to be diagonal. The appropriate size of the model is
determined, in order to obtain trustworthy results. Also, the
best minimum covariance threshold is found, to ensure that
the model converges and remains sensitive to variances in
data. The model selection is based on the likelihood function
evaluated over the validation set. The result is a model for
the normal operation data which detects anomalies in the
process by using loglikelihood function.

C. Testing the Model
A data set representing an operating condition as shown

in Figure 4 is fed to the GMM model. This data set is
composed by data of the three previously mentioned signals,
between November 1st-4th. The whole data set has 345600
data points for each signal, which is equivalent to 4 days of
operation.

From the data set, we calculate the loglikelihood score and
normalize it by the number of samples in the window (set to
1000 secs). If the data set score is lower than the threshold ε,
the algorithm detects an anomaly. The model is tested with
different types of faults, being important to note that the user
has to set the threshold according to the sensibility desired.

VI. RESULTS AND DISCUSSION

A set of observation sequences belonging to a particular
fault scenario are fed to the model. The results for both
monitoring tasks and detection, are shown in the Figures 2
and 3. These figure show how the score decreases drastically
when a fault is detected. The fault scenario corresponds to
October 30th, and 17th of November. We set the threshold

to 0.82 for normalized likelihood. Every one of the faults
expected in every day, was detected by the algorithm. To
prove the robustness of the algorithm, we use simulated
data, for normal behavior data we use 100 tests and for
faulty behavior we use 30 test. The results for false alarm
was 6% and false rejection was 1%. This numbers change
according to the threshold but these were the best found in
the experiments.

VII. CONCLUSION

A fault detection system based on GMM was developed.
Using the DAMADICS benchmark actuator system it was
possible to verify its capabilites regarding monitoring tasks.
With a model of normal operations was able to detect
fault events immediately after its occurrence. This pattern
recognition tool plays an important role when fault event
data is scarce, and we have plenty of normal operation data.
Besides, by using a temporal sequence of observations as
model input, the model may be trained again if there are any
changes in the behavior of the process, with the posibility
of adding even more signals, which can be a daunting task
with model based methods.

The results are very promising concerning to the
application of GMM in chemical process monitoring. In the
future, these results can be used along with decision trees
to include a fault diagnosis stage, as a complement for the
proposed system. It follows from the results obtained, that
the proposed approach may have further applications in the
monitoring of other industrial procesess as well, leading to
prospective opportunities for research and development.
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In real world fault detection is important the aplicability
of the solutions, in this article we aim to solve some issues
that are common in data-based methods. Such as the lack
of failure information, and the training of multiple models
which can be very expensive and impractical. The results
show that with only normal operation data is possible to
learn a model that is capable of detect anomalies in multiple
signals. This solution is very flexible, can be applied to many
situations and only requires be trained once, this fact makes
this solution ideal for real time applications. In the future
this solution can be improved if is combined with Maximum
Aposteriori adaptation and decision trees for diagnosis tasks.

REFERENCES

[1] Y. Guo, J. Wall, and J. L. andSam West, “A machine learning approach
for fault detection in multi-variable systems,” in ATES in conjunction
with Tenth Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS) AAMAS 2011, 2011.

[2] J. P. Matsuura, A. Iees, P. Marechal, E. Gomes, T. Yoneyama,
R. Kawakami, and H. Galvo, “Learning bayesian networks for fault
detection,” in In Proceedings of the IEEE Signal Processing Society
Workshop, 2004, pp. 133–142.

[3] T. Chopra and J. Vajpai, “Classification of faults in damadics bench-
mark process control system using self organizing maps,” International
Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,
Volume-1, Issue-3, July 2011, vol. 1 (3), pp. 85–90, 2011.

[4] J. Sun, Y. Li, and C. Wen, “Fault diagnosis and detection based on com-
bination with gaussian mixture models and variable reconstruction,” in
Innovative Computing, Information and Control (ICICIC), 2009 Fourth
International Conference on, 2009, pp. 227–230.

[5] F. Nelwamondo and T. Marwala, “Faults detection using gaussian
mixture models, mel-frequency cepstral coefficients and kurtosis,” in
Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International
Conference on, vol. 1, 2006, pp. 290–295.

[6] A. Shui, W. Chen, P. Zhang, S. Hu, and X. Huang, “Review
of fault diagnosis in control systems,” in Proceedings of
the 21st annual international conference on Chinese control
and decision conference, ser. CCDC’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 5360–5369. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1714810.1715162

[7] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” in Digital Signal Processing,
2000, p. 2000.

[8] I. Nabney, NETLAB: Algorithms for Pattern Recognition, ser. Advances
in Computer Vision and Pattern Recognition. Springer, 2002. [Online].
Available: http://books.google.com.co/books?id=LaAAJP1ZxBsC

[9] M. Syfert, R. Patton, M. Bartys, and J. Quevedo, “Development and
application of methods for actuator diagnosis in industrial control
systems (damadics): A benchmark study.” Proceedings of the IFAC
Symposium Safe Process, pp. 939–950, 2003.

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 171



 

 

 

Keywords—Spine, ergonomics, vehicle, musculoskeletal 
affections.  

 
Abstract—The aim of this study is to determine a analytical 

expression in the coronal plane of the drivers spine while driving 
along curved roads and also to determine ergonomic parameters for 
the car seat design. To determine the analytical expression and the 
ergonomic parameters, an experiment was developed to monitor the 
position variation in time of the vertebras in the coronal plane. The 
result lead to three sinusoidal equations. The amplitude values of the 
sinusoidal functions describing the variation in time of angles 
between the vertebras gives an image regarding the deformation 
degree of the intervertebral discs. 
 

I. INTRODUCTION 
HE possibility to drive in complete healthy and safety 
conditions not only for the professional drivers but also 

for the rest of the population which uses vehicles as frequent 
transportation means leads to efficiency by improving the 
quality of life. 

In this context it is noted the following objectives and 
research directions: the development of modern mathematical 
models and principles to be included in a design or control 
algorithm. 

The present study is based on the egronomical research 
regarding the spine’s behavior while driving along curved 
roads.  

II. ANALYTICAL EXPRESSION OF THE SPINE IN THE CORONAL 
PLANE 

The optimal ergonomic body posture of the driver sitting in 
the car seat is influenced by the structural characteristics of the 
seat.  The body has to be constrained to the seat such way so 
that the spine’s form is an ideal anatomical or ergonomic 
optimal shape. Therefore to design and construct the car seat, 
it is proposed to start from the ideal anatomical shape of the 
spine in the coronal plane (Fig. 1). [2, 3] 

To determine the design parameters of the car seat is 
necessary to know the analytical form of the spine’s shape in 
the coronal plane. 

In the coronal plane, the shape of the spine can be expressed 
mathematically by the equation of a straight vertical line. 
Vertebrae centers are collinear. Considering a reference 
 
 

system as in figure 2, the vertical line’s equation containing 
vertebras centers is considered to be x = 0. 

 
Fig. 1- Anatomical planes. 

Point O, the origin of the coordinate system coincides with 
the lowest point of the coccyx.  

The analytical expression x = 0 of the spine’s shape in the 
coronal plane is only valid if the vehicle is at rest, or the 
vehicle travels on a rectilinear continuous road (unreal case). 

Due to the centrifugal force acting on the human body while 
the vehicle is traveling along a, the human body changes its 
posture in the coronal plane in the opposite direction of the 
centrifugal force, to maintain the balance in the car seat. Thus 
the spine’s shape changes depending on the vehicle’s traveling 
speed and the curved path’s radius, causing the spine shape 
mathematical expression in the coronal plane to be a motion 
law. 

The spine shape is the line containing the centers of the 
vertebras. Anatomically, the shape and movement of the spinal 
column are shown by the relative rotational movement 
between the vertebras. According to anatomy and kinematic 
studies of the human spine, it is concluded that the center of 
rotation between two vertebras is the center of the 
intervertebral disc that connects the two vertebras. Thus 
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drivers spine 
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intervertebral disc can be considered a ball joint with three 
degrees of freedom corresponding to rotation after three axes. 

In figure 3 are shown as an example, L3 and L4 vertebras 
centers as CL3 and CL4 points, and the rotation centers of the 
L2, L3, L4 and L5 vertebras, as CrL2-L3-L4 and CrL4 CrL3-
L5. 

 
Fig. 2. – The spine in the coronal plane related to the coordinate 

system xOy. 

 
Fig. 3 - L3 and L4 vertebras centers (CL3 and CL4), and the rotation 

centers of the L2, L3, L4 and L5 vertebras (CrL2-L3-L4 and CrL4 
CrL3-L5). 

Considering the vertebras in the coronal plane as 
represented by segments connecting the rotation centers, the 
shape of the spine may be given by the angles αi of these 
segments.  

Figure 4 represents the lumbar segment in the coronal plane. 
The L1, L2 ... L5 vertebras are the CrT12-L1CrL2-L3-L3 
CRL1-L2CrL2, CrL2-L3CrL3-L4-S1 ... CrL4-L5CrL5 
segments. The relative rotation between two vertebras is given 
by the angle αi between the segments representing the two 
vertebras. 

 
Fig. 4 – The lumbar spine with the segments representing L1, L2 ... 

L5 vertebras. 

The motion law of the spine in the coronal plane can be 
expressed as a function of the vehicle speed (va), the curved 
trajectory radius (rtr) and the upper body mass (mcs), function 
that returns the values of the αi angles. 

                                                            (1) 

To determine the function given by relation (1), we created 
an experiment that for a given route and a constant driving 
speed, the upper body movements in the coronal plane were 
monitored. 

 
Fig. 5 - The route used in the experiment. 
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The track used in the experiment is the same track used to 
determine the dynamic cornering ability of the vehicles (fig. 
5).[29] 

In the experiment we used the motion sensor manufactured 
by PASCO scientific and the PASCO CI-6400 Science 
Workshop 500 Interface (fig. 7).  

The motion sensor MotionSensor II (fig. 6) operates on the 
sonar principle. The sensor can measure distances between 
0.15m and 8m, between it and the object of interest (fig. 6). 

 
Fig. 6 – Motion Sensor II. 

 
Fig. 7 - PASCO CI-6400 Science Workshop 500 Interface. 

Before measurements, the motion sensor must be calibrated. 
In this experiment the driver's upper body sideway 

movements in the coronal plane were monitored. To monitor 
the movements in the coronal plane the motion sensor was 
used to determine the positions in time of three points on the 
driver's body right side. In figure 8 is shown the positioning of 
the sensor. The first point is on the right side of the C1 
vertebra, located at a distance of dC = 0.477m from the sensor. 
The second point is placed on the right shoulder on the T4 
vertebra’s right side, located at a distance of dT = 0.39m from 
the sensor. The third point is located next to the L1 vertebra 
located at a distance of dL = 0.419m from the sensor. 

In figure 9 is shown the sensor in the first position for 
determining the C1 vertebra movements. The rC, rT and rL 
distances from the seat surface, were determined by 
anthropometric measurements of the driver’s body in seated 
position. Thus rC = 0.8m, rT = 0.585m and rL = 0.4m.  

The experiment was carried out in three stages. In each 

stage the position in time of one of the three points is 
determined. In each stage the vehicle is traveling with a 
constant speed of 15km/h according to the vehicle dynamic 
steering ability tests. [5] 

 
Fig. 8 - Points of interest for sensor positioning. 

 
Fig. 9 - The sensor in the first position for determining the C1 

vertebra movements. 

III. THE EXPERIMENTAL RESULTS AND DATA PROCESSING 
 
The traveling time in one direction and performing a series 

of measurements, is about 15s.  
Figures 10, 11 and 12 are presented graphically the results 

of series of measurements for the three points. At each step 
corresponding to a point were performed seven series of 
measurements.  

For each point were averaged seven sets of measurements. 
Thus the results of processing experimental data are presented 
graphically in figure 13.  

As a first analysis of the results obtained, it can be seen that 
the variation in time of the position of the three points can be 
expressed as a sinusoidal function with the same frequency but 
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different amplitudes. 

 
Fig. 10 - The series of measurements for the C1 vertebra. 

 
Fig. 11 - The series of measurements the T4 vertebra. 

 
Fig. 12 - The series of measurements for the L1 vertebra. 

 
Fig. 13 – Graphical representation of the positions in time of the 

three points. 

IV. DETERMINATION OF THE SINUSOIDAL FUNCTIONS 
DESCRIBING THE VARIATION IN TIME OF THE C1, T4 AND L1 

VERTEBRAS POSITIONS 
Using the Mathcad software the position in time values for 

the three points were introduced as the following strings: 

cp
0

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.477
0.476

0.479

0.478

0.482

0.479

0.474

0.48

0.473

0.473

0.475

0.48

0.469

0.476

0.485

...

:= um
0

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.39
0.399

0.401

0.403

0.405

0.407

0.409

0.411

0.411

0.411

0.411

0.411

0.41

0.412

0.413

...

:= lb
0

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.418
0.418

0.418

0.419

0.419

0.419

0.419

0.42

0.42

0.42

0.42

0.421

0.422

0.424

0.425

...

:=

 
The cp string corresponds to the C1 point, um string 

corresponds to the T4 point and lb string corresponds to the L1 
point.  

The next step is to determine the frequency of each string. 

tcpmaxi i max cp( ) cpiif

0 otherwise

:=  

max tcpmax( ) 98=  
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tcpmini i min cp( ) cpiif

0 otherwise

:=  

max tcpmin( ) 83=  

tummaxi i max um( ) umiif

0 otherwise

:=  

max tummax( ) 99=  

tummini i min um( ) umiif

0 otherwise

:=  

max tummin( ) 117=  

tlbmaxi i max lb( ) lbiif

0 otherwise

:=  

max tlbmax( ) 70=  

tlbmini i min lb( ) lbiif

0 otherwise

:=  

max tlbmin( ) 86=  

The time interval between the maximum and minimum for 
each string is determined: 

                            (2) 

                        (3) 

                (4) 

In order to determine the single frequency in all three strings, 
the average of the three time periods is determined: 

                               (5) 

Thus, the frequency will be: 

                                                                                (6) 

The amplitude of each string is determined as follows: 

                                                         (7) 

                                                     (8) 

                                                           (9) 

The cp string amplitude is noted acp, the um string 
amplitude is noted with aum, and the amplitude of the lb string 
is noted alb. 

The sinusoidal functions describing the position variation in 
time of the C1, T4 and L1 vertebraes points are the following: 

                                     (10) 

                                (11) 

                                       (12) 

In the figures 14, 15 and 16 the sinusoidal functions are 
represented in comparison to the cp, um and lb strings graphic 
form. For each case can be seen that the sinusoidal functions 
allure is very close to the allure of the strings measured values.  

In conclusion it can be considered that these sinusoidal 
functions can describe the position variation in time of the C1, 
T4 and L1 vertebra’s points, while driving on a sinusoidal 
trajectory. 

 
Fig. 14 - Graphical representation of the ycp sinusoidal function 

compared with the cp string. 
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Fig. 15 - Graphical representation of the yum sinusoidal function 

compared with the um string. 

 
Fig. 16 - Graphical representation of the ylb sinusoidal function 

compared with the lb string. 

 
Fig. 17 – The sinusoidal functions describing the position variation in 

time of the C1, T4 and L1 vertebras points. 

 
Fig. 18 – The sinusoidal functions describing the position variation in 

time of the C1, T4 and L1 vertebras. 

The sinusoidal functions describing the position variation in 
time of the C1, T4 and L1 vertebras in the coronal plane are: 

                                               (13) 

                                             (14) 

                                               (15) 

V. CONCLUSIONS 
The amplitude values of the sinusoidal functions describing 

the variation in time of angles between the vertebras gives an 
image regarding the deformation degree of the intervertebral 
discs. 

A nonergonomic posture of the driver’s body seated in the 
vehicle’s seat implies the spine to be in a shape that subjects 
the intervertebral discs to uneven tensions causing 
deformations that in some cases can exceed the limits at which 
the musculoskeletal affections of the spine can be avoided or 
treated by physiotherapy. 
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Exponentially scaled point processes
and data classification

Marcel Jiřina

Abstract—We use a measure for distances of neighbors’ of a
given point that is based on lp metrics and a scaling exponent. We
show that if the measure scales with scaling exponent mentioned,
then distribution function of this measure converges to Erlang
distribution. The scaling of distances is used for design of a
classifier. Three variants of classifier are described. The local
approach uses local value of scaling exponent. The global method
uses the correlation dimension as the scaling exponent. In the
IINC method indexes of neighbors of the query point are essential.
Results of some experiments are shown and open problems of
classification with scaling are dicussed.

Keywords—Multivariate data, nearest neighbor, Erlang distribu-
tion, multifractal, scaling exponent, classification, IINC.

I. INTRODUCTION

In this paper we use a model that there is some underlying
process and in the process some events occur. We suppose
that events occur randomly and independently one of another.
The only information we have is d-dimensional data arising
from events, i.e. by (often rather approximate) measurement
or sampling.

Important notion is a scaling characterized by scaling
exponent denoted also as fractal dimension. This dimension q
is lesser than space dimension d, and usually is not an integer.
The space dimension d is often called embedding dimension
using concept that fractal is a q-dimensional formation plunged
into larger d-dimensional space [16]. This concept can be
applied to volume V of a ball of radius r. There is V = cqr

q

for q-dimensional ball in d-dimensional space; cq is a constant
dependent on q and metrics used. Usually q = d but the same
holds for integer q < d, e.g. two dimensional circle in three
dimensional Euclidean space. Keeping the concept consistent,
q need not be an integer but there is no intuition how, say,
2.57-dimensional ball looks like.

The goal of this study is to analyze the distances of nearest
neighbors from given point (location) in a multidimensional
spatial point process in Rd with exponential scaling [5]. The
result is that when using scaled measure for distance of the
k-th neighbor, the distance can have the Erlang distribution of
order k. We show here that scaling leads to simple polynomial
transformation z = rq . With the use of this transformation a
classifier can be designed.

The work was supported by Ministry of Education of the Czech Republic
under INGO project No. LG 12020.

M. Jiřina is with the Institute of Computer Science AS CR, Pod Vodarenskou
vezi 2, 182 07 Praha 8, Czech Republic (e-mail: marcel@cs.cas.cz)

II. MULTIDIMENSIONAL POINT PROCESSES AND FRACTAL
BEHAVIOR

A. Point processes

Let there be an ,,underlying process“ UP . This process
is sampled randomly and independently so that random d-
dimensional data

P = x1, x2, . . ., xi ∈ X ⊂ Rd (1)

arose. This data (without respect to time or order in which
individual samples xi was taken) forms spatial point process in
Rd and individual samples xi are called points, in applications
often events [6], samples, patterns or so.

We are interested in distances from one selected fixed point
x to others; especially distance to the k-th nearest neighbor.
From now we use numbering of points according to their order
as neighbors of point x; xk being the k-th nearest neighbor of
point x. To distance lk from x to its k-th nearest neighbor a
probability is assigned. There is introduced

Sk(l) = Pr{l < lk} = Pr{N(lk) < k}

i.e. probability that a distance to the k-th nearest neighbor
is larger than l that is equal to probability of finding k-1
points within distance lk [4]. For k = 1 it is called avoidance
probability and often denoted P0. Function

Fk(l) = 1− Sk(l)

is the distribution function of distance l to the k-th neighbor.
A scaling function is a real-valued function c : Rd →

R+, that satisfies a self-similarity property with respect to a
group of affine transformations [20]. There are several types
of scaling functions, shifting, scaling, eventually reflections.
General equation for scaling can have form

µ(~x+ ~a) = cθ(~x)

and in less general (fractal) case of exponential scaling

µ(~x+ ~a) = ah(~x)

Here θ is l-dimensional parameter vector. When the scaling
is location dependent, we speak about locally dependent point
process.
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B. Fractal behavior
We admitt that an ,,underlying process“ UP shows expo-

nentially scaled characteristics. Let there be data in Rd, see
(1).

One can introduce a distance between two points of P using
lp metrics, lij = ||xi - xj ||p, xi, xj ∈ P . In a bounded region
W ∈ Rd a cumulative distribution function of lij

CI(l) = lim
N→∞

1

N(N − 1)

N∑
i=1

N−1∑
j=1

h(l − lij) ,

is denoted as correlation integral; h(.) is the Heaviside step
function. Grassberger and Procaccia [10] introduced correla-
tion dimension ν as limit

ν = lim
l→0

CI(l)

l
.

Having empirical data on P , distances between any two
points of P is the only information yelded exactly with the
use a relatively simple computation.

It is apparent that scaling of distances between any two
points of P also holds for near neighbors’ distances distri-
bution. Let Fk(l) be the distribution function of distance from
some point x to the k-th neighbor. Let us define another
function, the function D(x, l) of neighbors’ distances from
one particular point x as follows [13], [14].

Definition
Probability distribution mapping function D(x, l) of the

neighborhood of the query point x is function D(x, l) =∫
B(x,l)

p(z)dz, where l is the distance from the query point

and B(x, l) is the ball with center x and radius l.
In bounded region W ⊂ P when using a proper rescaling,

the DMF is, in fact, a cumulative distribution function of
distances from given location x ∈ W ⊂ P to all other points
of P in W . We call it also near neighbors’ distance distribution
function. We use D(x, r) mostly in this sense. It is easily seen
that DMF can be written in form

D(x, l) = lim
N→∞

1

N − 1

N−1∑
j=1

h(l − lj).

The correlation integral can be decomposed into set of DMFs
each corresponding to particular point x0i ∈W ⊂ P as follows
[14]

CI(r) = lim
N→∞

1

N

N∑
i=1

 1

N − 1

N−1∑
j=1

h(r − lij)


that means

CI(l) = lim
N→∞

1

N

N∑
i=1

D(x0i, l) .

Thus the correlation integral is a mean of probability distribu-
tion mapping functions for all points of W ⊂ P .

We introduce a local scaling exponent q according to the
following definition.

Definition
Let there be a positive q such that D(x,l)

lq →
const for l → 0 + .
We call function

z(l) = lq

a power approximation of the probability distribution mapping
function and q is a distribution mapping exponent.

C. Common interesting behavior
It is common that measure l(A) on Rd is usually a

Lebesgue measure or based on it. Thus l(A) depends on integer
dimensionality d. Our intention is to deal with some q, d ≥ q >
0 not necessary an integer.

Here we contract metric space (X , ρ) to (Rd, lp), where
lp is Lebesgue p-norm. Let q ∈ (0, d]. We define measure
µ(.) of neighbors distances so that for S = (a line between xi
and xj) there is µ(S) = lqp(xi − x) − lqp(xj − x) ,
lp(xi − x) ≥ lp(xj − x) , µ(O) = 0 , µ(S1 ∪ S2) =
µ(S1) + µ(S2); S1 ∩ S2 = O a.s.

It is easily seen that µ(.) is a measure; it is nonnegative,
it equals to zero for the empty set and for xi = xj , and is
countable additive.

Then it holds a theorem that is a special but useful case of
more general results about point processes [4], [5], [20].

Theorem 1: Let there be a point process P and bounded
region x ⊂ Rd, where there is given point x and Nnearest
neighbors of x. Let D(x, l) scales with exponent q. Let process
P in bounded region W ⊂ Rd be mapped (by mapping
MPpx) to process p in bounded interval w ⊂ R+. Then one-
dimensional point process p in w ⊂ R+ is a homogenous
Poisson process with intensity λ = lim

N→∞
N/zN .

Proof: It is omitted here.
Theorem 1 can be applied to all points x0 ∈ P . Supposing

monofractal underlying process UP and by point process P
induced measure µpν(.) with correlation dimension ν as one
if its parameters, the ν scales also the DMF of all points of P
and then q = ν.

Corollary 1: Let there be a point process P and bounded
region W , where there are given location x and N nearest
neighbors of x. Let DMF D(x, l) scales with exponent q.
Then probability distribution of µk = µpq(xk – x) of the k-th
nearest neighbor xk of given location x is Erlang distribution
Erl(µk, k, λ), i.e.

F (µk) = 1− exp(−λµk)
k−1∑
j=0

(λµk)
j

j!

f(µk) =
λk

k!
(µk)

k−1 exp(−λµk) .

Proof: It is omitted here.
We found that when one can find a scaling of neighbors’

distances measure, in form z = rq , q is the distribution
mapping exponent, then one can find a “Poisson process-
like” behavior, i.e. Erlang distribution of neighbors’ distances
measure. Usually, a measure is considered that may depend
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on the embedding space dimension d (integer), while we use
more general distribution mapping exponent q that is a positive
real number.

III. CLASSIFICATION USING SCALING

Here we show basic idea of multidimensional data classifi-
cation using scaling and three variants of this approach.

A. Data

Let the learning set U of total N samples be given. Each
sample xt = {xt1, xt2, xtd}; t = 1, 2, ...N, xtk ∈ R; k =
1, 2, ..., d corresponds to a point in d-dimensional metric space
Md, where d is the sample space dimension. For each xt ∈ U
a class function T : Rd → {1, 2, ...C} : T (xt) = c is
introduced. With the class function the learning set U is
decomposed into disjoint classes Uc = {xt ∈ U |T (xt) =

c}; c ∈ {1, 2, ..., C},
C⋃
c=1

Uc,∩Ub = ∅; c, b ∈ 1, 2, ..., C; c 6= b.

Cardinality of set Uc let be Nc. As we need to express
which sample is closer or further from some given point x,
we can rank points of the learning set according to distance
ri of point xi from point x. Therefore, let points of U be
indexed (ranked) so that for any two points xi, xj ∈ U
there is i < j if ri < rj ; i, j = 1, 2, ...N , and class
Uc = {xi ∈ U |T (xi) = c}. Of course, the ranking depends on
point x and eventually metrics of Md. We use Euclidean (L2)
and absolute (Manhattan, L1) metrics here. In the following
indexing by i means ranking just introduced.

B. The DME method

This classifier uses the distribution mapping exponent al-
ready introduced.

1) Intuitive explanation: Let us consider the partial influ-
ences of the individual points to the probability that point x is
of class c. Each point of class c in the neighborhood of point x
adds a little to the probability that point x is of class c, where
c = 0, 1 is the class mark. Suppose that this contribution is the
larger the closer the point considered is to point x and vice
versa. Let p(c|x, i) be a partial contribution of the i-th nearest
point to the probability that point x is of class c. Then:

For the first (nearest) point i = 1 and ther is p(c|x, 1) '
1

Sqr
q
1

, where we use the distribution mapping exponent q in-
stead of the data space dimensionality d; Sq is proportionality
constant dependent on the dimensionality and metrics used.
For the second point i = 2 there is p(c|x, 2) ' 1

Sqr
q
2

... And
so on; generally for point No. i p(c|x, i) ' 1

Sqr
q
i
.

We add the partial contributions of individual points together
by summing up

p(c|x) '
∑
xi∈Uc

p(c|x, i) = 1

Sq

∑
xi∈Uc

1/rqi

(The sum goes over the indexes i for which the corresponding
samples of the learning set are of class c). For both classes

there is p(0|x) + p(1|x) = 1 and from it Sq =
N∑
i=1

1/rqi Thus

we get the form suitable for practical computation

p̂(c|x) =

∑
xi∈Uc

1/rqi

N∑
i=1

1/rqi

(2)

(The upper sum goes over the indexes i for which the
corresponding samples of the learning set are of class c). At the
same time all N points of the learning set are used instead of
some finite number as in the k-NN method. Moreover, we do
not use the nearest point (i = 1) usually. It can be found that
its influence is more negative than positive on the probability
estimate here.

2) Theory: Here we come from an assumption that the best
approximation of the probability distribution of the data is
closely related to the uniformity of the data space around the
query point x. In cases of uniform distribution - at least in the
neighborhood of the query point - the best results are usually
obtained. Therefore we approximate (polynomially expand)
the true distribution so that at least in the neighborhood of
the query point the distribution density function appears to be
constant.

Now a question arises why influences of individual points of
a given class to the final probability that point x is of the class
are inversely proportional to the z = rqi . Let there be Z, the
largest of all z for a given class. We have shown that variable
z = rq has uniform distribution with some density pz . It
holds Zpz = 1 because the integral of the distribution density
function over its support (0, Z) equals to one. If support
would be (0, Z1), Z1 < Z, then the density must be larger
proportionally to Z/Z1. It means that shift of each point closer
to point x will enlarge the density so that it will be inversely
proportional to the distance of a point from point x.

Theorem 2: Let the task of classification into two classes
be a given. Let the size of the learning set be N and let both
classes have the same number of samples. Let q , 1 < q < d
be the distribution mapping exponent, let i be the index of the
i-th nearest neighbor of point x (without respect to class), and
ri > 0 its distance from point x. Then

p(c|x) = lim
N→∞

∑
xi∈Uc

1/rqi

N∑
i=1

1/rqi

(3)

(the upper sum goes for all points of class c only) is probability
that point x belongs to class c.

Proof: can be found in [13]
3) Generalization: Up to now we suposed two classes only

and the same number of samples of both classes in the learning
set. For general number of C classes and of the different
number of the samples N1, N2, ...NC of individual classes
formula (3) must be completed. In fact, the last is only a
recalculation of the relative representation of the different
number of the samples in classes.
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p(c|x) =
lim
N→∞

(1/Nc
∑

xi∈Uc

1/rqi )

C∑
k=1

lim
N→∞

(1/Nk
∑

xi∈Uk

1/rqi )

(4)

4) The DME classifier construction: This method represents
a direct use of formula (2) eventually formula (4) in form

p̂(c|x) =
1/Nc

∑
xi∈Uc

1/rqi

C∑
k=1

(1/Nk
∑

xi∈Uk

1/rqi )

(5)

Note that the convergence of sums above is faster the larger
DME q is. Usually, for multivariate real-life data the DME
is also large (and the correlation dimension as well). Figs. 1
and 2 illustrate the convergence of the sum in the numerator
above for one query point for the well-known ”vote” data,
see [1]. The task is to find whether a president elected will
be republican or democrat. The data is 15-dimensional of two
classes that have a different number of samples. In the learning
set, there are 116 times republican and 184 times democrat.
The distribution mapping exponent q varies between 4.52 and
14 with the mean value 10.22.

Fig. 1. Sample contribution to the sum in the numerator of (5) for the 15
dimensional data vote and one particular query point; q = 7.22. The upper
line corresponds to the republican, the lower line to the democrat. Samples
are sorted according to the distance r, i.e. also to the size of the sample
contribution to the sum for one class. There are different numbers of samples
of one and the other class in the learning set.

The classification procedure is rather straightforward. First,
compute the distribution mapping exponent q for the query
point x by standard linear regression, see the next section.
Then, we simply sum up all the components excluding the
nearest point.

In our approach, a true distribution is mapped to the uniform
distribution. For uniform distribution, it holds that the i-th
neighbor distance from a given point has an Erlang distribution
of i-th order. For an Erlang distribution of i-th order, the
relative statistical deviation, i.e. the statistical deviation divided
by the mean, is equal to 1/

√
i. Then the relative statistical

Fig. 2. The size of the total sum in the numerator of (5) for the 15-
dimensional data ”vote” and one particular query point; q = 7.22. The upper
line corresponds to the republican, the lower line to the democrat. The samples
are sorted according to the distance r, i.e. also to the size of the sample
contribution to the sum for one class.

deviation diminishes with the index of the neighbor and for
the nearest neighbor is equal to 1 which also follows from the
fact that Erlang(1) distribution is exponential distribution. So,
there is a large relative spread in the positions of the nearest
neighbor and, at the same time, its influence is the largest. In
practice, it appears better to eliminate the influence of the first
nearest neighbor. Theorems for DME as well for CD method
remains valid.

This is made for classes, simultaneously getting C sums for
all classes. Then we can get the Bayes ratio or a probability
estimate that point x belongs to class. The class that has largest
probability estimate is taken as an estimated class of query
point x. Eventually these probabilities can be weighted in the
same way as in other classifiers.

5) Distribution mapping exponent estimation: Important
issue of this method is a procedure how to determine the
distribution mapping exponent.

To estimate the distribution mapping exponent q we use
a similar approach, nearly identical, to the approach of
Grassberger and Procaccia [10] for the correlation dimension
estimation.

This is a task of estimating the slope of a straight line
linearly approximating the graph of the dependence of the
neighbor’s index as a function of distance in log-log scale.
Grassberger and Procaccia [10] proposed a solution by linear
regression. Dvorak and Klaschka [7], Guerrero and Smith
[11], Osborne and Provenzale [18] later proposed different
modifications and heuristics. Many of these approaches and
heuristics can be used for the distribution mapping exponent
estimation, e.g. use of the square root of Nc nearest neighbors
instead of Nc to eliminate the influence of a limited number of
the points of the learning set. The accuracy of the distribution
mapping exponent estimation is the same problem as the
accuracy of the correlation dimension estimation. On the other
hand, one can find that a small change of q does not essentially
influence the classification results.

The approach described here has two other variants.
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C. CD method - correlation dimension based approach

In this method it is supposed that distribution mapping
exponents for individual query points differ only slightly and
that one can use the value of correlation dimension ν instead.
Computation has then two steps, in the first step the estimate of
correlation dimension ν is computed using any known suitable
method and then one uses formulas (2) or (5) where ν instead
of q is used.

Again, as in Section III-B we exclude the first nearest
neighbor of the query point. The convergence of sums is
equally fast as in the DME method.

A relative advantage of this approach is that estimate of
the correlation dimension is more exact than estimate of the
distribution mapping exponent and that computation of the
correlation dimension is done once only in difference of the
DME that must be computed for each query point anew.

1) Correlation dimension estimation: For the approximation
of probability of class at a given point and classification
described above, a fast and reliable method for correlation
dimension estimation is needed. Methods for the estimation
of correlation dimension differ by approaches used and also
by some kind of heuristics that usually optimize the size of
radius r to get a realistic estimation of correlation dimension
[17], [3], [25] as mentioned above.

Averaging method
The basic problem of correlation dimension estimation is the

large number of pairs that arise even for a moderate learning
set size. The idea of the correlation dimension estimation
described below is based on the observation that distances
between all pairs of points can be divided into groups, each
group associated with one (fixed) point of the learning set.

Theorem 3: Let there be a learning set of N points (sam-
ples). Let the correlation integral be CI(r) and let D(x, r) be
the distribution mapping function corresponding to point x.
Then, CI(r) is a mean of D(x, r) for all points of U

Proof: For proof see [15].
We have found that for sufficiently good estimation of the

correlation dimension one can use part of the data set only, for
each point to estimate the distribution mapping exponent, and
take the average. The part of the data set may be some number
of points randomly selected from the data set. It suffice to use
100 points. The method of averaging need not be limited to
the Grassberger-Procaccia algorithm. We use it analogically
for Takens’ algorithm [25] as well.

D. IINC method - the inverted indexes of neighbors classifier

1) Intuitive basis: Similar way as in Section III-B1 let us
assume that the influence on the probability that point x is of
class c of the nearest neighbor of class c is 1, the influence of
the second nearest neighbor is 1/2, the influence of the third
nearest neighbor is 1/3 etc. Again we add the partial influences
of individual points together by summing up

p̂(c|x) =
∑
xi∈Uc

p1(c|x, ri) = K
∑
xi∈Uc

1/i.

The sum goes over indexes i for which the corresponding
samples of the learning set are of class c. The estimation of
the probability that the query point x belongs to class c is

p̂(c|x) =

∑
xi∈Uc

1/i

N∑
i=1

1/i

.

In the denominator is the so-called harmonic number HN ,
the sum of truncated harmonic series. The hypothesis above
is equivalent to the assumption that the influence of individual
points of the learning set is governed by Zipfian distribution
(Zipf’s law) [27], [23]. There is an interesting fact that the use
of 1/i has a close connection to the correlation integral and
correlation dimension and thus to the dynamics and true data
dimensionality of processes that generate the data we wish to
separate.

2) Theory:
Theorem 4: Let the task of classification into two classes

be given. Let the size of the learning set be N and let both
classes have the same number of samples. Let i be the index
of the i-th nearest neighbor of point x (without considering
the neighbor’s class) and ri be its distance from point x. Then

p(c|x) = lim
N→∞

∑
xi∈Uc

1/i

N∑
i=1

1/i

(6)

(the upper sum goes over indexes i for which the corresponding
samples are of class c) is the probability that point x belongs
to class c.

Proof: For proof see [15].
In the formula above it is seen that the approach is, in the

end a kernel approach with rather strange kernel in difference
to kernels usually used [12], [22].

It is easily seen that

C∑
c=1

p(c|x) =
C∑
c=1

lim
N→∞

∑
xi∈Uc

1/i

HN
= 1

and p(c|x) is a ”sum of relative frequencies of occurrence” of
points of a given class c. A ”relative frequencies of occurrence”
of point i , i.e. of the i-th neighbor of query point x, is

f(i; 1, N) =
1/i

HN

In fact, f(i; 1, N) is a probability mass function of Zipfian
distribution (Zipf’s law). In our case p(c|x) is a sum of
probability mass functions for all appearances of class c.

From these considerations Theorem 4 above was formulated.
3) The Classifier construction: Let samples of the learning

set (i.e. all samples regardless of the class) be sorted according
to their distances from the query point x. Let indexes be
assigned to these points so that 1 is assigned to the nearest
neighbor, 2 to the second nearest neighbor etc. This sorting
is important difference to both methods described before
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that need no sorting when distribution mapping exponent
or cortrelation dimension are known. Let us compute sums
S0(x) = 1

N0

∑
xi∈U0

1/i and S1(x) = 1
N1

∑
xi∈U1

1/i, i.e. the

sums of the reciprocals of the indexes of samples from class
c = 0 and from class c = 1. N0 and N1 are the numbers of
samples of class 0 and class 1, respectively, N0 + N1 = N .
The probability that point x belongs to class 0 is

p̂(c = 0|x) = S0(x)

S0(x) + S1(x)
(7)

and similarly the probability that point x belongs to class 1 is

p̂(c = 1|x) = S1(x)

S0(x) + S1(x)
(8)

When some discriminant threshold θ is chosen then if p̂(c =
1|x) > θ point x is of class 1 else it is of class 0. This is the
same procedure as in other classification approaches where the
output is an estimation of probability (naive Bayes) or any real
valued variable (neural networks). The value of threshold can
be optimized with respect to minimal classification error. The
default value of the discriminant threshold here is θ = 0.5.

4) Generalization: Formulas above hold for two class prob-
lem with equal number of samples of both classes in the
learning set. For larger number of classes and a different
number of samples of classes formula has the form similar
to (5):

p̂(c|x) =
1/Nc

∑
xi∈Uc

1/i

C∑
k=1

(1/Nk
∑

xi∈Uk

1/i)

(9)

It is only a recalculation of the relative representation of
different numbers of samples of one and the other class. For
classification into more than two classes we use this formula
for all classes and we assign to the query point x a class c for
which p̂(c|x) is the largest.

IV. EXPERIMENTS

We demonstrate the features and the power of the classifier
both on synthetic and real-life data.

A. Synthetic Data
Synthetic data according to Paredes and Vidal [19] is two-

dimensional and consists of three two-dimensional normal
distributions with identical a-priori probabilities. If µ denotes
the vector of the means and Cm is the covariance matrix, there
is

Class A : µ = (2, 0.5)t, Cm = (1, 0; 0, 1) (identity matrix)
Class B : µ = (0, 2)t, Cm = (1, 0.5; 0.5, 1)
Class C : µ = (0,−1)t, Cm = (1,−0.5;−0.5, 1).
Fig. 3 shows the results obtained by the different methods

for the different learning sets sizes from 8 to 256 samples and
a testing set of 5000 samples all from the same distributions
and independent. Each point in the figure was obtained by

averaging over 100 different runs. It is seen that in this
synthetic experiment, the DME based method presented here
reliably outperforms all other methods shown and for a large
number of samples fast approaches to the Bayes limit.

Fig. 3. Comparison of the classification errors of the synthetic data for the
different approaches in dependence on the size of the learning set. In the
legend, 1-NN(L2) means the 1-NN method with Euclidean metrics, CW, PW,
and CPW are three variants of the method by Paredes and Vidal [19]; the
points are estimated from this reference. Bayes means the Bayes limit, DME
means the basic method presented here.

Note that in this test, the error of the DME estimation is
combined with numerical errors, and with a negative influence
of the low number of the samples giving the results presented
in Fig. 3.

B. Data from Machine Learning Repository
The classification ability of the algorithm (DME) was

tested using real-life tasks from the UCI Machine Learning
Repository; see [1]. Seven databases have been used for the
classification task, see Table 1.

TABLE 1. Classification mean square errors for four different meth-
ods including DME.

For the Shuttle data, the learning and testing sets are directly
at hand and were used as they are. For smaller data sets a
cross validation of 10 or 9 was used. The Iris data set was
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modified into a two-class problem excluding the iris-setoza
class according to Friedman [9]. The methods for comparison
are
• 1-NN - standard nearest neighbor method
• Sqrt-NN - the k-NN method with k equal to the square

root of the number of samples of the learning set
• Bayes - the naive Bayes method using ten bins his-

tograms
For the k-NN, Bayes, and our method the discriminant

thresholds were tuned accordingly. All procedures are deter-
ministic (even Bayes algorithm) and then no repeated runs
are needed. The testing shows the classification ability of the
DME method for some tasks compared to the other published
methods and results for the same data sets.

Fig. 4. Comparison of the classification errors for four different methods
including the DME. Note that for the Mushroom data, both the 1-NN and
DME algorithms give zero error. For the Shuttle data, the errors are ten times
enlarged.

V. OPEN PROBLEMS

We have shown the use of scaling for data classification. The
three classifiers presented here were tested and can be used as
they are similarly as one sometimes uses the 1-NN or k-NN
methods. On the other hand, preprocessing like data editing
or some kind of learning may essentially enhance classifier‘s
behavior.

A. Editing
This is a way of learning data set modification that tries

enhance especially borders between classes to make class
recognition easier. Original idea of editing (or preclassification)
[26] is to classify a sample of the learning set by the method
for which edited learning data will be used. If classification
result does not correspond to the sample class, remove this
sample from the learning set else leave it there. After this
is done, use the edited learning set for data classification
by standard way. There are another ingenious methods that
modify originally simple methods with help of learning, e.g.
the learning weigting method [19] modifies the learning set
by weighting classes and features and then uses simple 1-NN
method similarly as [26].

B. Crossing phenomenon
The basic notion used here is the distribution mapping func-

tion. Depicted in the log-log coordinates it is approximately
linearly growing function. When there are two classes we may
have two such lines in one graph for a point x. If one line lies
under the other, point x belongs to class of the lower line. But
what if lines cross? And is the crossing point essential issue?

C. Scaled point processes but not exactly exponentially
The exponential scaling used here is a special case of more

complex scaling functions. Transformation z = rq may have
another form depending on the scaling function used. Main
problem is scaling function identification [20], [21]. One can
suppose that with the use of more realistic scaling function than
exponential, may lead to modification of methods presented
here and improving their behavior.

VI. DISCUSSION

We found that when one can find a scaling of neighbors’
distances measure, in form z = rq , q is the distribution
mapping exponent, then one can find a “Poisson process-
like” behavior, i.e. Erlang distribution of neighbors’ distances
measure. Usually, a measure is considered that may depend
on the embedding space dimension d (integer), while we use
more general distribution mapping exponent q that is a positive
real number.

Because the Erlang distribution converges to Gaussian dis-
tribution for index k → ∞, the result according to Theorem
1 also relates to some results of e.g. [2], [8], [24] about
convergence of near-neighbor distances.

The correlation dimension, eventually multifractal dimen-
sion, singularity (or Hölder) exponent or singularity strength,
is often used for characterization of one dimensional or two-
dimensional data, i.e. for signals and pictures. Our results are
valid for multidimensional data that need not form a series
because in this respect data is considered as individual points
in a multidimensional space with proper metrics.

Our model of the polynomial expansion of the data space
comes from the demand to have a uniform distribution of
points, at least locally. There is an interesting relationship be-
tween the correlation dimension and the distribution mapping
exponent. The former is a global feature of the fractal or data
generating process; the latter is a local feature of the data
set and is closely related to a particular query point. On the
other hand, if linear regression were used, the computational
procedure is almost the same in both cases. Moreover, it can
be found that the values of the distribution mapping exponent
lie sometimes in a narrow, sometimes in a rather wide interval
around its mean value. Not surprisingly, the mean value of
the distribution mapping exponent over all samples is not far
from the correlation dimension. Introducing the notion of the
distribution mapping exponent and the polynomial expansion
of the distances may be a starting point for a more detailed
description of the local behavior of the multivariate data and
for the development of new approaches to the data analysis,
including classification problems.
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Our experiments demonstrate that the simplest classifier
based on the ideas introduced here can outperform other
methods for some data sets. In all the tasks presented here,
the distribution-mapping-exponent-based method outperforms
or is comparable to the 1-NN algorithm and in six of the seven
tasks, outperforms naive Bayes algorithm being only a little
bit worse for the Splice data. All of these comparisons include
an uncertainty in the computation of the distribution mapping
exponent. By the use of the notion of distance, i.e. a simple
transformation En → E1, the problems with dimensionality
are easily eliminated at a loss of information on the true
distribution of the points in the neighborhood of the query
point which does not seem to be fundamental.

VII. CONCLUSION

This work was motivated by observation that near neighbors
distances in homogenous Poisson processes in Rd have, in fact,
the Erlang distribution modified so, that independent variable
is substituted by term Krd, where K is a constant, r the
distance of the neighbor and d the space dimension. This is
the scaling function in exponential form. Here we answer a
question, what if point process has arisen from underlying
process with scaling exponent lesser than space dimension d.

This problem is solved by introduction of a distribution
mapping function and its power approximation. It has been
shown that the distribution mapping exponent of the power
approximation is very close to the scaling exponent known
from the theory of fractals and multifractals. It leads simplified,
in the end, to strange scale measured by scaling exponent-
power of neighbors’ distances. It was then found that when
using thus scaled measure for distance of the k-th neighbor one
can construct simple and effective classifier; we have presented
here three its variants and discussed some open problems.
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Abstract: 
Association rule plays an important role in data mining. It aims to extract interesting correlations, frequent patterns, associations or 
casual structures among sets of items in the transaction databases or other data warehouse.  Several authors have proposed different 
techniques to form the associations rule in data mining. But it has been observed that the said techniques have some problem. 
Therefore, in this paper an effort has been made to form the association using principal component analysis and factor analysis. A 
comparative study on the performance of principal component analysis and factor analysis has also been made to select the preferable 
model for the formation of association rule in data mining. A clustering technique with distance measure function has been used to 
compare the result of both the techniques. A new distance measure function named as Bit equal has been proposed for clustering and 
result has been compared with other exiting distance measure function. 
 
Keywords: Data mining, Association rule, Factor analysis, Principal component analysis, Cluster, K-means and Euclidian distance, 
Hamming distance. 
 
Introduction: 
Data mining [1] is the process of extracting interesting (non-
trivial, implicit, previously unknown and potentially useful) 
information or patterns from large information repositories 
such as: relational database, data warehouses, XML 
repository, etc. Also data mining is known as one of the core 
processes of Knowledge Discovery in Database (KDD). 
Association rule mining, one of the most important and well 
researched techniques of data mining, was first introduced in 
[2]. It aims to extract interesting correlations, frequent 
patterns, associations or casual structures among sets of items 
in the transaction databases or other data repositories. 
Association rules are widely used in various areas such as 
telecommunication networks, market and risk management, 
inventory control etc. 
Association rule mining has also been applied to e-learning 
systems for traditionally association analysis (finding 
correlations between items in a dataset), including, e.g., the 
following tasks: building recommender agents for on-line 
learning activities or 14 Enrique García, Cristóbal Romero, 
Sebastián Ventura and Toon Calders shortcuts [3], 
automatically guiding the learner’s activities and intelligently 
generate and recommend learning materials [4], identifying 
attributes characterizing patterns of performance disparity 
between various groups of students [5], discovering interesting 
relationships from student’s usage information in order to 

provide feedback to course author [6], finding out the 
relationships between each pattern of learner’s behavior [7], 
finding students’ mistakes that are often occurring together 
[8], guiding the search for best fitting transfer model of 
student learning [9], optimizing the content of an e-learning 
portal by determining the content of most interest to the user 
[10], extracting useful patterns to help educators and web 
masters evaluating and interpreting on-line course activities 
[3], and personalizing e-learning based on aggregate usage 
profiles and a domain ontology [11]. 
 
Association rule mining algorithms need to be configured 
before to be executed. So, the user has to give appropriate 
values for the parameters in advance (often leading to too 
many or too few rules) in order to obtain a good number of 
rules. A comparative study between the main algorithms that 
are currently used to discover association rules can be found 
in: Apriori [12], FP-Growth [13], MagnumOpus [14], and 
Closet [15].  
Most of these algorithms require the user to set two thresholds, 
the minimal support and the minimal confidence, and find all 
the rules that exceed the thresholds specified by the user. 
Therefore, the user must possess a certain amount of expertise 
in order to find the right settings for support and confidence to 
obtain the best rules. Therefore an effort has been made to 
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form the association rule using the principal component 
analysis and factor analysis.  
Markus Z¨oller[16] has discussed the ideas, assumptions and 
purposes of PCA (Principal component analysis) and FA. A 
comprehension and the ability to differ between PCA and FA 
have also been established.  
Hee-Ju Kim [17]  has  examined the  differences between 
common factor analysis (CFA) and principal component 
analysis (PCA). Further the author has opined that CFA 
(Common factor analysis) provided a more accurate result as 
compared to the PCA (Principal component analysis). 
Diana D. Suhr [18] has discussed similarities and differences 
between PCA (Principal component analysis) and EFA. 
Examples of PCA (Principal component analysis) and EFA 
with PRINCOMP and FACTOR have also been illustrated and 
discussed. 

Several authors have used data mining techniques [2-
15] for association rule generation and the selection of best 
rules among the extracted rule. Certain authors have made a 
comparative study regarding the performance principal 
component analysis [16]-[18] and factor analysis [16]-[18]. 

During the extraction of association rule, it has been 
observed that some of rules have been ignored. In many cases, 
the algorithms generate an extremely large number of 
association rules, often in thousands or even in millions. 
Further, the component of association rule is sometimes very 
large. It is nearly impossible for the end users to comprehend 
or validate such large number of complex association rules, 
thereby limiting the usefulness of the data mining results. 
Several strategies have been proposed to reduce the number of 
association rules, such as generating only “interesting” rules, 
generating only “nonredundant” rules, or generating only 
those rules satisfying certain other criteria such as coverage, 
leverage, lift or strength. 

In order to eliminate the problems, the technique of 
factor analysis and principal component analysis has been 
applied on the available data to reduce the number of variables 
in the rules. Further it has been observed that if data are not in 
clean form poor result may be achieved. Therefore the data 
mining preprocessing techniques like data cleansing, data 
integration, data transformation and data reduction have to be 
applied on the available data to clean it in proper form to form 
the association rule in data mining.  Thereafter, method of 
factor analysis and principal component analysis has been 
applied on the dataset. The comparative study of factor 
analysis and principal component analysis has been made by 
forming the different number of clusters on the total effect 
value as formed using factor analysis and principal component 
analysis. The distance measure function has been applied on 
the different number of cluster as formed using factor analysis 
and principal component analysis to select the preferable 
model. The bit equal distance measure function has been 
proposed to select the clustering elements based on the same 
number of bit of two elements. Here Iris Flower data set has 
been used as data set. 
 

In first section, abstract and introduction have been 
furnished. In second section, brief methodologies of the 
models have been furnished. In third section, implementation 
has been furnished in detail. In fourth section, result and 
conclusion have been furnished. 
 
2. Methodology: 
2.1 Data Mining 
A formal definition of data mining (DM) is also known as data 
fishing, data dredging (1960), knowledge discovery in 
databases (1990), or depending on the domain, as business 
intelligence, information discovery, information harvesting or 
data pattern processing.  
Knowledge Discovery in Databases (KDD) is the non-trivial 
process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data.  
By data the definition refers to a set of facts (e.g. records in a 
database), whereas pattern represents an expression which 
describes a subset of the data, i.e. any structured 
representation or higher level description of a subset of the 
data. The term process designates a complex activity, 
comprised of several steps, while non-trivial implies that some 
search or inference is necessary, the straightforward derivation 
of the patterns is not possible. The resulting models or patterns 
should be valid on new data, with a certain level of 
confidence. The patterns have to be novel for the system and 
that have to be potentially useful, i.e. bring some kind of 
benefit to the analyst or the task. Ultimately, these should be 
interpretable, even if this requires some kind of result 
transformation.  
An important concept is that of interestingness, which 
normally quantifies the added value of a pattern which 
combines validity, novelty, utility and simplicity. This can be 
expressed either explicitly, or implicitly, through the ranking 
performed by the DM (Data Mining) system on the returned 
patterns. Initially DM (Data Mining) has represented a 
component in the KDD (Knowledge Discovery in Databases) 
process which is responsible for finding the patterns in data. 
2.2 Data Preprocessing 
Data preprocessing is an important step in the data 
mining process. The phrase "garbage in, garbage out" is 
particularly applicable to data mining. Data gathering methods 
handle resultant in out-of-range values (e.g., Income: 100), 
impossible data combinations (e.g., Gender: Male, Pregnant: 
Yes), missing values, etc. Analyzing data that has not been 
carefully screened for such problems can produce misleading 
results. Thus, the representation and quality of data is 
necessary to be reviewed before running an analysis. 
If there exits irrelevant and redundant information or noisy 
and unreliable data, knowledge discovery during the training 
phase becomes difficult. Data preparation and filtering steps 
can take considerable amount of processing time. Data 
cleaning (or data cleansing) routines attempt to fill in missing 
values, smooth out noise while identifying outliers, and 
correct inconsistencies in the data. The data processing and 
data post processing depends on the  user to form and 
represent the knowledge of data mining.  
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Data preprocessing includes the following techniques:  
(1) Data cleaning: This technique includes fill in missing 
values, smooth noisy data, identify or remove outliers and 
resolve inconsistencies. 
(2) Data integration: This technique includes integration of 
multiple databases, data cubes, or files. 
(3) Data transformation: This technique includes 
normalization and aggregation. 
(4) Data reduction: This technique is used to obtain reduced 
representation in volume but to produce the same or similar 
analytical results 
(5) Data discretization: This is the part of data reduction but it 
is importance especially for numerical data. 
2.3 Association Rule  
The formal statement of association rule mining problem has 
been discussed by Agrawal et al. [18] in the year 1993. Let I= 
{I1, I2. … Im} be a set of m distinct attributes, T be transaction 
that contains a set of items such that T ⊆ I, D be a database 
with different transaction records Ts. An association rule is an 
implication in the form of X ⇒Y, where X, Y⊂ I are sets of 
items called item sets, and X ∩ Y = ɸ . X is called antecedent 
while Y is called consequent, X implies Y has formed as rule. 
There are two important basic measures for association rules, 
support(s) and confidence(c). Since the database is large and 
users concern only those frequently used items, usually 
thresholds of support and confidence are predefined by the 
users to drop those rules that are not so important or useful. 
The two thresholds are called minimal support and minimal 
confidence respectively, additional constraints of interesting 
rules also can be specified by the users. Support(s) of an 
association rule is defined as the percentage/fraction of 
records that contain X  Y to the total number of records in 
the database. The count for each item is increased by one in 
every time when the item is encountered in different 
transaction T in database D during the scanning process. It 
means the support count does not take the quantity of the item 
into account. For example in a transaction a customer buys 
three bottles of beers but the support count number of {beer}is 
increased by one, in another word if a transaction contains an 
item then the support count of this item is increased by one. 
Support(s) is calculated by the following formula: 

 

From the definition it can be mentioned that the support of an 
item is a statistical significance of an association rule. Suppose 
the support of an item is 0.1%, it means only 0.1 percent of the 
transaction contains purchasing of this item. The retailer will 
not pay much attention to such kind of items that are not 
bought so frequently, obviously a high support is desired for 
more interesting association rules. Before the mining process, 
users can specify the minimum support as a threshold, which 
means the user are only interested in certain association rules 
that are generated from those item sets whose support value 
exceeds that threshold value. However, sometimes even the 
item sets are not as frequent as defined by the threshold, the 
association rules generated from them are still important. For 
example in the supermarket some items are very expensive, 

consequently these are not purchased so often as the threshold 
required, but association rules between those expensive items 
are as important as other frequently bought items to the 
retailer. 
Confidence of an association rule is defined as the 
percentage/fraction of the number of transactions that contain 
X Y to the total number of records that contain X, where if 
the percentage exceeds the threshold of confidence an 
interesting association rule X ⇒Y can be generated. 

 

Confidence is a measure of strength of the association rules, 
suppose the confidence of the association rule X⇒Y is 80%, it 
means that 80% of the transactions that contain X and Y 
together, similarly to ensure the interestingness of the rules 
specified by minimum confidence is also pre-defined by users. 
Association rule mining is to find out association rules that 
satisfy the pre-defined minimum support and confidence from 
a given database. The problem is usually decomposed into two 
sub problems. One is to find those item sets whose 
occurrences exceed a predefined threshold in the database, 
those item sets are called frequent or large item sets. The 
second problem is to generate association rules from those 
large item sets with the constraints of minimal confidence. 
Suppose one of the large item sets is Lk.   Lk = { I1, I2,…, Ik-1, 
Ik} association rules with this item sets are generated in the 
following way, the first rule is ={ I1, I2,…, Ik-1}⇒ {Ik}, by 
checking the confidence this rule can be determined as 
important or not. Then other rules are generated by deleting 
the last items in the antecedent and inserting it into the 
consequent item, further the confidence of the new rules are 
checked to determine the importance of them. Those processes 
are iterated until the antecedent item becomes empty.  
2.4 Factor Analysis 
Factor analysis is a statistical method used to 
describe variability among observed, correlated variables in 
terms of a potentially lower number of unobserved variables 
called factors. In other words, it is possible, that variations in 
fewer observed variables mainly reflect the variations in total 
effect. Factor analysis searches for such joint variations in 
response to unobserved latent variables. The observed 
variables are modeled as linear combinations of the potential 
factors, plus "error" terms. The information gained about the 
interdependencies between observed variables can be used 
later to reduce the set of variables in a dataset. 
Computationally this technique is equivalent to low rank 
approximation of the matrix of observed variables. Factor 
analysis originated in psychometrics, and is used in behavioral 
sciences, social sciences, marketing, product 
management, operations research, and other applied sciences 
that deal with large quantities of data. 
2.5 Principal component analysis (PCA) is a statistical 
procedure that uses orthogonal transformation to convert a set 
of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal 
components. The number of principal components is less than 
or equal to the number of original variables. This 

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 189



transformation is defined in such a way that the first principal 
component has the largest possible variance (that is, accounts 
for as much of the variability in the data as possible), and each 
succeeding component in turn has the highest variance 
possible under the constraint that it be orthogonal to (i.e., 
uncorrelated with) the preceding components. Principal 
components are guaranteed to be independent if the data set is 
jointly normally distributed. PCA is sensitive to the relative 
scaling of the original variables. 
 2.6 Clustering 
The Clustering method deals with finding a structure in a 
collection of unlabeled data. A loose definition of clustering 
could be “the process of organizing objects into groups whose 
members are similar in some way”. A cluster is therefore a 
collection of objects which are “similar” between them and are 
“dissimilar” to the objects belonging to other clusters. The 
graphical example of cluster has shown in figure 1.9. In this 
case it is easily identified the 4 clusters into which the data can 
be divided, the similarity criterion is that two or more objects 
belong to the same cluster if they are “close” according to a 
given distance (in this case geometrical distance). This is 
called distance-based clustering. 
2.6.1 K-Means Clustering  
K-Means (MacQueen, 1967) clustering algorithm is one of the 
simplest unsupervised learning algorithms that solve the well 
known clustering problem. The procedure follows a simple 
and easy way to classify a given data set through a certain 
number of clusters (assume k clusters) with a priori. The main 
idea is to define k centroids, one for each cluster. These 
centroids should be placed in a cunning way because different 
location causes different result. So, the better choice is to 
place them as much as possible far away from each other. The 
next step is to take each point belonging to a given data set 
and associate it to the nearest centroid. When no point is 
pending, the first step is completed and an early groupage is 
done. At this point it is needed to re-calculate k new centroids 
as barycenters of the clusters resulting from the previous step. 
After these k new centroids have been obtained a new binding 
has to be done between the same data set points and the 
nearest new centroid. A loop has been formed. As a result of 
this loop it may be noticed that the k centroids change their 
location step by step until no more changes are done. In other 
words centroids do not move any more.  
Finally, this algorithm aims at minimizing an objective 
function, generally a squared error function. The objective 
function as    

 where  is a chosen distance measure between a 
data point  and the cluster centre . 
2.6.1.2 K-Means Algorithm 

1. Place K points into the space represented by the 
objects that are being clustered. These points 
represent initial group of centroids. 

2. Assign each object to the group that has the closest 
centroid. 

3. When all objects have been assigned, recalculate the 
positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer 
move. This produces a separation of the objects into 
groups from which the metric to be minimized can be 
calculated. 

Although it can be proved that the procedure will always 
terminate, the k-means algorithm does not necessarily find the 
most optimal configuration, corresponding to the global 
objective function minimum. The algorithm is also 
significantly sensitive to the initial randomly selected cluster 
centers. The k-means algorithm can be run multiple times to 
reduce this effect. K-means algorithm is a simple algorithm 
that has been adapted to many problem domains.  
2.6.3 Distance Measure 
 An important component of a clustering algorithm is the 
distance measure between data points. If the components of 
the data instance vectors are in the same physical units it is 
possible that the simple successfully group similar data 
instances. However, even in this case the Euclidean distance 
can sometimes be misleading.  
2.6.3.1 Euclidean Distance 
According to the Euclidean distance formula, the distance 
between two points in the plane with coordinates (x, y) and (a, 
b) is given by 

dist ((x, y), (a, b)) = √(x - a)² + (y - b)² 
 
2.6.3.2 Hamming Distance 
The Hamming distance between two strings of equal length is 
the number of positions at which the corresponding symbols 
are different. In another way, it measures the minimum 
number of substitutions required to change one string into the 
other, or the minimum number of errors that could have 
transformed one string into the other. 
The Hamming distance between: 
• 1011101 and 1001001 is 2. 
• 2173896 and 2233796 is 3. 
2.6.3.3 Proposed Bit equal 
It has been observed that hamming distance based on the 
minimum number of errors that could have transformed one 
string into the other.  But clustering techniques based on 
grouping of object of similar types therefore here an effort has 
been made to group the object of similar type rather than 
based on the dissimilarity of strings (hamming distance). The 
bit equal distance measure function has been proposed to 
count the same number of bit of two elements. For an 
example, consider the strings 1011101 and 1001001, the 
hamming distance is 2, but in bit equal (Consider the strings 
have equal number bit) the similarity is 5. Here we can say 
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that five bits of the elements are same based the similarity 
properties of clustering. 
 
3. Implementation: 
The available data contains the information of Iris flowers 
with various items which have been furnished column wise in 
table 1.  The data related to iris flower containing 40 data 
values which have been shown in table 2. It is to note that the 
quality of flower depends on the sepal length of the flower. If 
the sepal length of a particular flower is known, the quality of 
flower can be ascertained. Therefore the sepal length of flower 
(D) has been chosen as the objective item (consequent item) of 
the flowers. The other parameters i.e. sepal width (A), petal 
length (B) and petal width (C) have been chosen as the 
depending items (antecedent items). 
The purpose of this work is to correlate the items A, B and C 
with D, so that based on any value of A, B and C, the value of 
D can be estimated. From the value of D the quality of that 
type of flower can be ascertained.  

Table 1 
Flower Characteristics 

Item Name Item description 
A Sepal width 
B Petal length 
C Petal width 
D Sepal length 

 
Now it is necessary to check whether the data items are proper 
or not. If the data items are proper, extraction of information is 
possible otherwise the data items are not suitable for the 
extraction of knowledge. In that case preprocessing of data is 
necessary for getting the proper data. The set of 40 data 
elements has been taken which have been furnished in table 2. 

Table 2 
Available Data 

Serial  
Number A B C D 

1 3.5 1.4 0.2 5.1 
2 3 1.4 0.2 4.9 
3 3.2 1.3 0.2 4.7 
4 3.1 1.5 0.2 4.6 
5 3.6 1.4 0.2 5 
6 3.9 1.7 0.4 5.4 
7 3.4 1.4 0.3 4.6 
8 3.4 1.5 0.2 5 
9 2.9 1.4 0.2 4.4 

10 3.1 1.5 0.1 4.9 
11 3.7 1.5 0.2 5.4 
12 3.4 1.6 0.2 4.8 
13 3 1.4 0.1 4.8 
14 3.2 4.7 1.4 7 
15 3.2 4.5 1.5 6.4 
16 3.1 4.9 1.5 6.9 
17 2.3 4 1.3 5.5 
18 2.8 4.6 1.5 6.5 
19 2.8 4.5 1.3 5.7 
20 3.3 4.7 1.6 6.3 

21 2.4 3.3 1 4.9 
22 2.9 4.6 1.3 6.6 
23 2.7 3.9 1.4 5.2 
24 2 3.5 1 5 
25 3 4.2 1.5 5.9 
26 2.2 4 1 6 
27 3.3 6 2.5 6.3 
28 2.7 5.1 1.9 5.8 
29 3 5.9 2.1 7.1 
30 2.9 5.6 1.8 6.3 
31 3 5.8 2.2 6.5 
32 3 6.6 2.1 7.6 
33 2.5 4.5 1.7 4.9 
34 2.9 6.3 1.8 7.3 
35 2.5 5.8 1.8 6.7 
36 3.6 6.1 2.5 7.2 
37 3.2 5.1 2 6.5 
38 2.7 5.3 1.9 6.4 
39 3 5.5 2.1 6.8 
40 2.5 5 2 5.7 

 
The data mining preprocessing techniques like data cleansing, 
data integration, data transformation and data reduction have 
been applied on the available data as follows: 
Data Cleansing 
The data cleansing techniques include the filling in the 
missing value, correct or rectify the inconsistent data and 
identify the outlier of the data which have been applied on the 
available data.  
It has been observed that each data set does not contain any 
missing value. The said data item does not contain any 
inconsistent data i.e. any abnormally low or any abnormally 
high value. All the data values are regularly distributed within 
the range of that data items. Therefore the data cleansing 
techniques are not applicable for the available data. 
Data Integration  
The data integration technique has to be applied if data has 
been collected from different sources. The available data have 
been taken from a single source therefore the said technique is 
not applicable here.  
Data transformation 
The data transformation techniques such as smoothing, 
aggregation, normalization, decimal scaling have to be applied 
to get the data in proper form.  Smoothing technique has to be 
applied on the data to remove the noise from the data. 
Aggregation technique has to be applied to summarize the 
data. To make the data within specific range smoothing and 
normalization technique have to be applied. Decimal scaling 
technique has to be applied to move the decimal point to 
particular position of all data values. Out of these data 
transformation techniques, smoothing and decimal scaling 
techniques have been applied on the data as furnished in table 
2 to get the revised data as furnished in table 3.   

Table 3 
Revised Data 

Serial  
Number A B C 

 
D 
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1 3500 1400 200 5100 
2 3000 1400 200 4900 
3 3200 1300 200 4700 
4 3100 1500 200 4600 
5 3600 1400 200 5000 
6 3900 1700 400 5400 
7 3400 1400 300 4600 
8 3400 1500 200 5000 
9 2900 1400 200 4400 

10 3100 1500 100 4900 
11 3700 1500 200 5400 
12 3400 1600 200 4800 
13 3000 1400 100 4800 
14 3200 4700 1400 7000 
15 3200 4500 1500 6400 
16 3100 4900 1500 6900 
17 2300 4000 1300 5500 
18 2800 4600 1500 6500 
19 2800 4500 1300 5700 
20 3300 4700 1600 6300 
21 2400 3300 1000 4900 
22 2900 4600 1300 6600 
23 2700 3900 1400 5200 
24 2000 3500 1000 5000 
25 3000 4200 1500 5900 
26 2200 4000 1000 6000 
27 3300 6000 2500 6300 
28 2700 5100 1900 5800 
29 3000 5900 2100 7100 
30 2900 5600 1800 6300 
31 3000 5800 2200 6500 
32 3000 6600 2100 7600 
33 2500 4500 1700 4900 
34 2900 6300 1800 7300 
35 2500 5800 1800 6700 
36 3600 6100 2500 7200 
37 3200 5100 2000 6500 
38 2700 5300 1900 6400 
39 3000 5500 2100 6800 
40 2500 5000 2000 5700 

 
Data Reduction 
The data reduction method has to be applied on huge amount 
of data (tetra byte) to get the certain portion of data. Since here 
the amount of data is not large, the said technique has not been 
applied. 
Association Rule Formation 
The association rule has been formed using the data items as 
furnished in table 2 with attribute description as present in 
table 1 as follows: 
Step 1 
Rule 1 IF A = 3500 AND B = 1400 AND C = 200 THEN D = 
5100 
Rule 2 IF A = 3000 AND B = 1400 AND C = 200 THEN D = 
4900 
Rule 3 IF A = 3200 AND B = 1300 AND C = 200 THEN D = 
4700 
.               . .            .                            . . 

.   . .            .  . . 

.               . .            .  .                 . 
 
Rule 40 IF A = 2500 AND B = 5000 AND C = 2000 THEN D 
= 5700 
It is to mention that each rule has been formed on the basis of 
the value of each data item. In table 3, the first row contains 
the value of A, B, C, D as 3500, 1400, 200, 5100 respectively. 
On the basis of values of data items, the rule1 has been 
formed. Accordingly all rules have been set up. Here the item 
D has been chosen as objective item ( consequent item) and  
other items A, B, C have been taken as depending items 
(antecedent items). Since there are 40 data items, 40 rules 
have been formed based on different values of data items. 
Step 2 
The numerical values have been assigned to the attribute of 
the each rule which has been furnished in table 4. Here the 
range of A, B, C and D have been divided in three equal part. 
As for example, the numerical value as 100 has been assigned 
to attribute A if the value of A lies between 2000 to 2633.33. 
The value 100 has been termed as A1. The numerical value as 
150 has been assigned to attribute A if the value of A lies 
between 2633.33 to 3266.66. The value as 150 has been 
termed as A2. Accordingly the numerical values have been 
assigned to all data items. 

Table 4 
Numerical Values for the Range 

Item/ 
Rang
e  
A A1(2000-2633.33) = 

100 
A2(2633.33-3266.66) = 
150 

A3(3266.66-3900) = 
200 

B B1(1300-3066.67) = 
201 

B2(3066.67-4833.34) = 
251 

B3(4833.34-6600) = 
301 

C C1(100-900) = 302 C2(900-1700) = 352 C3(1700-2500) = 402 
D D1(4400-5466.67) = 

600 
D2(5466.67-6533.34) = 
650 

D3(6533.34-7600) = 
700 

 
Step 3 
Numerical values have been assigned to each antecedent item 
(A, B, C) and consequent item (D). For rule number 1, the 
values of A, B, C and D are 3500, 1400, 200 and 5100 
respectively. Using the values, numerical values have been 
assigned to the rule based on the range of values as specified 
in table 4. 
For the rule number one, the  numerical value of A, B and C 
are 200, 201 and 302 respectively ( from table 3)  therefore the 
sum of all  antecedent  numerical values are = 200 + 201 + 
302 = 703 which has been termed as cumulative antecedent 
item. Using the range of the values as furnished in table 4, the 
numerical value for D has been assigned as 600. This 
procedure has been repeated for all set of rules. The 
cumulative antecedent item and consequent item for all rules 
have been furnished in table 5. 

Table 5 
Antecedent and Consequent Item 
Serial  
Number 

Antecedent 
Item 

Consequent 
Item 

1 703 600 
2 653 600 
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3 653 600 
4 653 600 
5 703 600 
6 703 600 
7 703 600 
8 703 600 
9 653 600 

10 653 600 
11 703 600 
12 703 600 
13 653 600 
14 753 700 
15 753 650 
16 803 700 
17 703 650 
18 753 650 
19 753 650 
20 803 650 
21 753 600 
22 753 700 
23 753 600 
24 703 600 
25 753 650 
26 703 650 
27 903 650 
28 853 650 
29 853 700 
30 853 650 
31 853 650 
32 853 700 
33 753 600 
34 853 700 
35 803 700 
36 903 700 
37 853 650 
38 853 650 
39 853 700 
40 803 650 

 
Step 4 
It is to note that numerical values have been assigned to each 
item by dividing the items values into certain range of values. 
Here the items A, B, C and D have been divided into three 
ranges of values. Further it is to note that it may happen that 
each item may have to divide into unequal range of values. In 
that case it may be difficult to handle range of values. Apart 
from that, it may happen that a particular consequent item may 
be related to a number of cumulative antecedent items with 
huge difference in data values.  
The support and confidence has to be found on Iris data for the 
application of Apriori algorithm. In case of Iris flower data all 
the data in numeric form where it is not possible to calculate 
the confidence and support using Apriori algorithm method 
mentioned by Agrawal et al. [18] in the year 1993. Therefore 
an effort has to be made to calculate the confidence and 
support in following ways. To calculate the support and 
confidence all the data have to be converted into range which 
has been furnished in table 4. Base on the table 6 the all data 

have been assigned a range which has been furnished in table 
6. 

Table 6 
Assigned Range of the Data Element 

Serial 
Number 

A B C D Range of Data 

1 3500 1400 200 5100 A3 B1 C1 D1 
2 3000 1400 200 4900 A2 B1 C1 D1 
3 3200 1300 200 4700 A2 B1 C1 D1 
4 3100 1500 200 4600 A2 B1 C1 D1 
5 3600 1400 200 5000 A3 B1 C1 D1 
6 3900 1700 400 5400 A3 B1 C1 D1 
7 3400 1400 300 4600 A3 B1 C1 D1 
8 3400 1500 200 5000 A3 B1 C1 D1 
9 2900 1400 200 4400 A2 B1 C1 D1 
10 3100 1500 100 4900 A2 B1 C1 D1 
11 3700 1500 200 5400 A3 B1 C1 D1 
12 3400 1600 200 4800 A3 B1 C1 D1 
13 3000 1400 100 4800 A2 B1 C1 D1 
14 3200 4700 1400 7000 A2 B1 C2 D3 
15 3200 4500 1500 6400 A2 B1 C2 D2 
16 3100 4900 1500 6900 A2 B2 C2 D3 
17 2300 4000 1300 5500 A1 B2 C2 D2 
18 2800 4600 1500 6500 A2 B2 C2 D2 
19 2800 4500 1300 5700 A2 B2 C2 D2 
20 3300 4700 1600 6300 A3 B2 C2 D2 
21 2400 3300 1000 4900 A1 B2 C2 D1 
22 2900 4600 1300 6600 A3 B2 C2 D3 
23 2700 3900 1400 5200 A2 B2 C2 D1 
24 2000 3500 1000 5000 A1 B2 C2 D1 
25 3000 4200 1500 5900 A2 B2 C2 D2 
26 2200 4000 1000 6000 A1 B2 C2 D2 
27 3300 6000 2500 6300 A3 B3 C3 D2 
28 2700 5100 1900 5800 A2 B3 C3 D2 
29 3000 5900 2100 7100 A2 B3 C3 D3 
30 2900 5600 1800 6300 A2 B3 C3 D2 
31 3000 5800 2200 6500 A2 B3 C3 D2 
32 3000 6600 2100 7600 A2 B3 C3 D3 
33 2500 4500 1700 4900 A1 B3 C3 D1 
34 2900 6300 1800 7300 A2 B3 C3 D3 
35 2500 5800 1800 6700 A1 B3 C3 D2 
36 3600 6100 2500 7200 A3 B3 C3 D3 
37 3200 5100 2000 6500 A2 B3 C3 D2 
38 2700 5300 1900 6400 A2 B3 C3 D2 
39 3000 5500 2100 6800 A2 B3 C3 D3 
40 2500 5000 2000 5700 A1 B3 C3 D2 

 
Here A1, A2 and A3 occurred 11, 22 and 7 times respectively. 
Similarly B1, B2, B3, C1, C2, C3, D1, D2 and D3 have been 
occurred 15, 12, 13, 13, 13, 14, 17, 15 and 8 respectively. 
According to Apriori algorithm support of A1 will be 11/40 
(27.5%), A2=22/40 (55%), A3=7/40 (17.5%), B1=15/40 
(37.5%), B2=12/40, (30%) B3=13/40, (32.5%) C1=13/40 
(32.5), D1= (42.5%), D2=15/40(37.5%) and D3=8/15(20%). 
If support is less than 30% then ignore the rule. Here A3 will 
be ignored from the set of rule. Therefore it is necessary to 
ignore the rule where A3 has occurred. Therefore, seven rules 
have to be ignored from the rule set. This action further 
ignored the rules which are associated with A3. For an 
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example in step 1 A3 has occurred seven places out of 40 rules 
(as shown in table 7. If the A3 will be ignored therefore other 
values which have been associated with it has to be ignored to 
make the rule consistent.  It has been seen that if rule has been 
ignored in this ways then almost all rule will be ignored. 
In order to eliminate the problems, the techniques of factor 
analysis and principal component analysis have been applied 
on the available data which have been described as follows: 
 
3.1 Multivariate Data Analysis 
The methods of factor analysis and principal component 
analysis have been applied on the available input data to make 
a decision to select the optimal model for the formation of 
association rule.  
3.1.1 Factor Analysis 
Step 1 
Using the values of A, B and C as furnished in table 2, the 
correlation of coefficient of the items A and B, A and C, B and 
C, A and A, B and B, C and C have been computed and  these 
coefficients have been stored in table 7 termed as correlation 
matrix. 

Table 7 
Correlation matrix 

1.0000   -0.3395   -0.2858 
-0.3395    1.0000    0.9740 
-0.2858    0.9740    1.0000 

Step 2 
The eigen value and eigen vectors of the elements A, B and C 
using the above correlation matrix have been calculated using 
Matlab Tools. The contributions of eigen value of each item 
among all other items has been calculated and it has been 
observed that percentage contribution of the item A (0.81%) is 
less as compared to other items (B (27.61%), C (71.49%)) 
therefore it has been ignored. The major factors have been 
calculated as per the formula (√eigen value × eigen vector) 
using the selected eigen value and eigen vector The major 
factors have been furnished in table 8. 

Table 8 
Contribution of Eigen Vector Corresponding Eigen Value 

Data 
Attribute /Eigen Value 

0.8308 2.1448 

A 0.8479 -0.5263 
B 0.2037 0.9696 
C 0.2602 0.9563 

 
Step 3 
The cumulative effect value for all these data items have been 
calculated by adding the values row wise corresponding to 
each element of table 7.  The cumulative values for all items 
have been calculating and furnished in table 9. 

 
Table 9 

Cumulative Effect Value of Items 
Data 

Attribute 
Cumulative 

Effect 

A 0.32 
B 1.17 

C 1.22 
Step 4 
Now a relation has been formed by using the cumulative effect 
value of all the elements to produce total effect value. 
Total effect value = (0.32) × A + (1.17) × B + (1.22) × C. Now 
using the relation, a resultant total effect value has been 
furnished in table 10.   

Table 10 
Total Effect Value 

Serial  
Number A B C 

Total Effect  
Value 

1 3500 1400 200 3002 
2 3000 1400 200 2842 
3 3200 1300 200 2789 
4 3100 1500 200 2991 
5 3600 1400 200 3034 
6 3900 1700 400 3725 
7 3400 1400 300 3092 
8 3400 1500 200 3087 
9 2900 1400 200 2810 
10 3100 1500 100 2869 
11 3700 1500 200 3183 
12 3400 1600 200 3204 
13 3000 1400 100 2720 
14 3200 4700 1400 8231 
15 3200 4500 1500 8119 
16 3100 4900 1500 8555 
17 2300 4000 1300 7002 
18 2800 4600 1500 8108 
19 2800 4500 1300 7747 
20 3300 4700 1600 8507 
21 2400 3300 1000 5849 
22 2900 4600 1300 7896 
23 2700 3900 1400 7135 
24 2000 3500 1000 5955 
25 3000 4200 1500 7704 
26 2200 4000 1000 6604 
27 3300 6000 2500 11126 
28 2700 5100 1900 9149 
29 3000 5900 2100 10425 
30 2900 5600 1800 9676 
31 3000 5800 2200 10430 
32 3000 6600 2100 11244 
33 2500 4500 1700 8139 
34 2900 6300 1800 10495 
35 2500 5800 1800 9782 
36 3600 6100 2500 11339 
37 3200 5100 2000 9431 
38 2700 5300 1900 9383 
39 3000 5500 2100 9957 
40 2500 5000 2000 9090 

 
Step 5 
The total effect value has been formed using the value of the 
items A, B and C. This total effect value has been related to 
the value of D. The distribution of sorted total effect value and 
the corresponding value of D have been furnished in figure 1. 
The total effect value has been named as cumulative 
antecedent item and values of D has been named as 
consequent item.  
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3.1.2 Principal Component Analysis 
Step 1 
Using the values of A, B and C as furnished in table 2, the 
covariance coefficient of the items A and B, A and C, B and 
C, A and A, B and B, C and C have been computed and these 
coefficients have been stored in table 11 termed as covariance 
matrix. 

Table 11 
Covariance Matrix 

0.1731   -0.2551   -0.0933 
-0.2551    3.2614    1.3803 
-0.0933    1.3803    0.6158 

Step 2 
The eigen value and eigen vectors of the elements A, B and C 
using above covariance matrix have been calculated using 
Matlab Tools, it has been observed that percentage 
contribution of the item A (0.62%) is less as compared to 
other (B (3.82%), C (95.55%)) therefore it has been ignored.  
The major factors have been calculated as per the formula 
(√eigen value × eigen vector) using the selected eigen value 
eigen vector. The major factors have been furnished in table 
12. 

Table 12 
Contribution of Eigen Vector Corresponding Eigen Value 

Data 
Attribute/ Eigen Value 

0.1548 3.8703 

A 0.3866 -0.1442 
B 0.0092 1.8073 
C 0.0508 0.7707 

Step 3 
The cumulative effect value for all these data items have been 
calculated by adding the values row wise corresponding to 
each element of table 11.  The cumulative value for all items 
has been furnished in table 13. 

Table 13 
Cumulative Effect Value of Items 

Data 
Attribute 

Cumulative 
Effect 

A 0.24 
B 1.82 
C 0.82 

Step4 
Now a relation has been formed by using the cumulative effect 
value of all the elements to produce total effect value. 
Total effect value = (0.24) × A + (1.82) × B + (0.82) × C. Now 
using the relation, a resultant total effect value has been 
computed which has been furnished in table 14.   

Table 14 
Total Effect Value 

Serial  
Number A B C 

Total Effect  
Value 

1 3500 1400 200 3552 
2 3000 1400 200 3432 
3 3200 1300 200 3298 
4 3100 1500 200 3638 
5 3600 1400 200 3576 

6 3900 1700 400 4358 
7 3400 1400 300 3610 
8 3400 1500 200 3710 
9 2900 1400 200 3408 

10 3100 1500 100 3556 
11 3700 1500 200 3782 
12 3400 1600 200 3892 
13 3000 1400 100 3350 
14 3200 4700 1400 10470 
15 3200 4500 1500 10188 
16 3100 4900 1500 10892 
17 2300 4000 1300 8898 
18 2800 4600 1500 10274 
19 2800 4500 1300 9928 
20 3300 4700 1600 10658 
21 2400 3300 1000 7402 
22 2900 4600 1300 10134 
23 2700 3900 1400 8894 
24 2000 3500 1000 7670 
25 3000 4200 1500 9594 
26 2200 4000 1000 8628 
27 3300 6000 2500 13762 
28 2700 5100 1900 11488 
29 3000 5900 2100 13180 
30 2900 5600 1800 12364 
31 3000 5800 2200 13080 
32 3000 6600 2100 14454 
33 2500 4500 1700 10184 
34 2900 6300 1800 13638 
35 2500 5800 1800 12632 
36 3600 6100 2500 14016 
37 3200 5100 2000 11690 
38 2700 5300 1900 11852 
39 3000 5500 2100 12452 
40 2500 5000 2000 11340 

 
Step 5 
The total effect value has been formed using the value of the 
items A, B and C. This total effect value has been related to 
the value of D. The sorted total effect value and the 
corresponding value of D have been furnished in figure 1. The 
total effect value has been named as cumulative antecedent 
item and values of D has been named as consequent item.  
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Figure 1: 
Antecedent vs. Consequent item of PCA and FA 

 
Step 6 
 K-means clustering has been applied on the total effect value 
using factor analysis and principal component analysis with a 
number of clusters (2, 3, 4, and 12).  
Step 7 
Several distance function have been used to calculate the 
cumulative distance value for the total cluster cumulative 
distance value has been calculated by summing the distance 
values of individual elements within the cluster from  
respective cluster. 
Step 8 
The cumulative distance value for different clusters have been 
furnished in table 15 using Iris Flower data set and Wine Data 
set and Boston city data set have been furnished in table 16 
and table 17 respectively. 

Table 15 
Data used Iris data set 

PCA vs. Factor Analysis Using Different Clusters 
Factor Analysis Principal Component Analysis 

No. of 
cluster/ 
Distanc

e 
Functio

n 

(Two 
Cluste

r) 

(Three 
Cluste

r) 

(Four 
Cluste

r) 

(Twel
ve 

Cluste
r) 

(Two 
Cluste

r) 

(Thre
e 

Clust
er) 

(Four 
Cluster) 

(Twelv
e 

Cluste
r) 

Euclide
an 

10577.
91 

6847.8
81 

1858.2
8 

555.77 13588.
59 

8419.
52 

6951.631 2779.3
03 

Hammi
ng 

269 237 228 169 279 259 254 199 

Bit 
Equal 

192 181 176 129 219 233 238 169 

 
Table 16 

Data used Wine Data Set 
PCA vs. Factor Analysis Using Different Clusters 

Factor Analysis Principal Component Analysis 
No. of 
cluster

/ 
Distan

ce 
Functi

on 

(Two 
Clust

er) 

(Thre
e 

Clust
er) 

(Fou
r 

Clust
er) 

(Twe
lve 

Clust
er) 

(Two 
Clust

er) 

(Thre
e 

Cluste
r) 

(Four 
Cluste

r) 

(Twel
ve 

Clust
er) 

Euclid
ean 

14588
9.2 

11827
6 

8313
6.7 

2937
3.85 

22036
7.5 

17871
6.2 

12622
5.7 

53575
.41 

Ham
ming 

369 347 314 269 403 399 366 292 

Bit 
Equal 

282 266 246 229 319 303 288 217 

 
Table 17 

Data used Boston city Data Set 
PCA vs. Factor Analysis Using Different Clusters 

Factor Analysis Principal Component Analysis 
No. of 
cluster

/ 
Distan

ce 
Functi

on 

(Two 
Clust

er) 

(Thre
e 

Clust
er) 

(Fou
r 

Clust
er) 

(Twe
lve 

Clust
er) 

(Two 
Clust

er) 

(Thre
e 

Cluste
r) 

(Four 
Cluste

r) 

(Twel
ve 

Clust
er) 

Euclid
ean 

14637
.05 

11507
.74 

8696.
66 

2187.
659 

14911
1.2 

11914
9.6 

10382
3.9 

30728
.32 

Ham
ming 

267 247 214 198 303 289 256 196 

Bit 
Equal 

182 166 146 129 219 203 188 157 

 
Step 9 
The objective of the formation of cluster is to separate samples 
of distinct group by transforming them to space which 
minimizes their within class variability. From table 15, 16 and 
table 17 it has been observed that the factor analysis is more 
effective as compared to principal component analysis after 
the formation of clusters using data items i.e.  Iris Flower, 
Wine Data set and Boston city data set. 
Therefore factor analysis method is suitable multivariate 
analysis method using Iris data, Wine Data set and Boston city 
data set for the formation of association rule.  
 
4. Result 
The methods of multivariate analysis (factor analysis and 
principal component analysis) have been applied on the 
available input data to make a decision to select the optimal 
model for the formation of association rule. The cumulative 
antecedent item has been formed using these methods. . From 
table 15, 16 and table 17 it has been observed that the factor 
analysis is more effective as compared to principal component 
analysis after the formation of clusters using data items i.e.  
Iris Flower, Wine Data set and Boston city data set. 
Conclusion: 
It has been observed that AND methodology and Apriori 
algorithm were not useful to form the association rule for the 
Iris Flower data set, Wine Data set and Boston city data set. In 
order to eliminate the problems, the techniques of factor 
analysis and principal component analysis have been applied 
on the available data.  From the table 15, 16 and 17 it has been 
observed that the cumulative distance value within the cluster 
is less in case of factor analysis as compared to principal 
component analysis using two, three, four and twelve clusters. 
Therefore cumulative antecedent value using factor analysis 
has to be used to from the association rule in data mining. In 
future, initially the same number of clusters has been formed 
using the objective item value as D. Thereafter, a relation has 
been formed using total effect value and objective item value 
of the data sets. 
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Abstract—This paper discusses the existence of "complex 

probability" in the real world sensible problems. By defining a 
measure more general than conventional definition of probability, the 
transition probability matrix of discrete Markov chain is broken to the 
periods shorter than a complete step of transition. In this regard, the 
complex probability is implied. 

 
Keywords— Probability, Markov Chain, Stochastic Process. 

I.  INTRODUCTION 
OMTIMES analytic numbers coincide with the 
mathematical modeling of real world and make the real 
analysis of problems complex. All the measures in our 

everyday problems belong to R, and mostly to R+. Probability 
of occurrence of an event always belongs to the range [0,1]. In 
this paper, it is discussed that to solve a special class of 
Markov chain which should have solution in real world, we 
are confronted with "analytic probabilities"!. Though the name 
probability applies to the values between zero and one, we 
define a special analogue measure of probability as complex 
probability where the conventional probability is a subclass of 
this newly defined measure.  

Now define the well-known discrete time Markov chain { }nY  
a Markov stochastic process whose state space is 

{ }Ns ,...,2,1=  for which { }0,1,2,...T = . Refer to the value 

of Yn as the outcome of the nth trial. We say Yn being in state i 
if Yn = i. The probability of Yn+1 being in state j, given that Yn 
is in state i (called a one–step transition probability) is denoted 
by 1, +nn

ijP  , i.e., 

{ }, 1
1Prn n

ij ij n nP P Y j Y i+
+= = = =                                (1) 

Therefore, the Markov or transition probability matrix of 
the process is defined by  
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                                           (2) 
The n-step transition probability matrix 
( ) ,n n

ijP=P which
n

ijP denotes the probability that the 

process goes from state i to state j in n transitions. Formally, 

{ }Pr ,n
ij n m mP Y j Y i i j S+= = = ∀ ∈                      (3) 

According to Chapman – Kolmogorov relation for discrete 
Markov matrices (Karlin and Taylor (1975)), it can be proved 
that  

              (4)      
Pn that is P to the power n is a Markov matrix if P is 

Markov.  
Now, suppose that we intend to derive the t-step transition 

probability matrix P(t) where t≥0 from the above (3) and (4) 
definition of n-step transition probability matrix P. That is, to 
find the transition probability matrix for incomplete steps. On 
the other hand, we are interested to find the transition matrix 
P(t) when t is between two sequential integers. This case is not 
just a tatonnement example. To clarify the application of this 
phenomenon, consider the following example.  

Example 1. Usually in population census of societies with N 
distinct regions, migration information is collected in an NxN 
migration matrix for a period of ten years. Denote this matrix

 

by M. Any element of M, mij is the population who leaved 
region i and went to region j through the last ten years. By 
deviding each mij to sum of the ith row of M, a value of Pij is 
computed as an estimate of probability of transition from ith to 
jth regions. Thus, the stochastic matrix P gives the probabilities 
of going from region i to region j in ten years (which is one–
step transition probability matrix). The question is: how we 
can compute the transition probability matrix for one year or 
one-tenth step and so on.  

If we knew the generic function of probabilities in very 
small period of time we would be able to solve problems 
similar to example 1. But the generic function (5) is not 
obtainable. If it were, we would apply the continous time 
Markov procedure using the generic NxN matrix A as: 

Complex Probability and Markov Stochastic 
Process 
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                                         (5) 
Where P(h) denotes transition probability matrix at time h. 

Then the transition probability matrix at any time 0≥t  might 
be computed as follows. (Karlin and Taylor (1975)). 
P(t) = e At           

          (6) 
Therefore a special procedure should be adopted to find the 

transition probability matrix P(t) at any time t from discrete 
Markov chain information. As it will be show later the 
adopted procedure coincides with transition probability matrix 
with complex elements.  

II.   BREAKING THE TIME IN DISCRETE MARKOV CHAIN  
Consider again matrix P defined in (2). Also, assume P is of 

full rank.  
 
Assumption 1: P is of full rank.  
This assumption assures that all eigenvalues of P are 

nonzero and P is diagnalizable, Searle (1982), Dhrymes 
(1978). This assumption is not very restrictive, since; actually, 
most of Markov matrices have dominant diagonals. That is 
probability of transition from state i to itself is more than the 
sum of probabilities from state i to all other states. The 
matrices having dominant diagonals are non-singular, 
Takayama (1974). Threfore, P can be decomposed as follows 
(Searle (1982), Klein (1973)). 

1−=P XΛX                                                                    (7) 
Where X is an NxN matrix of eigenvectors  1,..., ,, i Ni =x  

1[ ,...., ]N=X x x                                                                    (8) 

and Λ the NxN diagonal matrix of corresponding 
eigenvalues, 

1{ ,..., }Ndiag λ λ=Λ                                                             (9) 

Using (7), (8) and (9) to break n-step transition probability 
matrix P to any smaller period of time t≥ 0, we do as follows. 
If 0≤it  for all iЄ{1,…,K}are fractions of n–step period and 

1

k

i
i

t n
=

=∑  for any n belonging to natural numbers then,  

1

1

k

ikn i

j

t
it =

=
= =Π

∑
P P P                                                         (10) 

On the other hand, transition probability matrix of n-step 
can be broken to fractions of n, if sum of them is equal to n. 
Therefore, any 0≥t  fraction of one-step transition 
probability matrix can be written as,  

1t t −=P XΛ X                                       (11) 
where,  

{ }1 ,....,t t t
Ndiag λ λ=Λ

                                                    (12) 
 

Before discussing on the nature of eigenvalues of P let us 
define the generalized Markov matrix. 

 
Definition 1. Matrix Q is a generalized Markov matrix if the 

following conditions are fulfilled: 
 

[ ]
[ ]

1

1

1) ,

2) Re ( ) 0,1 ,

3) Im( ) 1,1 ,

4) Re ( ) 1

5) Im( ) 0

ij

ij

ij

N

ij
j

N

ij
j

q C i j S

q i j S

q i j S

q i S

q i S

=

=

∈ ∀ ∈

∈ ∀ ∈

∈ − ∀ ∈

= ∀ ∈∑

= ∀ ∈∑
 

 
Remark 1. According to definition 1, matrix Q can be 

written as:  
i= +Q U V                                                                            (13) 

Where U and V are NxN matrices of real and imaginary 

parts of Q with .1−=i   
 
Remark 2. Matrix U has all Properties of P defined by (2), 

thus, P⊂ Q. 
 
Treorem 1. If P is a Markov matrix then Pt also satisfies 

Markovian properties.  
Proof: According to Chapman–Kolmogorov relation for 

continuous Markov chain (Karlin and Taylor (1975)), we have 
( ) ( ) ( ) , 0t s t s t s+ = ≥P P P                          (14) 
That is, if P(t) and P(s), transition probability matrices at 

times t and s are Markovs, then the product of them P(t+s) is 
also Markov. Let t=1, then P(1) is a one-step transition 
probability matrix which is equivalent to (2). Hence, our 
discrete Markov matrix P is equivalent to its continuous 
analogue P(1). So  

(1)=P P                 (15) 
If we show that  

( )t t=P P                                                                              (16) 
Then according to (14) 
t s t s+ =P P P                                                                         (17) 
We can conclude that if P is Markov then Pt, Ps and Pt+s are 

also Markovs for 0, ≥st  and the theorem is proved.  
Rewrite P(t) in (6) as (18).  

1( ) ( )t t −=P XΛ X    
                      (18) 

Where ,i i Sλ ∈ are the eigenvalues of A defined by (5), and  

{ }1( ) exp( ),...,exp(t t
Nt diag λ λ=Λ                              (19) 

And X is the corresponding eigenmatrix of A. Take the 
natural logarithm of (18), 

1( ) ( )ln t t −=P XΦ X                                                           (20) 
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Where, 

{ }1( ) ,..., Nt t diag λ λΦ =                                                (21) 

So, 
1( )ln t t −=P XψX                                                               (22) 

where 

{ }1 ,..., Ndiag λ λ=ψ                                                       (23) 

Write (22) for t=1 and multiply both side by t,  
1(1)t ln t −=P XψX                                                           (24) 

By comparison of (22) and (24) conclude that  
( ) (1)ln t t ln=P P                                                               (25) 

or, 
( ) (1)tt =P P                                                                        (26) 
Given (15), equation (26) is the same as (16) Q.E.D. 
 

Result 1. Matrix Pt fulfils definition 1. Thus, t ⊆P Q . This 
comes from the following remarks. 

  
Remark 3. Sum of each row of Pt is equal to one. Since Pt 

satisfies Markovian properties (theorem 1).  
 
Remark 4. Sum of imaginary parts of each row is equal to 

zero. This immediately comes from remark 3. 
 
Remark 5. If qij denotes the ijth element of Pt for 0,t ≥  

then 1ijq ≤ for all i and j belonging to S. This remark can be 

concluded form theorem 1.  
 

Remark 6. If , 0t t= ≥Q P  equals to the complex matrix 

defined by (13), then 1 , .jkV j k S≤ ∀ ∈ Since, 

 
2 2

2 2

1 1

1 1 .

jk jk jk jk jk

jk jk jk

q u iv u iv

u v v

≥ = + ⇒ ≥ +

≥ + ⇒ ≥
 

 
Remark 7. Given Q as in remark 6, then ujk∈[0,1]. This also 

comes immediately from theorem 1.  

III.  DISCUSSION ON BROKEN TIMES 
The broken time discrete Markov chain is not always a 

complex probability matrix defined by definition 1. Matrix Pt 
has different properties with respect to t and eigenvalues. iλ  
may be real (positive or negative) or complex depending on 
the characteristic polynomial of P. 

Since P is a non–negative matrix, Forbenius theorem 
(Takayama (1974), Nikaido (1970)) assures that P has a 
positive dominant eigenvalue  

 

01 λ     (Frobenius root)                                                  (27) 
and 

{ }1 2, ...,i i Nλ λ≤ ∀ ∈                            (28) 

Furthermore, if P is also a Markov matrix then its Frobenius 
root is equal to one, (Bellman (1970), Takayama (1974)). 
Therefore,  

1 1λ =                         (29) 

1i i Sλ ≤ ∀ ∈                                                          (30) 

With the above information, consider the following 
discussions.  

) (0,1]ia i Sλ ∈ ∀ ∈                                                               

In this case all 0≥t
iλ  for 0≥t  and no imaginary part 

occurs in matrix Pt. iλ  are all positive for i belonging to S if 
we can decompose the matrix P to two positive semi-definite 
and positive definite matrices B and C of the same size 
(Mardia, Kent, Bibby (1982)) as 

1−=P C B  
[ ]) 1,1 , 0,i ib i Sλ λ∈ − ≠ ∀ ∈  

0, ≥tt
iλ  belongs to sets of real and imaginary numbers 

based on the value of t. In this case Pt belongs to the class of 
generalized stochastic matrix Q of definition 1. For i Rλ ∈ , it 
is sufficient that P be positive definite.  

) , (0,1]i ic C i Sλ λ∈ ∈ ∀ ∈  
Pt in this case for 0≥t  and t N∉  belongs to the class of 

generalized Markov matrices of definition 1. 
Ntd ∈) (Natural numbers) 

In all cases of a, b, and c we never coincide with complex 
probabilities. Since Pt can be drived by simply multiplying P, t 
times.  

)e t Z∈ (Integer numbers) 
In this case, Pt is a real matrix but does not always satisfy 

condition 2 of definition 1.  

)f t R −∈  
Pt is a complex matrix but does always satisfy conditions 2 

and 3 of definition 1.  

IV.   COMPLEX PROBABILITY JUSTIFICATION  
Interpretation of the "Complex probability" as defined by 

definition 1 is not very simple and needs more elaborations. 
The interesting problem is that, it exists in operational works 
of statistics as the example 1 discussed. Many similar 
examples like the cited may be gathered.  

With this definition of probability, the moments of a real 
random variable are complex. Although the t–step distribution 

tπ  of initial distribution 0π  with respect to Pt may be 

complex, they have the same total as .0π  That is, if  
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0 01 0( ,..., )Nπ π=π                                                           (32) 

Then,  
t

t o o o oi= = = +π π P π Q π U π V                         (33) 

And we have the following remark accordingly,  
 
Remark 8. Sum of t-step distribution is equal to sum of 

initial distribution. That is,  

1 1

N N

oj tj
j j

π π
= =

=∑ ∑                                                                 (34) 

This can be derived based on (32) and (33) as  

 

                                     (35) 
And, sum of t–step distribution is  

1 1
1 1 1

( ... ) ( ,..., )
N N N

tj oj j jN oj j jn
j j j

u u i v vπ π π
= = =

= + + +∑ ∑ ∑    (36)  

The two parentheses in (36) are one and zero respectively 
based on conditions 4 and 5 of definition 1. Thus, (36) and 
(34) are the same.  

The above remark 8 states that though there exists 
imaginary transition probabilities to move from state j to k, the 
total sum of “imaginary transitions” is equal to zero. On the 
other hand, after tth step transition, the total distribution has no 
imaginary part.  

V.   SUMMARY  
By summarizing the discrete and continuous times Markov 

stochastic processes a class of real world problems was 
introduced which cannot be solved by each of the procedures. 
The solutions of these problems coincide with “Complex 
probabilities” of transitions that are inherent in mathematical 
formulation of the model. Complex probability is defined and 
some of its properties with respect to the cited class are 
examined. Justification of the idea of complex probability 
needs more work and is left for further research.   
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Abstract—We paid attention to the methodology of two integral 

transform methods for solving nonlinear fractional partial differential 

equations. On one hand, the Homotopy Perturbation Sumudu 

Transform Method (HPSTM) is the coupling of the Sumudu 

transform and the HPM using He’s polynomials. On the other hand, 

the Homotopy Decomposition Method (HDM) is the coupling of 

Adomian Decomposition Method and Perturbation Method. Both 

methods are very powerful and efficient techniques for solving 

different kinds of linear and nonlinear fractional differential 

equations arising in different fields of science and engineering. 

However, the HDM has an advantage over the HPSTM which is that 

it solves the nonlinear problems using only the inverse operator 

which is basically the fractional integral. Additionally there is no 

need to use any other inverse transform to find the components of the 

series solutions as in the case of HPSTM. As a consequence the 

calculations involved in HDM are very simple and straightforward. 

. 
Keywords—Homotopy decomposition method,Integral 

transforms,nonlinear fractional differential equation, Sumudu 
transform. 

I. INTRODUCTION 

Fractional Calculus has been used to model physical and 
engineering processes, which are found to be best described 
by fractional differential equations. It is worth nothing that the 
standard mathematical models of integer-order derivatives, 
including nonlinear models, do not work adequately in many 
cases. In the recent years, fractional calculus has played a very 
important role in various fields an excellent literature of this 
can be found in [1-10]. However, analytical solutions of these 
equations are quickly difficult to find. 
  One can find in the literature a wide class of methods dealing 
with approximate solutions to problems described by 
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nonlinear fractional differential equations, asymptotic and 
perturbation methods for instance. Perturbation methods carry 
among others the inconvenient that approximate solutions 
engage series of small parameters which cause difficulties 
since most nonlinear problems have no small parameters at all. 
Even though a suitable choice of small parameters 
occasionally lead to ideal solution, in most cases unsuitable 
choices lead to serious effects in the solutions. Therefore, an 
analytical method which does not require a small parameter in 
the equation modelling the phenomenon is welcome. To deal 
with the pitfall presented by perturbation methods for solving 
nonlinear equations, we present a literature review in some 
new asymptotic methods aiming for the search of solitary 
solutions of nonlinear differential equations, nonlinear 
differential-difference equations, and nonlinear fractional 
differential equations; see in [11]. The homotopy perturbation 
method (HPM) was first initiated by He [12]. The HPM was 
also studied by many authors to present approximate and exact 
solution of linear and nonlinear equations arising in various 
scientific and technological fields [13–23]. The Adomian 
decomposition method (ADM) [24] and variational iteration 
method (VIM) [25] have also been applied to study the 
various physical problems. The Homotopy decomposition 
method (HDM) was recently proposed by [26-27] to solve the 
groundwater flow equation and the modified fractional KDV 
equation [26-27]. The Homotopy decomposition method is 
actually the combination of perturbation method and Adomian 
decomposition method.  Singh et al. [28] studied solutions of 
linear and nonlinear partial differential equations by using the 
homotopy perturbation Sumudu transform method (HPSTM). 
The HPSTM is a combination of Sumudu transform, HPM, 
and He’s polynomials.  
 

II. SUMUDU TRANSFORM 
The Sumudu transform, is an integral transform similar to 

the Laplace transform, introduced in the early 1990s by 
Gamage K. Watugala [29] to solve differential equations and 
control engineering problems. It is equivalent to the Laplace-
Carson transform with the substitution   . Sumudu is a 
Sinhala  word, meaning “smooth”. The Sumudu transform of a 
function  defined for all real numbers , is the 
function  defined by:       (2.1). 

Comparison of Homotopy Perturbation Sumudu 
Transform method and Homotopy 

Decomposition method for solving nonlinear 
Fractional Partial Differential Equations 
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A. Properties of Sumudu Transform [30-33] 

• The transform of a Heaviside unit step function is a 
Heaviside unit step function in the transformed 
domain. 

• The transform of a Heaviside unit ramp function is a 
Heaviside unit ramp function in the transformed 
domain. 

• The transform of a monomial  is the called 
monomial . 

• If  is a monotonically increasing function, so is 
 and the converse is true for decreasing 

functions. 

• The Sumudu transform can be defined for functions 
which are discontinuous at the origin. In that case the 
two branches of the function should be transformed 
separately. 

• If  is continuous at the origin, so is the 
transformation  

• The limit of  as tends to zero is equal to the 
limit of  as  tends to zero provided both limits 
exist. 

• The limit of as tends to infinity is equal to the 
limit of  as  tends to infinity provided both 
limits exist. 

• Scaling of the function by a factor  to form the 
function  gives a transform  which is the 
result of scaling by the same factor. 

.  

III. BASIC DEFINITION OF FRACTIONAL CALCULUS 
Definition 1   A real function , is said to be in the 

space , µ ϵℝ if there exists a real number p > µ, such that 

f(x) = h(x), where  and it is said to be in 

space  if   , m∈ℕ 

Definition 2 The Riemann-Liouville fractional integral 

operator of order α≥0, of a function , μ≥-1, is defined as                                                                      

(3.1)                                                       

 

 

Properties of the operator can be found in [1-4] we mention 

only the following: 

 

For                  and                

(3.2) 

,                

. 

Lemma 1 If 

then 

and,     

(3.3) 

Definition 3: Partial Derivatives of Fractional order 

Assume now that  is a function of n variables 

also of class on . As an extension of 

definition 3 we define partial derivative of order  for  

respect to  the function                                                                                                      

(3.4)                                                                   

 

If it exists, where    is the usual partial derivative of integer 

order m. 

Definition 4:  The Sumudu transform of the Caputo fractional 

derivative is defined as follows [30-33]:                                                                                               

(3.5) 

 
 
 
 
 
 
 

IV. SOLUTION BY (HPSTM) AND (HDM) 
 

V.I. Basic Idea of HPSTM 

We illustrate the basic idea of this method, by considering a 

general fractional nonlinear non-homogeneous partial 

differential equation with the initial condition of the form of 

general form: 

   

(4.1) 

subject to the initial condition 

Advances in Applied and Pure Mathematics

ISBN: 978-1-61804-240-8 203



 

 

 

where,   denotes without loss of generality the Caputo 

fraction derivative operator,  is a known function,  is the 

general nonlinear fractional differential operator and  

represents a linear fractional differential operator.  

Applying the Sumudu Transform on Both sides of equation 

(4.1), we obtain: 

                    

(4.2) 

Using the property of the Sumudu transform, we have 

    (4.3) 

Now applying the Sumudu inverse on both sides of (4.3) we 

obtain: 

 

               (4.4) 
represents the term arising from the known function 

  and the initial conditions. 

 

Now we apply the HPM:                                                                                    
(4.5) 

 

The nonlinear tern can be decomposed                                                             
(4.6) 
 

 

using the He’s polynomial  [22] given as:                                            
(4.7) 

 

Substituting (4.5) and (4.6)

(4.8) 

which is the coupling of the Sumudu transform and the HPM 

using He’s polynomials. Comparing the coefficients of like 

powers of , the following approximations are obtained. 

, 

, 

,                                                               

(4.9) 

, 

, 

 Finally, we approximate the analytical solution by the 
truncated series: 
(4.10) 
 

 

The above series solution generally converges very rapidly 

[33] 

V.II. Basic Idea of HDM [26-27] 
The method first step here is to transform the fractional partial 

differential equation to the fractional partial integral equation 

by applying the inverse operator  of on both sides of 

equation (4.1) to obtain:                 (4.11) 

 

Or in general by putting                                                          
 

 

We obtain:                                                                                              

(4.12)                
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In the homotopy decomposition method, the basic assumption 

is that the solutions can be written as a power series in  

 (4.13) 
 

          (4.14)                                              

and the nonlinear term can be decomposed as  

(4.14) 

where  is an embedding parameter.  [22] is 

the He’s polynomials that can be  generated by                                                                                  

(4.16) 

 

The homotopy decomposition method is obtained by the 

graceful coupling of homotopy technique with Abel integral 

and is given by                                    (4.17)        

 

 Comparing the terms of same powers of gives solutions of 

various orders with the first term: 

                 (4.18)   

It is worth noting that, the term  is the Taylor series of 

the exact solution of equation (4.1) of order . 
 

V. APPLICATIONS 
In this section we solve some popular nonlinear partial 

differential equation with both methods.  

Example 1:  

Let consider the following one-dimensional fractional heat-

like problem:       (5.1) 

 

Subject to the boundary condition: 

 

and initial condition  

Example 2 
Consider the following time-fractional derivative in 

plane as                     (5.2) 

 
subject to the initial conditions                                                                           
(5.3) 

 
Example 3 
Consider the following nonlinear time-fractional gas dynamics 
equations [Kilicman] 

(5.4) 
with the initial conditions 

                       (5.5) 
Example 4: Consider the following three-dimensional 

fractional heat-like equation 

     (5.6) 

Subject to the initial condition: 

(5.7) 

V.I. Solution via HPSTM 

Example1:  Apply the steps involved in HPSTM as presented 

in section 4.1 to equation (5.1) we obtain the following: 

,                                                                                                 

(5.8) 

, 

,                                      

(5.9) 

,                                          

(5.10) 

, 

Therefore the series solution is given as:                                                     

(5.11) 
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This equivalent to the exact solution in closed form:                        

(5.12) 

 

where  is the Mittag-Leffler function. 

Example 2: Applying the steps involved in HPSTM as 

presented in section 4.1 to equation (5.2) we obtain: 

, 

, 

 

, 
Therefore the series solution is given as:                                                     

(5.13) 

 

It is important to point out that if  the above solution 
takes the form:      (5.14) 
 

 

 
which is the first four terms of the series expansion of the 
exact solution  
 

Example 3: Apply the steps involved in HPSTM as presented 

in section 4.1 to equation (5.4) Kilicman et al [ 33] obtained 

the following: 

, 

, 

, 

,                                   

(5.15) 

, 

Therefore the series solution is given as:                                             

(5.16) 

 

Example 4: Applying the steps involved in HPSTM as 

presented in section 4.1 to equation (5.2) we obtain: 

 

 

 

(5.17) 

 

Therefore the approximate solution of equation for the first  
is given below as:    
 

. (5.18) 
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V.II. Solution via HDM 

Example 1: Apply the steps involved in HDM as presented in 
section 4.2 to equation (5.1) we obtain the following                                                           
(5.19) 

 

Comparing the terms of the same powers of p we obtain:                            

(5.20) 

 

 

 

 

 

The asymptotic solution is given by                                                                                      

 

   (5.20) 
 

This is the exact solution of (5.1) when . 
 

Example 2 
Following the discussion presented earlier, applying the initial 
conditions and comparing the terms of the same power of p, 
integrating, we obtain the following solutions: 

 

 

(5.21) 

 

Using the package Mathematica, in the same manner one can 
obtain the rest of the components. But for four terms were 
computed and the asymptotic solution is given by:   
(5. 22) 

 

It is important to point out that if  the above solution 
takes the form: 

 

Which are the first four terms of the series expansion of the 
exact solution  
 
Example 3:  

, 

, 

, 

,                                                                         

(5.23) 

. 
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, 

Therefore the series solution is given as:                                                                            

(5.24) 

 

Example 4: Following carefully the steps involved in the 

HDM, we arrive at the following equations       

 

(5.25) 

Now comparing the terms of the same power of  yields: 

(5.26) 

 

 

 

Thus the following components are obtained as results of the 
above integrals                   
 

 
 

 

 

 

 

 

 
 

(5.27) 
Therefore the approximate solution of equation for the first  
is given below as:    
 

 

 
Now when  we obtained the follow solution                                          
(5.28) 
 

 
Where   is the generalized Mittag-Leffler function. 
Note that in the case  
 

 (5.29) 
 

This is the exact solution for this case. 
 
 
 

VI.  COMPARISON OF METHODS 
This section is devoted to the comparison between the two 

integral transform methods. 

The two methods are very powerful and efficient techniques 

for solving different kinds of linear and nonlinear fractional 

differential equations arising in different fields of science and 

engineering. However, it can be noted that the HDM has an 

advantage over the HPSTM which is that it solves the 

nonlinear problems using only the inverse operator which is 

simply the fractional integral. There is no need to use any 

other inverse transform to find the components of the series 

solutions as in the case of HPSTM. In addition the calculations 

involved in HDM are very simple and straightforward.  In 

conclusion, the HDM and the HPSTM may be considered as a 

nice refinement in existing numerical techniques and might 

find wide applications. 
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Table 1: Numerical results of equation (5.2) via mathematica 

   HPSTM 
and 
HDM 

HPSTM 
and 
HDM 

HPSTM 
and HDM   

t x y 

   

Exact Errors 

0.2

5 

0.

5 

0.

5 

1.

0 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.6436

24 

0.9015

11 

0.9015

11 

0.9386

76 

0.6660

50 

0.9294

40 

0.9294

40 

0.9652

71 

0.6816

39 

0.9489

85 

0.9489

85 

0.9839

86 

0.6816

39 

0.9489

85 

0.9489

85 

0.9839

86 

0 

0 

0 

0 

0.5 0.

5 

0.

5 

1.

0 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.3665

63 

0.6913

70 

0.6913

70 

0.8469

06 

0.4402

70 

0.7888

06 

0.7888

06 

0.9442

15 

0.4794

25 

0.8414

71 

0.8414

71 

0.9974

95 

0.4794

26 

0.8414

71 

0.8414

71 

0.9974

95 

0.0000

06 

0 

0 

0 

0.7

5 

0.

5 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.0670

24 

0.4215

20 

0.4215

20 

0.6728

13 

0.1925

05 

0.6004

31 

0.6004

31 

0.8613

1 

0.2474

02 

0.6816

36 

0.6816

36 

0.9489

82 

0.2474

04 

0.6816

39 

0.6816

39 

0.9489

85 

0.0000

02 

0.0000

03 

0.0000

03 

0.0000

03 

1.0 0.

5 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

-

0.2082

46 

0.1417

97 

0.1417

97 

0.4571

23 

-

0.0543

57 

0.3857

25 

0.3857

25 

0.7313

69 

-

0.0000

019 

0.4794

01 

0.4794

01 

0.8414

48 

0.0000

00 

0.4794

26 

0.4794

26 

0.8414

48 

0.0000

19 

0.0000

25 

0.0000

25 

0 

 
The approximate solution of equation (5.2) obtained by the 
present methods is close at hand to the exact solution. It is to 

be noted that only the fourth-order term of the HDM and 
HPSTM were used to evaluate the approximate solutions for 
Figures 1. It is evident that the efficiency of the present 
method can be noticeably improved by computing additional 
terms of when the HDM is used. 
 
 

Figure 1: Numerical simulation of the approximated solution 
of equation (5.2) 

 
 

VII. CONCLUSION 
We studied two integral transform methods for solving 
fractional nonlinear partial differential equation. The first 
method namely homotopy perturbation Sumudu transform 
method is the coupling of the Sumudu transform and the HPM 
using He’s polynomials. The second method namely 
Homotopy decomposition method is the combination of 
Adomian decomposition method and HPM using He’s 
polynomials. These two methods are very powerful and 
efficient techniques for solving different kinds of linear and 
nonlinear fractional differential equations arising in different 
fields of science and engineering. However, the HDM has an 
advantage over the HPSTM which is that it solves the 
nonlinear problems using only the inverse operator which is 
simple the fractional integral. Also we do not need to use any 
order inverse transform to find the components of the series 
solutions as in the case of HPSTM. In addition the calculations 
involved in HDM are very simple and straightforward. In 
conclusion the HDM is a friendlier method. 
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Abstract: Measurements using the high resolution array-comparative genomic hybridization (HR-CGH) array are
accompanied with large noise which strongly affects the estimates of the copy number variations (CNVs) and re-
sults in segmental errors as well as in jitter in the breakpoints. Based on the probabilistic analysis and algorithm
designed, we show that jitter in the breakpoints can be well approximated with the discrete skew Laplace distri-
bution if the local signal-to-noise ratios (SNRs) exceed unity. Using this distribution, we propose an algorithm
for computing the estimate upper and lower bounds. Some measurements and estimates tested using these bounds
show that the higher probe resolution is provided the more segmental accuracy can be achieved and that larger
segmental SNRs cause smaller jitter in the breakpoints. Estimates of the CNVs combined with the bounds pro-
posed may play a crucial role for medical experts to make decisions about true chromosomal changes and even
their existence.

Key–Words: Genome copy number, estimate, jitter, breakpoint, error bound

1 Introduction

The deoxyribonucleic acid (DNA) of a genome es-
sential for human life often demonstrates structural
changes called copy-number variations (CNVs) asso-
ciated with disease such as cancer [1]. The sell with
the DNA typically has a number of copies of one or
more sections of the DNA that results in the struc-
tural chromosomal rearrangements - deletions, dupli-
cations, inversions and translocations of certain parts
[2]. Small such CNVs are present in many forms in
the human genome, including single-nucleotide poly-
morphisms, small insertion-deletion polymorphisms,
variable numbers of repetitive sequences, and ge-
nomic structural alterations [3]. If genomic aberra-
tions involve large CNVs, the process was shown to
be directly coupled with cancer and the relevant struc-
tural changes were called copy-number alterations
(CNAs) [4]. A brief survey of types of chromosome
alterations involving copy number changes is given
in [5]. The copy number represents the number of
DNA molecules in a cell and can be defined as the
number of times a given segment of DNA is present in
a cell. Because the DNA is usually double-stranded,
the size of a gene or chromosome is often measured
in base pairs. A commonly accepted unit of measure-
ment in molecular biology is kilobase (kb) equal to

1000 base pairs of DNA [6]. The human genome with
23 chromosomes is estimated to be about 3.2 billion
base pairs long and to contain 20000− 25000 distinct
genes [1]. Each CNV may range from about one kb to
several megabases (Mbs) in size [2].

One of the techniques employing chromosomal
microarray analysis to detect the CNVs at a resolution
level of 5–10 kbs is the array-comparative genomic
hybridization (aCGH) [7]. It was reported in [8] that
the high-resolution CGH (HR-CGH) arrays are accu-
rate to detect structural variations (SV) at resolution of
200 bp. In microarray technique, the CNVs are often
normalized and plotted as log2 R/G = log2 Ratio,
where R and G are the fluorescent Red and Green
intensities, respectively [9]. An annoying feature of
such measurements is that the Ratio is highly contam-
inated by noise which intensity does not always al-
low for correct visual identification of the breakpoints
and copy numbers and makes most of the estimation
techniques poor efficient if the number of segmental
readings is small. It was shown in [10] that sufficient
quality in the CNVs mapping can be achieved with
tens of millions of paired reads of 29–36 bases at each.
Deletions as small as 300 bp should also be detected
in some cases. For instance, arrays with a 9-bp tiling
path were used in [8] to map a 622-bp heterozygous
deletion. So, further progress in the probe resolution
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of the CNVs measurements is desirable.
Typically, a chromosome section is observed with

some average resolution r̄, bp and M readings in the
genomic location scale. The following distinct prop-
erties of the CNVs function were recognized [2, 5]:

1) It is piecewise constant (PWC) and sparse with
a small number L of the breakpoints (edges) il, l ∈
[1, L], on a long base-pair length. The breakpoints are
places as 0 < i1 < · · · < iL < r̄M and can be united
in a vector

I = [i1 i2 . . . iL]T ∈ RL . (1)

Sometimes, the genomic location scale is repre-
sented in the number of readings n ∈ [1,M ] with
a unit step ignoring “bad” or empty measurements,
where n represents the nth reading. In such a scale,
the nlth discrete point corresponds to the ilth break-
point in the genomic location scale and the points
placed as 0 < n1 < · · · < nL < M can be united
in a vector

N = [n1 n2 . . . nL]T ∈ RL . (2)

An advantage of N against I is that it facilitates the
algorithm design. However, the final estimates are
commonly represented in the genomic location scale.

2) Its segments with constant copy numbers aj ,
j ∈ [1, L+1], are integer, although this property is not
survived in the log2 Ratio. The segmental constant
changes can also be united in a vector

a = [a1 a2 . . . aL+1]T ∈ RL+1 , (3)

in which aj characterizes a segment between ij−1 and
ij on an interval [ij−1, ij − 1].

3) The measurement noise in the log2 Ratio is
highly intensive and can be modeled as additive white
Gaussian.

The estimation theory offers several useful ap-
proaches for piecewise signals such as those generated
by the chromosomal changes. One can employ the
wavelet-based [11, 12] filters, robust estimators [12],
adaptive kernel smoothers [13, 14], maximum likeli-
hood (ML) based on Gauss’s ordinary least squares
(OLS), penalized bridge estimator [15] and ridge re-
gression [16] (also known as Tikhonov regulariza-
tion), fussed least-absolute shrinkage and selection
operator (Lasso) [17], the Schwarz information crite-
rion-based estimator [18, 19], and forward-backward
smoothers [20–22].

We also find a number of solutions developed es-
pecially for needs of bioinformatics. Efficient algo-
rithms for filtering, smoothing and detection were pro-
posed in [11,12,19,23–28]. Methods for segmentation
and modeling were developed in [10, 18, 24, 29–32].

Figure 1: Simulated genome segmental changes with a
single breakpoint at nl = 50 and segmental variances σ2

l =
0.333 and σ2

l+1 = 0.083 corresponding to segmental SNRs
γl = 1.47 and γl+1 = 5.88: (a) measurement and (b) jitter
pdf. The jitter pdf was found by applying a ML estimator
via a histogram over 104 runs.

Sparse representation based on penalized optimiza-
tion and Bayesian learning were provided in [33–38].
These results show that a small number of readings Nj

per a segment aj in line with large measurement noise
remain the main limiters of accuracy in the estimation
of CNVs. Picard et al. have shown experimentally
in [29] that each segmental estimate is accompanied
with errors and each breakpoint has jitter which can-
not be overcome by any estimator.

For clarity, we generalize an experiment con-
ducted in [29] in Fig. 1. Here, a chromosomal part
having two constant segments al = 0.7 and al+1 = 0
and a breakpoint nl = 50 is simulated in the pres-
ence of discrete white Gaussian noise having segmen-
tal variances σ2

l = 0.333 and σ2
l+1 = 0.083 (Fig. 1a).

For the local segmental signal-to-noise ratios (SNRs)

γ−l =
∆2

l

σ2
l

, γ+
l =

∆2
l

σ2
l+1

, (4)

where ∆l = al+1 − al is a local segmental change, it
corresponds to γ−l = 1.47 and γ+

l = 5.88.
The breakpoint location nl was detected in Fig. 1

using a ML estimator [22] (one can employ any other
estimator). Measurements and estimations were re-
peated 104 times with different realization of noise.
Then the histogram was plotted for the detected break-
point locations and normalized to have a unit area.
The jitter probability density function (pdf) obtained
in such a way is sketched in Fig. 1b. Even a quick
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look at this figure assures that jitter at a level of 0.01
(jitter probability of 1%) has 10 points to the left (left
jitter) and 2 points to the right (right jitter). In other
words, with the probability of 99%, the breakpoint nl

can be found at any point between n = 40 and n = 52
that may be too rough for medical conclusions, espe-
cially if r̄ is large. Let us add that simple averaging
which is optimal for the estimation of PWC changes
between the breakpoints is able to reduce the noise
variance by the factor of Nl. Noise reduction may
thus also be insufficient for medical applications if Nl

is small. So, effect of noise needs more investigations
and the CNVs estimate bounds are required.

2 Jitter in the Breakpoints

In follows from the experiment conducted in [29] and
supported by Fig. 1 that jitter in the breakpoints plays
a critical role in the estimation of the CNVs. Large jit-
ter may cause wrong conclusions about the breakpoint
locations. On the other hand, it may cause extra errors
in the determination of segmental changes especially
if Nl and segmental SNRs occur to be small.

2.1 Laplace-Based Approximation

The results published in [29] and our own investiga-
tions provided in [39] and generalized in Fig. 1b show
that jitter in the breakpoints has approximately the
skew Laplace distribution. The discrete skew Laplace
distribution was recently derived in [40],

p(k|dl, ql) =
(1− dl)(1− ql)

1− dlql

{
dk

l , k > 0 ,

q
|k|
l , k 6 0 ,

(5)

where dl = e
−κl

νl ∈ (0, 1) and ql = e
− 1

κlνl ∈ (0, 1)
and in which κl > 0 and νl > 0 are coefficients de-
fined by the process. Below, we shall show that (5) can
serve as a reasonably good approximation for jitter in
the breakpoints of PWC signals such as that shown in
Fig. 1a if the segmental SNRs exceed unity.

Let us consider N neighboring to nl readings in
each segment. We may assign an event Alj meaning
that all measurements at points nl − N 6 j < nl

belong to lth segment. Another event Blj means that
all measurements at nl 6 j < nl + N − 1 belong to
(l+1)th segment. We think that a measured value be-
longs to one segment if the probability is larger than
if it belongs to another segment. Because noise is
Gaussian and the segmental variances are different,
the Gaussian pdfs cross each other in two points, αl

and βl. The events Alj and Blj can thus be specified

as follows:

Alj is





(αl < xj) ∧ (xj < βl) , σ2
l > σ2

l+1 ,

xj > αl , σ2
l = σ2

l+1 ,
αl < xj < βl , σ2

l < σ2
l+1 ,

(6)

Blj is





βl < xj < αl , σ2
l < σ2

l+1 ,

xj < αl , σ2
l = σ2

l+1 ,
(xj < αl) ∧ (xj > βl) , σ2

l > σ2
l+1 .

(7)

The inverse events meaning that at least one of the
points do not belong to the relevant interval are Ālj =
1−Alj and B̄lj = 1−Blj .

Both Alj and Blj can be united into two blocks

Al = {Al(il−N)Al(il−N+1) . . . Al(il−1)} ,

Bl = {Bl(il)Bl(il+1) . . . Bl(il+N−1)} .

We think that if Al and Bl occur simultaneously then
the breakpoint nl will be jitter-free. However, there
may be found some other events which do not obliga-
torily lead to jitter. We ignore such events and define
approximately the probability P (AlBl) of the jitter-
free breakpoint as

P (AlBl) = P (Ail−N . . . Ail−1Bil . . . Bil+N−1) .
(8)

The inverse event P̄ (AlBl) = 1−P (AlBl) meaning
that at least one point belongs to another event can be
called the jitter probability.

In white Gaussian noise, all the events are inde-
pendent and (8) thus can be rewritten as

P (AlBl) = PN (Al)PN (Bl) , (9)

where, following (6) and (7), the probabilities P (Al)
and P (Bl) can be specified as, respectively,

P (Al) =





1−
αl∫
βl

pl(x)dx , σ2
l > σ2

l+1 ,

∞∫
αl

pl(x)dx , σ2
l = σ2

l+1 ,

βl∫
αl

pl(x)dx , σ2
l < σ2

l+1 ,

(10)

P (Bl) =





αl∫
βl

pl+1(x)dx , σ2
l > σ2

l+1 ,

αl∫
−∞

pl+1(x)dx , σ2
l = σ2

l+1 ,

1−
βl∫
αl

pl+1(x)dx , σ2
l < σ2

l+1 ,

(11)

where pl(x) = 1√
2πσ2

l

e
− (x−al)

2

σ2
l is Gaussian density.
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Let us now think that jitter occurs at some point
nl ± k, 0 6 k 6 N , and assign two additional blocks
of events

Alk = {Ail−N . . . Ail−1−k} ,

Blk = {Bil+k . . . Bil+N−1} .

The probability P−
k , P−

k (AlkĀl(il−k) . . . Āil−1Bl)
that jitter occurs at kth point to the left
from nl (left jitter) and the probability
P+

k , P+
k (AlB̄l(il+1) . . . B̄l(il+k−1)Blk) that

jitter occurs at kth point to the right from nl (right
jitter) can thus be written as, respectively,

P−
k = PN−k(Al)[1− P (Al)]kPN (Bl) , (12)

P+
k = PN (Al)[1− P (Bl)]kPN−k(Bl) . (13)

By normalizing (12) and (13) with (9), we arrive
at a function that turns out to be independent on N :

fl(k) =





[P−1(Al)− 1]|k| , k < 0 , (left)
1 , k = 0 ,

[P−1(Bl)− 1]k , k > 0 . (right)
(14)

Further normalization of fl(k) to have a unit area
leads to the pdf pl(k) = 1

φl
fl(k), where φl is the sum

of the values of fl(k) for all k,

φl = 1 +
∞∑

k=1

[ϕA
l (k) + ϕB

l (k)] , (15)

where ϕA
l (k) = [P−1(Al) − 1]k and ϕB

l (k) =
[P−1(Bl) − 1]k. Now observe that, in the approxi-
mation accepted, fl(k) converges with k only if 0.5 <

P̃ = {P (A), P (B)} < 1. Otherwise, if P̃ < 0.5,
the sum φl is infinite, fl(k) cannot be transformed to
pl(k), and the lth breakpoint cannot be detected. Con-
sidering the case of 0.5 < P̃ = {P (A), P (B)} < 1,
we conclude that ln P̃ < 0, ln(1 − P̃ ) < 0, and
ln(1 − P̃ ) < ln P̃ . Next, using a standard relation
∞∑

k=1

xk = 1
x−1−1

, where x < 1, and after little trans-

formations we bring (15) to

φl =
P (Al) + P (Bl)− 1

[1− 2P (Al)][1− 2P (Bl)]
. (16)

The jitter pdf pl(k) associated with the lth break-
point can finally be found to be

pl(k) =
1
φl





[P−1(Al)− 1]|k| , k < 0 ,
1 , k = 0 ,

[P−1(Bl)− 1]k , k > 0 ,

(17)

where φl is specified by (16) and 0.5 <
{P (Al), P (Bl)} < 1. By substituting ql =
P−1(Al)−1 and dl = P−1(Bl)−1, we find P (Al) =
1/(1 + ql) and P (Bl) = 1/(1 + dl), provide the
transformations, and finally go from (17) to the dis-
crete skew Laplace distribution (5) in which κl and
νl still need to be connected to (17). To find κl and
νl, below we consider three points k = −1, k = 0,
and k = 1. By equating (5) and (17), we first
obtain (1−dl)(1−ql)dl

1−dlql
= 1

φl

1−P (Bl)
P (Bl)

for k = 1 and
(1−dl)(1−ql)ql

1−dlql
= 1

φl

1−P (Al)
P (Al)

for k = −1 that gives us

νl = 1−κ2
l

κl ln µl
, where

µl =
P (Al)[1− P (Bl)]
P (Bl)[1− P (Al)]

. (18)

For k = 0, we have (1−dl)(1−ql)
1−dlql

= 1
φl

and trans-

form it to an equation x2
l − φl(1+µl)

1+φl
x − 1−φl

1+φl
µl = 0,

which proper solution is

xl =
φl(1 + µl)
2(1 + φl)

(
1−

√
1 +

4µl(1− φ2
l )

φ2
l (1 + µl)2

)
(19)

and which xl = µ
− κ2

l
1−κ2

l
l gives us

κl =

√
ln xl

ln(xl/µl)
. (20)

By combining νl with (19), we also provide a simpler
form for νl, namely

νl = − κl

ln xl
. (21)

The discrete skew Laplace distribution (5) can
thus be used to represent jitter in the breakpoints sta-
tistically.

Now substitute the Gaussian pdf to (10) and (11),
provide the transformations, and find

P (Al) =





1 + 1
2 [erf(gβ

l )− erf(gα
l )] , γ−l < γ+

l ,
1
2erfc(gα

1 ) , γ−l = γ+
l ,

1
2 [erf(gβ

l )− erf(gα
l )] , γ−l > γ+

l ,
(22)

P (Bl) =





1
2 [erf(hα

l )− erf(hβ
l )] , γ−l < γ+

l ,
1− 1

2erfc(hα
l ) , γ−l = γ+

l ,

1 + 1
2 [erf(hα

l )− erf(hβ
l )] , γ−l > γ+

l ,
(23)

where gβ
l = βl−∆l

|∆l|

√
γ−l
2 , gα

l = αl−∆l
|∆l|

√
γ−l
2 , hβ

l =

βl
|∆l|

√
γ+

l
2 , hα

l = αl
|∆l|

√
γ+

l
2 , erf(x) is the error func-

tion, erfc(x) is the complementary error function. If
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γ−l 6= γ+
l , the coefficients αl and βl are defined by

αl, βl =
alγ

−
l − al+1γ

+
l

Γl
∓|∆l|

Γl

√√√√γ−l γ+
l + 2Γl ln

√
γ−l
γ+

l

(24)
where Γl = γ−l − γ+

l . For γ−l = γ+
l , set αl = ∆l/2

and βl = ±∞. Using (22) and (23), below we investi-
gate errors inherent to the Laplace-based approxima-
tion.

2.2 Errors in Laplace-Based Approximation

To realize how well the discrete skew Laplace dis-
tribution (5) fits real jitter distribution with differ-
ent SNRs, we consider a measurement of length M
with one breakpoint at n = K and two neighbor-
ing segments with known changes al and al−1. The
segmental variances σ2

l and σ2
l−1 of white Gaussian

noise are supposed to be known. In the ML estima-
tor, the mean square error (MSE) is minimized be-
tween the measurement and the CNVs model in which
the breakpoint location is handled around an actual
value. Thereby, the breakpoint location is detected
when the MSE reaches a minimum. In our experi-
ments, measurements were conducted 104 times for
different noise realizations and the histogram of the
estimated breakpoint locations was plotted. Such a
procedure was repeated several times and the esti-
mates were averaged in order to avoid ripples. Nor-
malized to have a unit area, the histogram was ac-
cepted as the jitter pdf. The relevant algorithm can
easily be designed to have as inputs al, al−1, segmen-
tal SNRs γ−l and γ+

l , M , K, and the number of point
K1 around K covering possible breakpoint locations.
The algorithm output is the jitter histogram “Jitter”.
An analysis was provided for typical SNR values pe-
culiar to the CNVs measurements using the HR-CGH
arrays. As a result, we came up with the following
conclusions:

1) The Laplace approximation is reasonably ac-
curate in the lower bound sense if the SNRs exceed
unity, (γ−l , γ+

l ) > 1. Figure 2 sketches the Laplace
pdf and the experimentally found pdf (circled) for the
case of γ−l = 1.4 and γ+

l = 1.38 taken from real mea-
surements. Related to the unit change, the approxima-
tion error was computed as ε,% = (ML estimate −
Laplace approximation)×100. As can be seen, εmax

reaches here about 10% at n = K (Fig. 2b). That
means that the Laplace distribution fits measurements
well for the allowed probability of jitter-free detec-
tion of 90%. It narrows the jitter bounds with about
±2 points for 99%. Observing another example illus-
trated in Fig. 3 for γ−l = 9.25625 and γ+

l = 2.61186,

Figure 2: The jitter pdf approximated using the discrete
skew Laplace distribution and found experimentally (cir-
cled) using a ML estimator over 104 runs for γ−l = 1.4 and
γ+

l = 1.38: (a) pdfs and (b) approximation errors.

we infer that the Laplace distribution fits the process
with very high accuracy if SNR À 1.

2) The approximation error may be large in the
sense of the narrowed jitter bounds if SNR < 1.

3) The jitter bounds commonly cannot be deter-
mined correctly for (γ−l , γ+

l ) ¿ 1.

3 Estimate Bounds

The upper bound (UB) and lower bound (LB) peculiar
to the estimate confidential interval can now be found
implying segmental white Gaussian noise and accept-
ing the discrete skew Laplace-based jitter distribution
in the breakpoints.

Segmental Errors. In white Gaussian noise en-
vironment, simple averaging is most efficient between
the breakpoints as being optimal in the sense of the
minimum produced noise. Provided the estimate n̂l of
the breakpoint location nl, simple averaging applied
on an interval of Nj = nj −nj−1 readings from nj−1

to nj − 1 gives the following estimate for the lth seg-
mental change

âj =
1

Nj

nj−1∑
v=nj−1

yv , (25)

which mean value is E{âj} = aj and variance is

σ̂2
j =

σ2
j

Nj
. (26)
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Figure 3: The jitter pdf approximated using the discrete
skew Laplace distribution and found experimentally (cir-
cled) using a ML estimator over 104 runs for γ−l = 9.25625
and γ+

l = 2.61186: (a) pdfs and (b) approximation errors.

The UB for segmental estimates can be formed in

the θ-sigma sense as âUB
j = E{âj} + θ

√
σ2

j

Nj
, where

θ > 1 is commonly integer. However, neither an ac-
tual aj = E{âj} nor multiple measurements neces-
sary to approach aj by averaging are available. We
thus specify UB and LB approximately as

âUB
j

∼= âj + θ

√
σ2

j

Nj
, (27)

âLB
j

∼= âj − θ

√
σ2

j

Nj
. (28)

where θ = 1 guarantees an existence of true changes
between UB and LB with the probability of 68.27% or
error probability of κ = 0.3173 that is 31.73%; θ = 2
of 95.45% or κ = 0.0555 that is 5.55% and θ = 3 of
99.73% or κ = 0.0027 that is 0.27%.

Jitter Bounds. The jitter left bound (JLB) JL
l

and the jitter right bound (JRB) JR
l can be determined

with respect to nl as follows. Because a step is unity
with integer k, we specify the jitter probability at the
kth point using (5) as

Pk(γ−l , γ+
l ) = p[k|d(γ−l , γ+

l ), q(γ−l , γ+
l )] . (29)

We then equate (29) to κ and solve it for the right and

left jitter to have, respectively,

kR
l =

⌊
νl

κl
ln

(1− dl)(1− ql)
κ(1− dlql)

⌋
, (30)

kL
l =

⌊
νlκlln

(1− dl)(1− ql)
κ(1− dlql)

⌋
, (31)

where bxc means the maximum integer equal to or
lower than x. The JLB and JRB can be defined with
respect to nl as JL

l = nl−kL
l and JR

l = nl+kR
l . Now

observe that nl is unknown and use the estimate n̂l. If
it happens that n̂l lies at the right bound, then the true
nl can be found kR

l points to the left. Otherwise, if n̂l

lies at the left bound, then il can be found kL
l points

to the right. Approximate JLB and JRB are thus the
following

JL
l

∼= n̂l − kR
l , (32)

JR
l

∼= n̂l + kL
l . (33)

Note that κ in (30) and (31) should be specified
in the θ-sense as in (27) and (28).

UB and LB Masks and Algorithm. By combin-
ing (27), (28), (32), and (33), the UB mask BU

n and
the LB mask BL

n can now be formed to outline the
region for true genomic changes. The relevant algo-
rithm was designed in [41]. Its inputs are measure-
ments yn, breakpoints estimates n̂l, tolerance param-
eter θ, number L of the breakpoints, and number of
readings M . At the output, the algorithms produces
two masks: BU

n and BL
n .

The UB and LB masks have the following basic
applied properties:

• The true CNVs exist between BU
n and BL

n with
the probability determined in the θ-sigma sense.

• If BU
n or BL

n covering two or more breakpoints is
uniform, then there is a probability of no changes
in this region.

• If both BU
n and BL

n covering two or more break-
points are uniform, then there is a high probabil-
ity of no changes in this region.

We notice again that the jitter bounds in BU
n and

BL
n may have enough accuracy if (γ−l , γ+

l ) > 1.
They may be considered in the lower bound sense if
(γ−l , γ+

l ) < 1. However, the approximation error is
commonly large if (γ−l , γ+

l ) < 0.5. For details, see
Section 2.2.

4 Applications

In this section, we test some CNVs measurements
and estimates by the UB and LB masks computed
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in the three-sigma sense, θ = 3, using the algorithm
[41–43]. Because the algorithm can be applied to any
CNVs data with supposedly known breakpoints, we
choose the 1st chromosome measured using the HR-
CGH array in [28] and available from [44].

The CNVs structure has 34 segments and 33
breakpoints. Most of the segments have the SNRs
exceeding unity meaning that the UB and LB masks
will have enough accuracy. The SNRs in segments
â18 and â21 range between 0.5 and unity which means
that real jitter can be here about twice larger. The re-
maining segments â23, â28, â31 and â32 demonstrate
the SNR below 0.5 that means that the jitter bounds
cannot be estimated with sufficient accuracy. We just
may say that jitter can be much larger in the relevant
breakpoints.

Let us consider the CNVs measurements and esti-
mates in more detail following Fig. 4. As can be seen,
there are two intervals with no measurements between
the breakpoints î15 and î16 and the breakpoints î28 and
î29. A part of measurements covering the breakpoints
from î5 to î14 is shown in Fig. 5a. Its specific is that
the segmental SNRs are all larger than unity and the
masks thus can be used directly for practical appli-
cations. The masks suggest that errors in all of the
segmental estimates reach tens of percents. In fact, â5

and â10 are estimated with error of about 50%. Error
exceeds 30% in the estimates â7, â9, â12, and â13. A
similar problem can be observed in the estimates of
almost all of the breakpoints in which left and right
jitter reaches several points.

A situation even worse with a part of the chromo-
some covering the breakpoints from î17 to î26. The
segmental errors exceed 50% here over almost all
segments. Furthermore, the UB is placed above LB
around î17, î20, and î22. That means that there is a
probability that these breakpoints do not exist. On the
other hand, estimates in the part covering î24–̂i26 are
not reliable. Thus there is a probability of no changes
in this region as well.

5 Conclusions

Effect of measurement noise on the HR-CGH array-
based estimates of the CNVs naturally results in seg-
mental errors and jitter in the breakpoints due to typ-
ically low SNRs. Errors can be so large that medical
expert would hardly be able to arrive at correct con-
clusions about real CNVs structures irrespective of the
estimator used. Two rules of thumb for designers of
measurement equipment are thus the following: the
higher probe resolution the more segmental accuracy
and the larger segmental SNRs the lower jitter in the
breakpoints.

Because of large noise, estimates of the CNVs
may bring insufficient information to experts and must
be tested by UB and LB masks. To form such masks,
the jitter distribution must be known. We have shown
that jitter in the breakpoints can be modeled using
the discrete skew Laplace distribution if the segmen-
tal SNRs exceed unity. Otherwise, the approximation
errors can be large and more profound investigations
of jitter will be required. The UB and LB masks pro-
posed in this paper in the θ-sigma sense outline the
region within which the true changes exist with a high
probability (99.73% in the three-sigma sense). Pro-
vided the masks, information about CNVs is more
complete and sometimes can be crucial for medical
experts to make a correct decision about true struc-
ture. Testing some measurements and estimates by
the UB and LB masks has revealed large errors ex-
ceeding (30...50)% in many segments. It was also
demonstrated that jitter in some breakpoints is redun-
dantly large for making any decision about their true
locations. We finally notice that further investigations
must be focused on the jitter statistics at low SNR val-
ues that is required to sketch a more correct proba-
bilistic picture of the CNVs.
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Jitter in î5, î6, î9, and î10 is moderate and these breakpoints
are well detectable. Breakpoints î17, î22, î27, î30, and î31
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Fundamentals of a fuzzy inference system for 
educational evaluation 

M.A. Luis Gabriel Moreno Sandoval  
William David Peña Peña 

 
Abstract—This paper exposes features a fuzzy inference system 

General focused on educational evaluation, constructed from a data 
base relational, with the objectives of, first, generate discussion about 
fuzzy logic as a new tool to interpret the educational process through 
information technologies and communication, and second, exposing 
the virtues and drawbacks of these data structures in the development 
of models of complex phenomena. First is the introduction with the 
theoretical bases is exposed, Later, the technical characteristics of the 
application with the successes and difficulties rose by this, and finally 
presents the conclusions of the authors. 

Keywords—Fuzzy Logic, Fuzzy Inference System, decision 
making with Multicriteria, alternative assessment in education. 

I. Introduction 
Education is a system based on the particular properties of its 
elements and non-linear and interdependent relationships that 
they have with non-reversible dynamics in time and that 
remain without any outside control, presenting patterns of 
order at various scales [1, 2]. That is why education is a 
complex phenomenon, where training and learning process 
cannot be weighted from a scale standardized for all contexts 
and experiences, since the only knowledge can be appropriate, 
understood and applied in all their dimensions, when each 
person internalizing it from in their everyday practice. 
Current education and its ways of assessment is based in the 
classical world modern vision as machine, which 
dismembered the reality in its parts and reset it from a logical 
order, on the one hand, this has caused that the educational 
evaluation is developed under a same logical scheme 
regardless of the person who studies [3]. 
And on the other hand It has led to underestimate, and even at 
times ignored, the particularity of student and its context, and 
the possibilities it offers to exercise and develop studied 
knowledge, putting the topics above its actual application, 
where the students are overwhelmed and concealed by 
concepts, diagrams and formulas that do not relate to its 
existence [4]. 

 

M.A. Luis Gabriel Moreno Sandoval 
University “Manuela Beltran” 
Bogotá, Colombia 
gabrielmoreno10@gmail.com 

William David Peña Peña 
UniversityCorporation UNIMINUTO 
Cundinamarca, Colombia 
wpenapena1@hotmail.com 

The problem suggests a solution that enables you to relate the 
specific content with daily practice and perception of personal 
realization that knowledge gives to each person. Why is 
proposed an evaluation system with fuzzy logic, that not only 
focuses on themes, concepts and theories, they represent the 
connection of multiple variables within the educational 
process, allowing study it, understand it to improve it 
permanently, from the reading of each student. 

A. Education: A product and a right at 
the same time 

This project is mainly geared towards the educational 
evaluation for distance mode of studies in higher education, 
because in this case the tutor, for sharing with the student less 
than in face-to-face mode, requires greater predictive and 
assertive, to update and improve permanently their contents 
and methodologies, projecting to a more personal realization 
and knowledge to a higher yield in the working life of the 
students.  
The document “Opens and distance learning. Considerations 
on trends, policies and strategies" of the UNESCO [5], it 
exposes education distance and open as a product provided by 
suppliers, but at the time defines the mode of studies as a 
possibility that all persons have access to the right to 
education, the academic to the student the broadest spectrum 
of possibilities through knowledge purposes providing 
education to isolated populations or with difficulties to access 
to traditional education methods, and offer academic programs 
oriented to the training for work [5]. The educational spectrum 
in Colombian society is characterized by difficulties of access 
to higher education, economic dependence, segregation, and in 
some cases violence (social, economic and political) [6], and 
that requires evaluation methods not only considered the 
interpretation of a specific subject, but the way in which this 
subject can contribute to the personal, social and productive 
development of the person, and not just one of these aspects. 

B. Fuzzy logic 
Fuzzy logic is a knowledge originated from mathematical 
statistics, giving an element a weighting of non-deterministic 
as the one used in the classical logic, because in this one, an 
element belongs or not to a set, but in the fuzzy logic that 
element has different ranges of belonging. Loty Admeh Sadeh 
(1972), creator of fuzzy logic, for example, proposes the case 
of a classical group called "Tall people", to which belong the 
people with stature greater than or equal to 1.8 meters, where a 
person with stature of 1,79 m not belonged to this, however, in 
fuzzy logic, by means of mathematical functions, pre-
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established rules, and other calculations. It would be possible 
to say that the person with stature of 1,79 m belongs in a range 
from 0.78 to diffuse all "Tall people", where the minimum 
membership is 0 and the maximum 1 [7]. 

II. Fuzzy Inference System (FIS) 
A FIS is the set of logical and mathematical procedures 
through which establishes the membership of an element to a 
diffuse set [8], understanding the latter as a grouping of open 
borders, with margins of belonging in its range [0, 1] [7] 
elements. Parts of a FIS are database, which stores the 
elements that will be evaluated and the results of their 
weightings. The basis of the rules, as the set of prepositions 
through which relate the background variables, and its 
consequences in certain fuzzy sets. The Fuzzification, as 
assessment of the background elements on mathematics, called 
membership functions, trying to represent the variables with 
diffuse labels (varying linguistic), by means of fuzzy values 
(linguistic estimations), front of the resulting sets. The 
implication, which is the relationship between the background 
variables and functions of the membership of the result set, 
according to a rule (on the basis of rules) that unites them. 
Aggregation, which is the union between the different 
implications of a rule group. And the Defuzzification, which is 
the procedure that does not diffuse value opposite the input 
variables and the result set (result) raised [8] (Figure 1). 

 
Figure 1.General diagram of a Fuzzy Inference System. 

Because of that socio-economic conditions have a direct 
bearing on the understanding and application of knowledge, 
by the social projection of the knowledge, and personal 
fulfillment that this gives the person [1, 9], this system is 
based on a joint process of evaluation on specific issues and 
self-assessment of the students about the chances that they 
observed in their daily life to create and re-create it through 
knowledge. 
Explain the database architecture, its virtues, defects and 
operation is impossible for reasons of format in this document, 
for that reason, first, simply shows the model entity-
relationship (Figure 2), and second, only reference is made to 
the tables related to the main procedures of the system. 
 

 
Figure 2. Entity-Relationship Model based on FIS in educational evaluation.  

A table is normalized when its attributes have referential 
integrity, and correspond to a single record of a previous 
structure that gives them coherence, where for each set of 
attributes of that table, there is a unique index on a structure of 
previous data, and are further organized into structures that 
give them independence and interdependence, none can 
duplicate the key of another structure , or produce inconsistent 
dependencies on other attributes that are not related [10] . For 
example, the Table Ruleset prevents an attribute take more 
than one value (1st Normal Form) with total reliance on 
primary key attributes other than the primary key (2nd NF) 
with no transitive dependency (3st NF) so that independent 
attributes do not cause cyclic redundancy (Boyce - Codd 
Normal Form), and also avoids the possible cyclic redundancy 
through the structure that relates Funct_Val valuations 
variables in rules and membership functions (4th NF) [10, 
11].The system model is designed following the above 
conditions, and therefore the application organizes information 
consistently. 
Table Quest, abbreviation Questionnaire contains data 
answered by students, but the structure is not standardized. 
Therefore there is a disadvantage in moving data to a 
normalized table (Quest_App) because the movement of 
information depends on the skill of the programmer, who 
connects through consultation incoming data and primary keys 
of other Tables. 
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Table Quest_App, short for Applied Questionnaire, stores the 
responses of students in a standard from its relationship with 
the User Id (User Table), Id Questionnaire (Id_Quest), Id Type 
Variable (Id_TVar) structure, Id Variable (Id_Var), Id 
valuation variable (Id_Val_Var) and Rule Id (Id_Rule) from 
the input data (Table Ruleset fields) (Figure 3). Table Ruleset 
contains all relationships between the antecedent variables and 
consequences, it inherits all the attributes of the Rules Table, 
and also records the group to which each rule belongs, used in 
the processes of involvement and aggregation explained later. 
These relationships are called rules of Implication, and in this 
case are of the form IF A is a' and IF B is b' THEN C is c' 
(Mamdani type) which are the most used, unlike the rules type 
Takagi-Sugeno: IF a is a' and IF B is b' THEN C is f(x) [12]. 

 
Figure 3. Scheme of hand building through consultation 
(Questionnaire_App_0) Table Questionnaire_App. 

As this is a pilot project, for now the interest is to generate a 
relationship between evaluation of issues and the perception of 
personal realization of the student through such content, that is 
why the background variables considered are theoretical 
precision (TP), which gets an average rating on a specific 
topic, with ratings by using tags, and perception of personal 
fulfillment (PPF), which is obtained from the auto-evaluation 
question to the student: in what measure do you think these 
skills have served to engage more fully and learn about 
yourself? And the resulting consequence of the involvement of 
these variables is called Staff-academic achievement (SAA). 
Although each variable has its own identity, its ratings labels 
are the same for all: low (1), medium-low (2), medium (3), 
medium-high, (4), high (5), creating the matrix of involvement 
from these rules. For example in table in., the rule in the 
position (1,1), reads: IF TP is Low (1) and IF PPF is Low (1) 
THEN SAA is Low (1) (Table I). 
Table Val_Var is also the basis of the referential integrity of 
the structure Funct_Val short for Valuation Function, wherein 
the data of the membership functions that correspond to each 
evaluation of the background variables and the consequences 
are stored. The membership functions for the antecedent 
variables (TP, PPF) are sigmoidal, because this function has 
an inflection point at which growth accelerates, from 
representing that the person has given valuation closer to the 

issues or more likely to relate their personal fulfillment with 
knowledge (A. Figure 4.). And the membership function of the 
consequence (SAA) is trapezoidal, because it represents a 
transition (in belonged = 1), a momentary stage of the 
relationship between knowledge and perception of 
embodiment through this (B. Figure 4.). 

TABLE I.  RULES OF IMPLICATION FOR “SAA”. 

 TP 

 
P
P
F 

 1 2 3 4 5 

1 1 2 2 3 3 

2 1 2 3 3 4 

3 1 2 3 4 4 

4 1 2 3 4 5 

5 2 3 4 5 5 
Note: Rules temporary transition, subject to review by experts. 

 
Figure 4. A. Membership sigmoidal function for background variables (TP, 
PPF), B. Trapezoidal Membership Function for the SAA accordingly (Based 
in [12]). 

A. Fuzzification 
Each of the data recorded by the students (made from a query 
in the Table Quest_App), must be assessed in accordance with 
the membership functions (Table Funct_Val). This created a 
query with SQL's union with each of the sections of the 
sigmoidal function, and if one wanted the Fuzzification to 
dynamically generate, should join each of the sections of all 
types of membership (A. figure 5) function. 
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Figure 5. Fuzzification (A) and implication (B)Schemein the FIS by querying. 

B. Implication 
Held a consultation to assess the results of the Fuzzification 
from a logical condition called involvement. In this case using 
the involvement of Mamdani [13] (1). 

μRc (x, y)= min [μA(x), μB(y)](1) 

Consists in taking the lesser of the two values (for each 
variable TP and PPF) fusificados, and assess them as f(x)in 
each membership function of conclusions, according to the 
rules of involvement (table I.), to find the values of "X" in 
each one, joining the segments of the membership of the 
conclusions functions. This consultation generated enough 
workload to the machine, so it was used a query of inclusion 
of data of the inquiry of involvement in a new table, to reduce 
the cost of memory in the following processes (B. Figure 5). 

C. Aggregation 
Once obtained the ordered pairs built a single geometric shape 
(from the top), uniting the implications of the entire rule group 
to which belongs the rule evaluated. This was done through 
consultation of segregation of rule sets, which generates 
couples sorted by Group (corresponding to a set, in this case 
SAA) and not by individual rule, by means of a comparison 
with the ruleset data structure (A. Figure 6). 

 
Figure 6. Aggregation (A) and Defuzzification (B) Scheme in FIS by querying 

D. Defuzzification 
Finally, it is necessary to apply a mathematical procedure to 
generate a non-diffuse value from the ordered pairs. The most 
common and used in this application method is the centroid, 
consistent in finding an average of the area of the figure (B. 
Figure 5), through the operation [13]: 

y= (∑i yiμB (y)dy)/ (∑iμB (y)dy)(2) 

III. Conclusions 
1) SQL language has the limitation not to be parameterizable 
dynamically according to the requirements of the user, in the 
Fuzzification, the involvement, the aggregation or the 
Defuzzification, each of the evaluated function segments or 
each of the mathematical procedures should be performed as a 
query apart, with which generated great expense of memory 
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on the machine. However, this application proposes as a 
solution the moving of data from these complex queries 
joining new tables, releasing the burden of memory of the 
above procedures.  
2) Referential integrity and standardization remain the basis of 
coherence, strength and operation of data bases. Hence the 
need to keep in mind these conditions regardless of the type of 
information structure, since the combination of paradigms in a 
single computer system, allows to take elements suitable of 
each, allowing a deeper conceptual, with more ownership and 
social knowledge, such as which intends to consider this 
alternative (a pioneer in Colombia) educational evaluation 
system, from the own perception of the student (in remote 
mode). That is why that as work to a near future arises the 
union's database with a JAVA program that supplements the 
procedures with enough memory load, and even provides a 
GUI based, to make this program a full framework for Fuzzy 
Systems.  
3) The relational databases, have gradually tended to be 
replaced by object-oriented database, however this application, 
checks that the effectiveness of these technologies lies in the 
ability of abstraction on a problem, coming to represent 
complex phenomena such as those described by means of 
fuzzy logic. Taking the most valuable elements of each 
technology, as for example, some SQL queries of few lines of 
instruction that can replace many lines of code in advanced 
programming languages. Sometimes technology makes us see 
both the future that we seem to wonder traveling on a plane, 
forgetting the importance of having learned to walk. 
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Abstract—The aim of this study is to determine the movement 

equation of the drivers spine and to simulate the spine’s movements 
in the coronal plane by using the MathCAD and CATIA software. On 
this line was proposed a methodology to approach the interaction 
between driver and the vehicle to allow accurate conclusions for the 
driving activity. 
 

I. INTRODUCTION 
ECENT years have brought the current general trend in the 
design, construction and operation of motor vehicles 

(research centers of companies producing curricula of 
universities / departments field, masters that include 
ergonomics and comfort of road vehicles, European 
legislation, etc. .), namely the transformation of the interior 
components of passive elements with uncontrolled reaction to 
changing human factor elements able to adapt continuously. 

In the current scientific and technological conditions is 
required reconsideration of the research, analysis and design 
optics of the working places by applying outstanding results 
obtained recently in some new areas of human activity such as 
systems theory, cybernetics, information theory, operational 
research , computer science and ergonomics. 

It should be noted that if the configuration of the safety, 
ventilation, lighting, heating, etc..., interior equipment is 
analyzed and properly carried out, in terms of scientific 
evidence (evidence based) on the behavior of the driver's 
body, especially the spine with associated muscles, still 
requires further study which continually preoccupied car 
manufacturing companies. 

  

II. DETERMINING THE MOVEMENT EQUATION OF THE SPINAL 
COLUMN IN THE CORONAL PLANE 

Using the coordinate system shown in figure 1 it is 
considered that the center of each vertebra is moving along the 
arch of circle with center the origin of the coordinate sistem, 
and radius equal to the height above the x-axis, the seat 
surface. The length of each arc of circle is depending on the 
vehicle traveling speed and the radius of the trajectory. 

In the coordinate system shown in figure 1, the sinusoidal 
functions are variations on the x-axis: 

 
 

                                             (1) 
                                            (2) 

                                              (3) 

 

Fig. 1. – The spine in the coronal plane related to the coordinate 
system xOy. 

The equations of the arch on what the C1, T4 and L1 
vertebras are moving are given by the relations: 

                                                         (4) 

                                                         (5) 

                                                         (6) 

In the coronal plane and the coordinate system (fig. 1), the 
spine shape is a curved line given by the following equation: 

The movement equation oh the drivers spine  
Raul Miklos Kulcsar, Veronica Argesanu, Ion Silviu Borozan, Inocentiu Maniu, Mihaela Jula, Adrian 

Nagel 

R 
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                                (7) 

In this equation the unknowns are: ai, bi, ci, and di. Knowing 
the coordinates of four points, the unknowns ai, bi, ci, and di 
are determined with the Cramer method: 

             (8) 

Due to the fact that the origin is one of the four points 
results that di is equal to 0. So the system of equations (8) is 
transformed into a system of three equations with three 
unknowns: 

                     (9) 

 

 

 

 

 

Using the Mathcad software has created a program sequence 
which limits the curve given by the equation (7), that describes 
the shape of the spine in the coronal plane, between the origin 
and the center of C1 vertebra. The program sequence is: 

 
 

 
Fig. 2– The shape of spinal colum in coronal plane at the 

maximum right lateral tilt. 

 
In figure 2 is shown the graph obtained with the Mathcad 

software in which is represented the shape of the spinal 
column in coronal plane at the maximum right lateral tilt, 
given by the equation (7). Also in this graph are the 
corresponding trajectory arch centers of the C1, T4, and L1 
vertebras.  

III. SPINE MOTION SIMULATION USING MATHCAD SOFTWARE 
 
Through Animation function, Mathcad software allows 

changes to a graphic animation using software integrated 
FRAME variable. 

Starting from the equation (7), which describes the shape of 
the spine in the coronal plane between the origin and the center 
of C1 vertebra, was created the following sequence of program 
that animates the graph in figure 2. 

 

In figure 3 are shown some frames from the created 
animation in Mathcad software. 
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Fig. 3 – Extracted frames from Mathcad simulation. 

 

 

IV. SPINE MOTION SIMULATION USING CAD SOFTWARE 
CATIA 

To achieve spine motion simulation with CAD software 
CATIA, the DMU Kinematics module is selected. Because the 
simulation of the spine movement is only in the coronal plane, 
spine assembly is such that the motion of each vertebra is 
restricted in the rotation joint at the center of rotation. 

Using DMU Kinematics module, the simulation is done with 
the function Simulation with Laws. The laws of motion are 
given by the time variation of angle αi. 

The angle αi is determined by the difference between the 
two slopes to the curve given by equation (7) in the centers of 
two consecutive vertebrae. To determine the slope in the 
center of the vertebrae we should know that center of 
coordinates must be reported to the reference system. From the 
3D model of the whole spine created in CAD software CATIA 
V5, we extract the values of the distances between the centers 
of the vertebrae. The values of the distances between the 
centers of the vertebrae  are given in Table 1. 

Table. 1 – Distances between the centers of the vertebrae. 
Nr. crt. Vertebras Distance [mm] 

1. C2 – C3 15,7 
2. C3 – C4 14 
3. C4 – C5 14,9 
4. C5 – C6 14,5 
5. C6 – C7 15 
6. C7 – T1 16 
7. T1 – T2 18,48 
8. T2 – T3 21 
9. T3 – T4 21,5 

10. T4 – T5 21,5 
11. T5 – T6 22,46 
12. T6 – T7 23,46 
13. T7 – T8 24,47 
14. T8 – T9 25,49 
15. T9 – T10 27 
16. T10 – T11 28 
17. T11 – T12 29,5 
18. T12 – L1 30,98 
19. L1 – L2 31,49 
20. L2 – L3 31,92 
21. L3 – L4 32,45 
22. L4 – L5 32,47 

 
These values will be introduced in Mathcad software under 

the string of numbers with the note dv. Knowing the center of 
each vertebra is moving in an arc of a circle with its center at 
the origin of the coordinate system, we determine the radius of 
these arcs with the relationship: 
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Where u is a counter for determining the number of orders 
according to Table 1. 

Each of the vertebrae is moving under a center of an arc of a 
circle with a time variation given by the sinusoidal function 
similar to those given by the relations (1), (2) and (3). The 
amplitude of movement is determined by the intersection of 
the arc corresponding to each center of the vertebrae, and the 
curve that describes the shape of the spine extreme point side 
slope. 

To determine the coordinates of these points, the following 
sequence was created using the software program Mathcad: 

 

 

Where , . 

 

Knowing the coordinates of the center vertebrae in the 
coronal plane, the shape of the spine side slope extreme point, 
can be determined from the slopes of the curve (7) in these 
points with the following relationship: 

 

Thus the angle α will be: 

 

The values of the angles αamp and γ are returned in radians 
by the Mathcad calculation software. The values of the angle 
αamp represent the amplitude of the sinusoidal function given 
by the following relationship (10). The functions describing 
the variation in time of the angle between the vertebras. 

 

                           (10) 
 

 

 
Fig. 4 – Extracted frames realized with CAD software CATIA V5. 

V. CONCLUSION 
The amplitude values of the sinusoidal functions describing 

the variation in time of angles between vertebrae gives an 
insight into the degree of deformation of intervertebral discs. 

According to the literature the maximum tilt in the coronal 
plane of the lumbar vertebrae are 5 ° for L1-L2; 5 ° for L2-L3; 
4.5 ° for L3-L4; 2.2 ° for L4-L5; 1 degrees for L1-S1. 
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This sort of ergonomic analysis over the driver spine 
involves a study of the effects of vibration on the human body.  

As reported above it is evident that we have a maximum 
interest for understanding the pathogenesis of diseases caused 
by vibration, to determine the hygienic conditions of operation 
of vehicles. Such research should focus on framing all 
operation of machinery, especially motor vehicles, in 
parameters corresponding to operator health insurance, in this 
analysis of driver and passengers. 

On this line was proposed a methodology to approach the 
interaction between driver and the vehicle to allow accurate 
conclusions for the driving activity. 
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