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Abstract— This study presents an analysis and comparison 

between the application of self-organizing maps (SOM) and the k-

means clustering approaches in the field of atmospheric circulation 

classification, focusing in the area of southeastern Europe. 

Circulation type classification is a significant aspect of climate 

research in terms of examining the large-scale atmospheric variability 

and its relationship with local climate parameters. The study utilizes 

mean daily sea level pressure (MSLP) data for the spring months of a 

62-year period (1948 to 2009) on a grid with 2.5ox2.5o resolution. 

Both schemes provide realistic classifications, differentiating in the 

number of the resulting circulation patterns. The two methods are 

compared by examining the distribution of each SOM circulation 

type members (days) to every k-means type and by investigating the 

pressure field correspondence along with their frequencies of 

occurrence. High similarity is observed, especially for the patterns 

where atmospheric circulation is controlled from high-pressure 

barometric systems. The SOM method is found to be superior, due to 

its ability to generate a non-linear classification and produce a map 

where closely related atmospheric modes are described by 

neighboring neurons and positioned in adjacent locations. 

 

Keywords— atmospheric circulation classification, data 

clustering, k-means clustering, Self-Organizing Maps. 

I. INTRODUCTION 

YNOPTIC climatology is defined as the linkage of 

atmospheric circulation and environmental response [1]  

and is often based on the successful classification of 

atmospheric conditions into a number of different 

representative states [2]. The procedure is called circulation 

type classification and deals with a small number of discrete 

circulation types for analyzing the variability of atmospheric 

circulation in terms of their frequency changes on different 

temporal and spatial scales [3]. The classification schemes can 

be subdivided into subjective and automated methods, 
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depending on the procedure that is used to assign atmospheric 

fields into the resulting classes. The subjective or manual 

schemes employ the expert’s knowledge for identifying the 

atmospheric circulation types and are typically based on the 

visual analysis of daily weather maps. On the contrary, 

automated classification schemes essentially employ statistical 

methods for analyzing atmospheric data, with the objective of 

generating groups of cases with increased internal similarity 

and at the same time increased external separability. An 

extensive database of weather and automated circulation type 

classification schemes in Europe is presented in [4]. 

According to Huth [5] the automated methods can be further 

classified into the following categories: 

 Correlation method 

 Sum-of-squares method 

 Cluster analysis methods 

 Principal components analysis. 

 

The objective of this work is to examine and compare the 

resulting patterns from two different cluster analysis 

approaches by examining their correspondence using 

qualitative and quantitative criteria. The adopted methodology 

along with the essential theoretical background of the 

classification schemes is analyzed in the second section of this 

work, while the resulting circulation patterns and their 

comparison in the third part of this paper. In the concluding 

part of this work the results are discussed and a two-step 

classification scheme, based on the strengths and weaknesses 

of the two approaches, is proposed. 

II. METHODS 

A. Area of study and data 

In this study and for classifying atmospheric circulation, 

mean daily averaged sea level pressure (MSLP) data are 

acquired from the NCEP/NCAR Reanalysis 1 project [6] that 

produces a global analyses record of atmospheric fields. The 

reanalysis dataset covers the period from 1948 to 2009 on a 

grid with a 2.5
o
x2.5

o
 resolution. The selected spatial domain is 

from 30
o
N to 60

o
N and from 10

o
W to 37.5

o
E, which contains 

260 grid points in total. The classification is performed for the 

transitional period of spring (March to May), leading to a 

subset of 5704 MSLP fields (days). In southeastern Europe, 

spring is one of the most significant seasons in terms of 
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atmospheric circulation as the weather alternates from cold to 

warm period types. The clustering algorithms treat each of the 

5704 days as a different object while the 260 grid point MSLP 

values are the elements (variables) of each object. 

B. Methodology 

The atmospheric circulation for the period and area under 

study is examined using two different clustering approaches. 

The first classification scheme employs a traditional clustering 

algorithm (k-means). The k-means method is the most widely 

known data-clustering scheme and has been extensively used 

in environmental sciences for grouping objects into respective 

categories (e.g. [7] and [8]). It is a nonhierarchical clustering 

approach with the inherent advantage of allowing the 

reallocation of misplaced objects as the analysis proceeds [9]. 

The method defines k centroids, one for each cluster, and 

associates each object to the nearest centroid. It uses an 

iterative algorithm that finds the local minimum of the sum of 

object-to-centroid Euclidean distances, summed over all k 

clusters according to: 

 

                  
 
   

 
                    (1) 

 

where                is the Euclidean distance of the object        and 

the centroid      . 

The k-means method consists of two steps. Initially the 

Principal Components Analysis (PCA) is used to reduce the 

dimensionality of the dataset and subsequently the k-means 

clustering is performed. The PCA method transforms the high-

dimensional space into fewer dimensions and in our case the 

initial 5704x260 dataset is reduced to a 5704x25 subset by 

using the first 25 principal components that describe the 

99.01% of the total variation. This pre-processing step is 

essential for the efficient classification of MSLP data.  

The second approach is the Self-Organizing Map (SOM) 

algorithm, introduced by Kohonen [10], which is an 

unsupervised neural network model used for classification and 

feature extraction of high-dimensional data. The SOM 

converts the complex, nonlinear statistical relations of the 

high-dimensional input data into simple geometric relations at 

a typically two-dimensional map [11]. Such a property is 

highly desirable in meteorology and synoptic climatology, 

where the nonlinearity is a primary characteristic of 

atmospheric field data [12]. A detailed survey of SOM 

applications in meteorology and oceanography is presented in 

[13], while a description of its applications in climate studies 

can be found in [14]. The SOM neural network model consists 

of an input layer and a two-dimensional lattice of neurons, the 

output or competitive layer, which is fully connected to the 

input space. Initially the number of neurons is selected and 

their weight vectors are randomly initialized. Subsequently a 

training vector is presented to the network and the Euclidean 

distances between the training vector and the neurons’ weight 

vectors are calculated. The neuron that produces the smallest 

distance is called the Best Matching Unit (BMU) and its 

weight vectors along with its neighboring neurons weight 

vectors are updated towards the input vector. The input 

vectors are presented sequentially in the network and by using 

iterative training the neurons are adjusted in a way that 

different parts of the SOM respond similarly to certain input 

patterns. The final part of the SOM method is the visualization 

of the results, where each training vector is associated with 

one neuron, which represents the resulting patterns of the 

classification process. According to Haykin [15], the main 

properties of the SOM lattice are: 

 The approximation of the input space, as it is estimated 

from the weight vectors 

 Topological ordering, where a location within the lattice 

corresponds to a specific feature of the input patterns 

 Density matching, as more neurons are allocated to 

represent dense areas of the input space 

 Feature selection as the method selects the best features to 

approximate the underlying distribution. 

 

The SOM methodology has been applied in southeastern 

Europe for associating wintertime precipitation and large-scale 

atmospheric variability [16] and for identifying synoptic 

patterns based on 500hpa level geopotential height [12]. 

The main drawback of both classification schemes is the 

requirement of a predefined number of clusters. In circulation 

type classification there is no a priori knowledge of the 

number of the resulting patterns and therefore both methods 

are repeated for a range of initial number of classes. In detail, 

for the k-means classification the procedure is repeated 

multiple times for centroids ranging from 6 to 13, while for 

the SOM classification for two-dimensional lattices that 

correspond to classes ranging from 12 to 36, with varying 

number of row and column neurons. The optimum number in 

both cases is selected from the qualitative examination of the 

resulting composite MSLP maps. 

III. RESULS 

A general remark from the multiple experiments of 

generating atmospheric circulation types from both 

classifications is that in many cases the resulting MSLP 

composites were suboptimal. The qualitative analysis of the 

resulting patterns identified an optimum number of ten 

clusters for the k-means classification (Figure 1) and twenty 

atmospheric states for the SOM classification (Figure 3), 

which are mapped along a 4-row and 5-column hexagonal 

topology. The relative frequencies of each type in both cases 

are presented in Figure 2 and Figure 4 respectively. 

A. k-means circulation patterns 

The k-means circulation classification (Figure 1) resulted 

into two types influenced by low-pressure systems (K1 and K2 

types), in two patterns characterized by high-pressure systems 

(K3 and K4 types), in three smooth fields with minimal 

pressure gradient (K5, K6 and K7 types) and in three states 

where the atmospheric circulation is influenced by both high 

and low pressure systems (K8, K9 and K10 types). The 

description of the relevant circulation patterns is presented in 

terms of the most important atmospheric circulation 

characteristics in Table 1 and their relative frequencies of 

occurrence in Figure 2. 
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Fig. 1 The k-means classification circulation types, K1 (a), K2 (b), K3 (c) 

 

 

Fig. 3 The SOM classification circulation types 

Recent Advances in Environmental Science and Geoscience

ISBN: 978-1-61804-224-8 19



 

 

 

Table 1:  Description of the k-means classification circulation types 

 
Abbreviation 

 
Circulation type Description 

K1 Cyclonic Low-pressure system over central Italy 

K2 Cyclonic Low-pressure system over the British Isles 

K3 Anticyclonic Extended anticyclone over central Europe 

K4 Anticyclonic Extension of the Siberian anticyclone over western Russia and the Baltic countries 

K5 Smooth Smooth pressure field that favor the development of local flows 

K6 Smooth Smooth pressure field that favor the development of local flows 

K7 Smooth Smooth pressure field that favor the development of local flows 

K8 
High – Low 
combination 

Low-pressure system in northern Europe over Nordic countries - Anticyclone in the 

Iberian Peninsula 

K9 
High – Low 
combination 

Low-pressure system in northern Europe over Nordic countries - Anticyclone in the 

Iberian Peninsula 

K10 
High – Low 
combination 

Easterly extension of the Azores anticyclone in western and central Europe in 

combination with the low-pressure field in the Middle East 

 

Table 2: Description of the SOM classification circulation types 

 
Abbreviation 

 

 
Circulation type 

 
Description 

SOM1.1 
High – Low 
Combination 

Combination of the extended anticyclone in central Europe and the relative low-
pressure field of the Middle East 

SOM2.1 
High – Low 
Combination 

Combination of the extended anticyclone over the UK and the Netherlands and the 
relative low-pressure field of the Middle East 

SOM3.1 Cyclonic Relative low-pressure field over Greece and the Balkans 

SOM4.1 
High – Low 
Combination 

High and low pressure fields at the west and east of Greece respectively 

SOM5.1 Anticylconic 
Anticyclone at the north of the Iberian peninsula which extends over the whole 

Mediterranean Sea 

SOM1.2 Anticylconic 
Anticyclone in northern Europe at the Baltics which extends over the Balkans and 

Greece 

SOM2.2 Smooth Smooth field that favor the development of local flows 

SOM3.2 Smooth Smooth field that favor the development of local flows 

SOM4.2 Smooth Smooth field that favor the development of local flows 

SOM5.2 Anticylconic 
High-pressure system in the Iberia peninsula which extends over the eastern 

Mediterranean 

SOM1.3 Anticylconic The Siberian anticyclone is extended over the Balkans 

SOM2.3 Smooth Smooth pressure field for the entire European continent 

SOM3.3 Cyclonic Low-pressure system of the Adriatic Sea and Italy 

SOM4.3 Cyclonic Extended low-pressure system over central Europe. 

SOM5.3 Cyclonic Low-pressure in northeastern Europe 

SOM1.4 Anticylconic 
Weak Azores high penetration in the eastern Mediterranean that favors the 

development of local flows 

SOM2.4 Cyclonic Deep low in the UK does not affect Southeastern Europe 

SOM3.4 
High – Low 
Combination 

High-low combination over Western and Eastern Europe 

SOM4.4 Cyclonic Deep low-pressure system situated at North Sea 

SOM5.4 Cyclonic Low-pressure system, located at the north of Greece 
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Fig. 2 Relative (and absolute) frequency of occurrence of the k-means classification circulation types 

 

Fig. 4 Relative (and absolute) frequency of occurrence for the SOM classification circulation types 

Table 3: Agreement in percent between the SOM and the k-means circulation patterns 

 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 

SOM1.1 0.0 0.0 76.6 21.6 0.0 0.0 0.0 0.0 0.0 1.8 

SOM2.1 0.0 0.0 1.5 33.0 0.0 0.0 4.0 0.0 0.0 61.5 

SOM1.3 1.7 0.0 0.0 0.3 50.1 0.0 30.4 0.0 0.0 17.5 

SOM1.4 0.0 0.0 0.0 0.3 39.2 1.6 3.2 0.5 2.4 52.7 

SOM1.5 0.0 0.0 44.6 2.4 0.0 0.0 0.0 0.0 19.3 33.7 

SOM2.1 0.0 0.0 0.4 80.8 0.0 0.0 17.7 0.0 0.0 1.1 

SOM2.2 0.6 0.3 0.0 4.8 4.0 1.1 88.9 0.0 0.0 0.3 

SOM2.3 22.0 1.5 0.0 0.0 74.4 0.0 1.5 0.0 0.6 0.0 

SOM2.4 1.3 11.1 0.0 0.0 22.4 49.2 6.3 6.1 1.8 1.8 

SOM2.5 0.0 0.0 2.1 0.0 1.5 0.0 0.0 10.3 85.1 1.0 

SOM3.1 0.0 0.0 44.2 16.0 0.0 29.8 0.0 0.0 2.2 7.7 

SOM3.2 0.0 0.0 0.2 15.9 1.3 30.7 17.3 0.0 0.0 34.5 

SOM3.3 31.0 5.3 0.0 0.0 32.4 7.5 19.1 3.9 0.0 0.8 

SOM3.4 44.3 52.6 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 

SOM3.5 24.4 8.0 0.0 0.0 6.2 0.0 0.0 59.6 1.8 0.0 

SOM4.1 1.8 0.0 0.0 0.0 4.7 41.2 0.0 25.3 10.0 16.9 

SOM4.2 5.7 31.3 0.0 0.0 0.0 55.7 0.6 6.8 0.0 0.0 

SOM4.3 9.4 14.9 0.0 3.5 0.0 10.9 61.4 0.0 0.0 0.0 

SOM4.4 15.1 51.4 0.0 0.0 0.0 0.0 0.0 33.5 0.0 0.0 

SOM4.5 0.0 0.9 0.0 0.0 0.0 13.7 0.0 56.8 28.6 0.0 
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B. SOM circulation patterns 

The circulation patterns of the SOM classification are 

mapped according to the influence of the high and low-

pressure systems (Fig. 3). The description of the relevant SOM 

circulation patterns is presented in terms of the most important 

atmospheric circulation characteristics in Table 2 and their 

relative frequencies of occurrence in Figure 4. In the lower left 

part of the map the patterns are mainly influenced by the 

existence of high-pressure systems in Europe, while the 

relative location of the low-pressure systems is the primary 

characteristic of the upper right part. This finding is in 

accordance with previous studies [14] and it is attributed to the 

inherent characteristic of the SOM method to self-organize. 

The nodes (neurons) exist in a continuum and enable the 

understanding of phases as well as the transitional nodes 

between phases [2]. 

C. Comparison of the atmospheric circulation 

classifications 

The two classification schemes produce similar circulation 

types. The comparison of two classifications is presented in 

terms of examining the distribution of each SOM circulation 

type days to the k-means patterns (Table 3). Regarding the 

circulation types that are characterized from the existence of a 

low-pressure system in Europe, the SOM3.3 and the SOM3.4 

types share common characteristics with K1 circulation type, 

differentiating in the relative position of the low-pressure 

system. Furthermore, 84.9% of the SOM4.4 days are classified 

as members of the K2 and K8 types, while the surface 

pressure distribution of the SOM3.5, SOM4.5 and the K8 

types is depicted from the existence of a low-pressure system 

in northern Europe. The characteristic synoptic condition of 

the SOM2.5 is almost identical to the K9 type, resulting to a 

high agreement percentage (85.1%). For both classifications 

an increased number of days are classified into smooth 

pressure patterns with minimal pressure gradient in 

southeastern Europe. In detail, the days classified into the 

SOM1.3 and SOM2.3 patterns have high agreement 

percentages with the K5 circulation type (50.1% and 74.4% 

respectively), while the SOM2.4, SOM4.1 and SOM4.2 

patterns are similar to the K6 circulation type. The SOM2.2 

type is almost identical with the K7 pattern, with a total 

agreement of 88.9%. The two classification schemes provide 

more consistent results for the high-pressure system patterns. 

The SOM1.1 and SOM1.5 types, due to their cold period 

character, are mainly observed during March and are similar 

to the K3 type. Furthermore, high agreement percentage 

(80.8%) is observed between the SOM2.1 and the K4 types, 

which are also commonly observed during March. The 

synoptic situation for both SOM1.2 and SOM1.4 types share 

some common characteristics with the K10 pattern, where an 

anticyclone is located at the north of the Iberian Peninsula and 

in the British Isles. The similarity between the resulting 

patterns of the two classifications is further established from 

the high correspondence of their monthly frequency of 

occurrence. 

IV. CONCLUSIONS 

In this study two automated atmospheric circulation 

classification schemes are presented and examined for their 

ability to produce meaningful circulation types for the spring 

season in southeastern Europe. Both classifications, following 

the circulation-to-environment approach, can be used for 

relating the circulation types with regional or local scale 

meteorology and climatology. The k-means classification 

includes ten distinct types, while the SOM required more 

neurons to describe with discrete atmospheric states the daily 

MSLP distribution for the area and period under study. Both 

methods (k-means and SOM) are designed to achieve optimal 

distribution of objects (daily patterns) into the classes. The 

reason for reaching different result is that k-means can be 

trapped in local minima of the minimization function 

(reduction of within-type variance) while SOM is able to 

approach the global optimum. Meaningful relations are 

obtained in all cases. The correspondence of the two 

classifications is higher for the types where the high-pressure 

systems define the atmospheric circulation in the examined 

region. The SOM scheme has the ability to account for non-

linear relationships and produce a map where synoptic states 

that are closely related are positioned in adjacent locations. In 

our case the high-pressure patterns are positioned in the lower 

left part of the map while the low-pressure patterns are located 

in the upper right part. Future work is proposed for developing 

a two-step classification scheme using both of the examined 

methods. The SOM can be used to decrease and reduce noise 

by producing a high number of atmospheric states which can 

be subsequently further grouped into a highly practical daily 

catalogue by applying k-means cluster analysis. 
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