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Abstract— The assisted living center uses a distributed system 

of sensors to monitor potential slips and falls of the residents. In 

our study, a Temporal Dynamic Bayesian Network is employed 

in monitoring of the sensors.  Through simulation, we show that 

it’s effective to use TDBN and may help improve the time 

management of staff. 

Keywords—Dynamic Bayesian Network, wireless sensor 

networks; filtering, smoothing, healthcare;  

 

I. INTRODUCTION 

Wireless sensor networks have been changing the way of 
our living significantly in our lives. Researchers are 
investigating everything from microscopic sensors that traverse 
the bloodstream and wirelessly report health conditions to 
intelligent household devices that can interact with each other 
wirelessly [2]. Some of this research has already made it to our 
lives in the form of modern home security systems. These 
systems have become somewhat advanced in that many have 
the ability to be controlled over the internet or a mobile device, 
performing tasks such as control of lights and appliances, 
locking doors and monitoring of various sensors, etc.  They are 
becoming more common in our lives. 

One of the major challenges we will face over the next 20 
years is the aging of our population. The US Census Bureau 
estimates the percentage of population over the age of 65 will 
grow from 12.9% in 2010 to 16.1% in 2020 and on to 19.3% 
by 2030 [4]. Over time, this ever growing population of seniors 
will likely put a strain on the staff and resources of assisted 
living centers.  The Alzheimer’s Society of Canada estimates 
that the number of hours of informal care required by people 
with dementia will have tripled from 231 million hours to 756 
million hours by the year 2038. [1] Wireless sensor networks 
can be seen, in part, as a solution to this problem. 

A sensor network deployed in an assisted living facility can 
take advantage of many of the same technologies that are used 
at the in-home system. However, one key difference is the user 
of the network is typically also the person being monitored in 
the in-home system. In an assisted living facility, a network 
needs to be designed for staff to monitor the wellbeing of the 
residents. As such, more sophisticated monitoring software is 
needed. Since staffs of assisted living centers have many 
responsibilities, the system will become quickly unused if a 

sensor system provides them a false alert or fail to alert a 
problem. 

These sorts of technologies are not entirely new to assisted 
living facilities. Doors are often alarmed and equipped with 
keypad entry systems. If a resident failed to stand repeatedly 
without assistance, they typically are supplied with a pressure 
sensor on his/her bed or/and chair(s). If (s)he moved off of this 
sensor, an alarm is triggered to alert a staff. While these types 
of sensors are seen to be effective and reliable in many 
situations, they do have some drawbacks. 

Existing pressure sensors consist of a simple switch inside 
of a large pad. If a person moves off of the pad, it makes a very 
loud and high pitched noise until pressure returns or it is 
switched off. If a resident is unaware of a cause of this noise, 
they can often become agitated. This is often the case with 
patients with dementia. In addition, these pads frequently come 
dislodged accidentally. Residents may find sitting or lying on 
them uncomfortable, or may shift in their chair or roll over and 
dislodge them. While this situation usually is not an 
emergency, staff members have to always respond to it.  

One approach to address this problem is through the use of 
a wireless sensor network. A simple solution that would be of 
great help is to connect the pressure sensor to a network and 
alert staff through the aid of a computer that the sensor had 
become dislodged. This would reduce the agitation that comes 
from the audible noise in the current pad, but would do little to 
help the overburdened staff. 

With the goal of eliminating resident agitation while 
simultaneously easing the burden on staff, we propose to 
address this problem through a combination of wireless sensors 
and a Dynamic Bayesian Network (DBN). We will first use a 
networked pressure sensor in combination with a motion 
sensor to predict a person’s attempt to stand. These predictions 
will be combined over time by the DBN to better estimate the 
probability of a person’s attempt to get up. This will help to 
eliminate false alerts from a single sensor reading as well as 
provide a more informed picture of exact situation. This model 
will then be updated to include readings from a Radio-
frequency identification (RFID) sensor. This will allow the 
system to react to staffs and adjust the alert level appropriately. 

 

 

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 9



This study achieves the following objectives:  

1. Clearly distinguishable levels of convergence will be 
identified for an appropriate alert to staff regarding the 
problems of residents. 

2. The inclusion of the DBN will reduce false alert cases. 

3. Response delays incurred as a result of the inclusion of the 
DBN will be held to within appropriate levels.  

II. SURVEY OF THE RELATED WORKS 

Activity recognition (AR) has been a popular research area 
and can take on many forms. The types of recognition can vary 
from recognizing simple touch gestures as the modern smart 
devices do, to more complex systems that allow individuals 
with cognitive impairments to transition through vocational 
tasks using in-air gestures [10]. Some of these systems may 
depend on monitoring video and inferred sensor readings of a 
situation while others may rely on wearable sensors [3]. 

Using sensors and artificial intelligence techniques to assist 
seniors and people with disabilities with daily tasks has been a 
fast growing field in recent years. One such system, called 
PROACT, uses body-worn Radio-frequency identification 
(RFID) sensors and a probability engine that infers activities 
given sensor observations to create probabilistic models of a 
person’s activities [5]. The COACH (Cognitive Orthosis for 
Assistive aCtivities in the Home) system uses computer vision 
and a Partially Observable Markov Decision Process 
(POMDP) to learn characteristics about an individual over 
time. These learned traits are then used to build custom plans 
for an individual to accomplish tasks in their everyday lives 
[6]. 

Much of the research on the use of sensors in fall 
prevention has centered on detection of the moment of fall. 
Such research relies on the use of accelerometers or gyroscopes 
attached to the resident [7]. Other techniques may rely on 
either video or still images of a person to determine a person’s 
physical positioning. Hidden Markov Models are often used in 
conjunction with these sensors to determine when the 
likelihood of a sequence of events has fallen below some 
threshold at which point an alert is signaled [8][9].  

While these systems are of great value, the potential 

residents who fall and possibly cause injury are typically 

confined to a wheelchair when staffs are unavailable in the 

assisted living center. As a result, very specific models that 

can detect a moment of a person’s attempt to stand up are 

needed. 

III. TEMPORAL DYNAMIC BAYESIAN MODELS AND THEIR 

SIMULATION 

Our initial model relies on a pressure sensor and a motion 
sensor that operate independently of each other. Both sensors 
can make a probabilistic assertion about whether a person is 
attempting to stand based on their readings. These independent 
probabilities are then combined with previous probabilistic 
evidence of the person’s standing at time t-1 to make a decision 
for the current time slice t. 

 

 

Fig. 1. Initial Dynamic Bayesian Network Model 

A. Initial Model 

For our model, we started with the assumption that given 
the average senior with dementia was standing previously, 
there was about a 90% chance that they would continue 
standing. If they were previously not standing, there would be 
a 2% chance that they would attempt to stand. Our pressure 
sensor would alert 99% of the time given that the person 
occupying it had stood up. It also would alert about 5% of the 
time if the occupant had not stood up. This error would most 
likely be due to a person shifting in their seat and dislodging 
the sensor. Our motion sensor would alert to a person standing 
up 95% of the time. However, 20% of the time it would see 
various kinds of motion even if the person was still seated. 
This initial model is depicted with the given probabilities in 
Figure 1. 

For each time slice, our initial algorithm first calculates the 
prediction probability that a person is standing at time t based 
on the standing probability at time t-1 given the previous 
sensor evidence.  In this example, we seek for the prediction 
probability of standing (S) at t with an active pressure sensor 

(p) and an inactive motion sensor (m) at time t-1: 

𝑃(𝑆𝑡|𝑝𝑡−1, ¬𝑚𝑡−1) (1) 
 

= ∑𝑃(𝑆𝑡|𝑠𝑡−1)𝑃(𝑠𝑡−1|𝑝𝑡−1, ¬𝑚𝑡−1)

𝑠𝑡−1

 

= 𝑃(𝑆𝑡|𝑠𝑡−1)𝑃(𝑠𝑡−1|𝑝𝑡−1, ¬𝑚𝑡−1) 

+𝑃(𝑆𝑡|¬𝑠𝑡−1)𝑃(¬𝑠𝑡−1|𝑝𝑡−1, ¬𝑚𝑡−1)  

 This probability is then used in conjunction with the current 
sensor readings to determine the current probability of a person 
standing at time t: 

𝑃(𝑆𝑡|𝑝𝑡−1:𝑡 , ¬𝑚𝑡−1:𝑡) (2) 

= 𝛼𝑃(𝑝𝑡 , ¬𝑚𝑡|𝑆𝑡)𝑃(𝑆𝑡|𝑝𝑡−1, ¬𝑚𝑡−1) 
 

 The process was repeated over several time slices to predict 
what would happen with the proposed model under various 
conditions. In addition, we chose to examine how the 
predictions were affected when future sensor evidence was 
known through smoothing. The smoothing process begins by 
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trying to determine what the probability of the future sensor 
reading occurring is, given the current standing probability: 

 

𝑃(𝑝𝑡 , ¬𝑚𝑡|𝑆𝑡−1) = ∑ 𝑃(𝑝𝑡 , ¬𝑚𝑡|𝑆𝑡)𝑃(𝑆𝑡)𝑃(𝑆𝑡|𝑆𝑡−1)𝑆𝑡  (3) 

= 𝑃(𝑝𝑡 , ¬𝑚𝑡|𝑠𝑡)𝑃(𝑠𝑡)𝑃(𝑠𝑡|𝑆𝑡−1) 
+𝑃(𝑝𝑡 , ¬𝑚𝑡|¬𝑠𝑡)𝑃(¬𝑠𝑡)𝑃(¬𝑠𝑡|𝑆𝑡−1) 
 

 This value is then combined with the current standing 
probability, given the current sensor readings: 

𝑃(𝑆𝑡−1|𝑝𝑡−1:𝑡 , ¬𝑚𝑡−1:𝑡) = (4) 

𝛼𝑃(𝑆𝑡−1|𝑝𝑡−1, ¬𝑚𝑡−1)𝑃(𝑝𝑡 , ¬𝑚𝑡|𝑆𝑡−1) 
 

 For our simulations we performs smoothing backwards for 
10 time slices, t-10. Assuming a sensor reading occurred once 
a second, we felt that this was the maximum possible delay that 
could be expected if the smoothed value were to be used to 
alert staff to a problem. To conduct these simulations, a C++ 
program was written to model the Dynamic Bayesian Network 
and the filtering and smoothing processes. These processes 
were then fed various sequences of sensor readings that were 
thought to simulate real world readings. 

 Let us first investigate what would happen if the model was 
fed constant sensor readings for a number of time slices to try 
and decide a reasonable point at which staff should be alerted 
using the wireless sensor network. This was done by running 
an extended simulation with sensor values locked at either true 
or false to determine convergence points. These simulations 
clearly show our modeled probabilities level off at three 
distinct levels around 0%, 60%, and 100%. As a result, we 
address our cases using two alert levels. When the probability 
of a person standing rises above 50%, a warning is issued to 
staff members through the wireless network. When the 
probability of a person standing rises above 90%, an alert is 
issued to staff members. A warning is an indication that a 
situation needs to be dealt with soon and an alert can be seen as 
an emergency. 

B. Simulation of the Initial Model 

 The first case we investigate was a simulation of likely 
sensor readings that would occur when a resident attempted to 
stand up to get out of his/her chair or bed. The series of 
simulated readings with no pressure or motion activity for a 
period of 20 slices were executed to show a person at rest. This 
was then followed by 20 time slices of motion readings, but 
without pressure readings to show someone struggling to get 
up. Next, 20 time slices were simulated with both motion and 
pressure sensors alerting to show both a person rising off of 
his/her chair or bed and someone responding to the problem to 
help them get settled back down again. This was followed by 
20 more slices of motion only as a person calms down and staff 
members leave the room and then once again 20 time slices of 
no motion or pressure disturbances. 

 

Fig. 2. A simulation of sensor readings from a resident attempting to stand 
(Model 1). 

Figure 2 shows the good performance of the model. The 
probability of a person standing remained extremely low until 
the moment both the pressure and motion sensors were 
activated (t=40). Within 1 time slice the probability that 
someone was standing had risen above our warning level to 
over 66%. After an additional time slice, the probability that 
someone was standing had risen above our alert level to 99%. 
Similar response times can be seen after the person is returned 
to his/her chair or bed with it taking only 1 time slice for the 
probability to drop from above 99% to about 30%. Assuming 
sensor readings were occurring once a second, this seems very 
much in line with what would occur with an audio alarm based 
sensor system. The smoothed data model shows little 
difference in its probability predictions producing virtually 
identical readings over the entirety of the use case. 

The second case we examined was the situation where a 
person shifted in his or her chair or bed and dislodged the 
pressure sensor. This common occurrence in assisted living 
centers can occur accidentally, or occasionally a resident will 
find the pressure pad uncomfortable and pull it out not 
realizing why they are sitting on it. For this use case, we started 
again with a 20 time slice period of no activity from either our 
motion or pressure sensor. This was again followed by 20 
slices of activity registering from the motion sensor without 
activity from the pressure sensor. Then, 5 time slices of activity 
from both sensors to indicate that a person has successfully 
dislodged the pressure sensor from underneath him or herself. 
This is then followed by a 40 slice period where the pressure 
sensor is active, but there is no motion to indicate that a person 
has settled back in his or her chair, but without repositioning 
the pressure sensor. At this point, a staff member arrives to 
help the person reposition the pressure sensor. As a result, both 
sensors are registering activity. Once the resident is positioned 
back on his or her pressure pad, there is another 10 slice period 
of only motion activity as the staff member leaves the room 
and then 20 slices of no activity from either sensor. 

As can be seen in Figure 3, this case starts off very similar 
to our first case and once the resident dislodges the pressure 
sensor (t=20) the probability again exceeds our alert level of 
90% within 2 time slices. However as the resident has not 
actually attempted to stand, the probability quickly recedes to a 
warning level as they settle back into their chair or bed. Once a 
staff member arrives to assist in repositioning the pressure 
sensor (t=65), the probability again shoots up over our alert  
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Fig. 3. A simulation of sensor readings from a resident shifting in his or her 

chair (Model 1). 

level of 90% and stays there until the person is properly 
repositioned on his or her pressure sensor. The probability 
drops back down to near zero as the staff member finishes 
moving about the room and leaves. The smoothed data model 
again closely follows the filtered model with the one exception 
being from t=57 to 65. Since our smoothing period is 10 slices, 
this indicates that integrating future observations indicates a 
higher probability of the resident standing up. 

 In both of these use cases, the proposed system performed 
as well as an audible pressure sensor would have alone. In fact, 
in the case of a person misaligning the pressure sensor without 
standing up, the performance was quite a bit better. The 
proposed system was responsive, while eliminating an 
unnecessary alert condition for the middle period (t=25 to 65). 
However, in our first case we had an extended time period 
where after staff had entered the room an alert condition was 
sustained unnecessarily. In the second case, we returned to an 
alert condition unnecessarily after a staff member had entered 
the room. In each of these cases, the extended alert periods 
may cause additional staff to arrive once a situation was under 
control. As a result, we looked at implementing a second 
model and simulation that would account for a staff member 
being present in the room. 

C. Incorporating RFID 

Our modified model continues to rely on a pressure sensor 
and a motion sensor that operate independently of each other. 
However, the condition they are checking for to be standing 
without assistance was slightly modified. This is because the 
third sensor was added to the model, called Radio-frequency 
identification (RFID).  A RFID sensor which scans staff ID 
badges as they walk through the main door of a resident’s 
room.  

The additional sensor was determined not to impact the 
probabilities for our pressure sensor as whether a staff member 
has entered the room or not has no effect on whether the sensor 
is triggered or not. However, the motion sensor probabilities 
are impacted. As a result, we have adjusted this probability 
table so that if a resident is standing without assistance and the 
RFID sensor has signaled that a staff member is in the room, 
there is a 99% chance that the motion sensor will signal. If the 
resident is standing without assistance and a staff member is 

not in the room then the chance that the motion sensor will 
signal is our original value of 95%. If the RFID sensor has 
signaled that a staff member has entered the room but the 
resident is not standing without assistance it is still highly 
likely that our motion sensor will be activated, so this 
probability was set at 90%, and if the resident is not standing 
unassisted and no staff member is present then our original 
probability of detecting motion applies at 20%. 

We also need to establish probabilities of our RFID sensor 
detecting a staff member in the room given that a resident is 
standing without assistance. Given that a resident is standing 
without assistance, the probability that this sensor has detected 
a staff member would be extremely low. We’ve set this at 0.1% 
as if a staff member was in a resident’s room it is almost a 
guarantee that they would be there assisting resident. The 
probability that a staff member would be in a resident’s room if 
they were not standing without assistance has been set to 10% 
as it is a reasonable estimate of the percentage of a day a staff 
member spends with each resident. 

It could be argued that a more accurate representation 
would be to use a second unknown value representing a staff 
member in the room which the RFID sensor and Motion sensor 
would monitor. This staff variable could then be used as a 
sensor variable for the unassisted standing unknown value. 
However, as the RFID sensor is an almost perfect predictor of 
the presence of a staff member we chose to use this simplified 
model. 

For each time slice, our modified algorithm follows much 
the same process as our initial algorithm while incorporating 
the additional information from the new sensor. The algorithm 
first calculates the probability that a person is standing based 
on the previous time slice’s standing probability, given the 
previous sensor evidence. In this example, we are looking at 
time slice t with an active pressure sensor, an inactive motion 
sensor, and an inactive RFID sensor:  

𝑃(𝑈𝑆𝑡|(𝑝𝑡−1, ¬𝑚𝑡−1|¬𝑟𝑡−1, ¬𝑟𝑡−1)) (5) 

= ∑ 𝑃(𝑈𝑆𝑡−1|(𝑝𝑡−1, ¬𝑚𝑡−1|¬𝑟𝑡−1, ¬𝑟𝑡−1))𝑆𝑡−1   

= 𝑃(𝑈𝑆𝑡|𝑢𝑠𝑡−1)𝑃(𝑢𝑠𝑡−1|(𝑝𝑡−1, ¬𝑚𝑡−1|¬𝑟𝑡−1, ¬𝑟𝑡−1)) 

+𝑃(𝑈𝑆𝑡|¬𝑢𝑠𝑡−1)𝑃(¬𝑢𝑠𝑡−1|(𝑝𝑡−1, ¬𝑚𝑡−1|¬𝑟𝑡−1, ¬𝑟𝑡−1)) 

 This probability is then used in conjunction with the current 
sensor readings to determine the current probability of a person 
standing: 

𝑃(𝑈𝑆𝑡|(𝑝𝑡−1:𝑡 , ¬𝑚𝑡−1:𝑡|¬𝑟𝑡−1:𝑡 , ¬𝑟𝑡−1:𝑡)) (6) 

= 𝛼𝑃((𝑝𝑡 , ¬𝑚𝑡|¬𝑟𝑡 , ¬𝑟𝑡)|𝑈𝑆𝑡) 

𝑃(𝑈𝑆𝑡|(𝑝𝑡−1, ¬𝑚𝑡−1|¬𝑟𝑡−1, ¬𝑟𝑡−1)) 
 

 The process was repeated over several time slices to predict 
what would happen with the modified model under various 
conditions. Much like our first algorithm, we chose to examine 
how the predictions were affected when future sensor evidence 
was known through smoothing. The smoothing process begins 
by trying to determine what the probability of the future sensor 
reading occurring is, given the current standing probability: 

𝑃((𝑝𝑡 , ¬𝑚𝑡|¬𝑟𝑡 , ¬𝑟𝑡)|𝑈𝑆𝑡−1) (7) 
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=∑𝑃((𝑝𝑡 , ¬𝑚𝑡|¬𝑟𝑡 . ¬𝑟𝑡)|𝑈𝑆𝑡)𝑃(𝑈𝑆𝑡)𝑃(𝑈𝑆𝑡|𝑈𝑆𝑡−1)

𝑆𝑡

 

= 𝑃((𝑝𝑡 , ¬𝑚𝑡|¬𝑟𝑡 , ¬𝑟𝑡)|𝑢𝑠𝑡)𝑃(𝑢𝑠𝑡)𝑃(𝑢𝑠𝑡|𝑈𝑆𝑡−1) 
+𝑃((𝑝𝑡 , ¬𝑚𝑡|¬𝑟𝑡 , ¬𝑟𝑡)|¬𝑢𝑠𝑡)𝑃(¬𝑢𝑠𝑡)𝑃(¬𝑢𝑠𝑡|𝑈𝑆𝑡−1) 
 

 This value is then combined with the current probability of 
standing without assistance, given the current sensor readings: 

𝑃(𝑈𝑆𝑡−1|(𝑝𝑡−1:𝑡 , ¬𝑚𝑡−1:𝑡|¬𝑟𝑡−1:𝑡 , ¬𝑟𝑡−1:𝑡)) (8) 

= 𝛼𝑃(𝑈𝑆𝑡−1|(𝑝𝑡−1, ¬𝑚𝑡−1|¬𝑟𝑡−1, ¬𝑟𝑡−1)) 

𝑃((𝑝𝑡 , ¬𝑚𝑡|¬𝑟𝑡 , ¬𝑟𝑡)|𝑈𝑆𝑡−1) 
 

D. Simulation Incorporating RFID 

 As in our initial simulation, we performed smoothing 
backwards for 10 time slices. Assuming a sensor reading 
occurred once a second, we felt that this was the maximum 
possible delay that could be expected if the smoothed value 
were to be used to alert staff to a problem. A second C++ 
program was written to accommodate the modified sensor 
model. 

 We again attempted to establish points of convergence in 
our model by running each of the three sensors locked in either 
true or false state. Although there is a slight variation, these 
simulations again show three distinct probability levels around 
0%, 70%, and 100%. As a result, we will keep using the same 
two alert levels from our initial model. When the probability of 
a person standing without assistance rises above 50% we will 
issue a warning to staff members through the wireless network. 
When the probability of a person standing rises above 90%, we 
will issue an alert to staff members. As in our first model, a 
warning is an indication a situation needs to be dealt with soon 
and an alert can be seen as an emergency. 

 In our first case that simulates a person attempting to stand, 
we see a slightly different result. As before this simulation 
starts with 20 time slices with the pressure and motion sensors 
inactive. As this situation is meant to model a person standing 
up when staff is not around, we have set the initial RFID sensor 
reading to false as well. At this point, our model predicts a 
filtered probability of 0.0015%. At t=20 motion is detected as  

 

 

Fig. 4. Modified Dynamic Bayesian Network Model 

 

 

Fig. 5. A simulation of sensor readings from a resident attempting to stand 
(Model 2). 

the resident attempts to stand up. This causes a small uptick in 
the probability the resident is standing without assistance and  
the filtered probability rises to 0.11%. At t=40, both the 
pressure and motion sensors are activated indicating that the 
person has risen out of his or her chair or bed. Our model 
quickly adjusts to the situation and within 1 time slice the 
probability that the resident is standing without assistance has 
risen above the warning probability to 69.18% and within 2 
time slices it as risen above our alert level to 99.43%.  

 At t=50, the RFID reading changes to true as a staff 
member responds to the alert condition. This causes an 
immediate and drastic change in the probability that the 
resident is standing without assistance. By t=51 the probability 
has dropped back down to 65.98% and by t=55 it has dropped 
to 0.84%. At t=60, the pressure sensor becomes inactive. This 
is to indicate that the staff member has successfully assisted the 
resident to return to his or her chair or bed. Note that the RFID 
sensor is still active since the staff member has not yet left the 
room. This change in sensor readings pushes the probability 
that the resident is standing without assistance down to 
0.00024%. At t=80, the staff member leaves the residents room 
and the RFID sensor becomes inactive. As expected, this 
causes a slight increase in the monitored probability to 
0.0015%. 

 As shown in Figure 5, this model does appear to perform 
much as we expected. Staff are warned of the problem within 1 
time slice and alerted to the emergency within 2 time slices. In 
addition, the alert state is nullified within 2 time slices of a 
staff member arriving on the scene. This is 9 slices earlier than 
the initial model without a loss in responsiveness. 

 The second case takes another look at what would happen 
when a resident dislodges his or her pressure sensor without 
actually attempting to stand up out of his or her chair or bed. 
Much like the previous simulation, we start this simulation 
with all three sensors off for 20 time slices. At t=20, the 
probability that the resident is standing without assistance is 
0.0015%. At this time, both the pressure and motion sensors 
are activated for 5 time slices as the resident shifts in his or her 
chair and dislodges the sensor. As in our first use case, within 1 
time slice, we have exceeded our warning level as the  
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Fig. 6. A simulation of sensor readings from a resident shifting in their chair 

(Model 2). 

probability of the resident standing without assistance has 
reached 68.07% and by t=22 the probability has exceeded the 
alert level at 99.41%. At t=25, the motion sensor starts reading 
false as the resident has settled back in his or her chair or bed.  

By t=27, the probability has dropped down to the warning level 
at 87.3%. The probability that the resident is standing without 
assistance will continue dropping for several more time slices, 
but will level off at roughly 72.7%. At t=65, the RFID sensor is 
activated as a staff member responds to the warning condition. 
This causes an immediate drop in the probability and at t=66 it 
has dropped below the warning level to 29.71% and by t=77, 
the probability has converged on 0.55%. At t=85, the staff 
member has finished assisting the resident to properly adjust 
the pressure sensor and is preparinng to leave the room. As a 
result, the motion sensor and RFID sensors are still active. This 
causes an additional decrease and at t=95, the probability has 
reached 0.00024%. As the staff member leaves the room, the 
motion and RFID readings cease, as in the previous model, 
which causes a slight increase in the probability to 0.0015% 

 As can be seen in Figure 6, this second model completely 
eliminates the second peak in probability that occurred in the 
initial model for this same use case. Looking back to the initial 
model in Figure 3 when the staff member entered the residents 
room at t=65, the probability that the resident was standing 
shot back up above the error condition and stayed there until 
t=85 when the resident was again situated back on the pressure 
sensor. Using our second DBN at t=65, the RFID sensor is 
activated as the staff member enters the room.  

 This immediately suppresses the probability down to a 
negligable level and not only eliminates the occurance of the 
error condition, but also deactivates the warning condition a 
full 20 time slices sooner. This does not lead to a loss in 
responsiveness as a staff member has already arrived in the 
residents room to assist them when the warning condition is 
terminated. 

IV. CONCLUSION 

Through this study, we studied 3 major questions.  First, it 
was possible to reduce the number of instances where staff 
members were errantly alerted to an emergency situation 
thought to be a physically unstable resident attempting to get 
out of his or her wheelchair or bed. This situation is commonly 

caused by misaligned pressure sensors. Although it is hard to 
determine this conclusively from a simulation, our second 
model suggests that this can be accomplished. Figure 6 shows 
this combination of sensors and a DBN were able to alert staff 
within a single time slice that an erratic accident occurs in the 
resident’s room. Although there was a slight adjustment period 
at t=20 where an emergency was signaled, the signal was 
quickly adjusted to the warning level allowing staff members 
to prioritize their current tasks before arriving and adjusting the 
pressure sensor. Alerting staff members using the wireless 
network rather than using an audible noise could also keep the 
resident from becoming agitated in a situation where it is 
clearly unnecessary. 

 In addition, Figure 5 demonstrates that a simulated situation 
where a physically unstable resident was genuinely trying to 
stand up without assistance could also be properly identified 
and staff could be alerted and when a staff member arrived to 
alleviate the situation the sensor network was able to adjust 
completely out of both the alert and warning levels 2 time 
slices. Assuming time slices are equal to seconds these delays 
would be in line with the amount of time it would typically 
take a staff member to respond to an audible alert. 

Lastly, simulating long sequences of static sensor readings 
for our models allowed us to identify a warning level of 50% 
and an alert level of 90% probability of a physically unstable 
resident attempting to stand. If the DBN produces a probability 
above our warning level it can be seen as a situation that needs 
to be dealt with soon and production of a probability exceeding 
the alert level can be seen as an emergency that needs to be 
dealt with immediately. 
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Abstract— A methodology and a tool that implements this 

methodology are developed using R to construct a web site that allows 
a lay user to consult statistical information owned by an institution and 
stored in a cloud database. This methodology was developed following 
the open-data philosophy and was implemented with open-source 
software using R as a key element. The proposed methodology was 
applied successfully to develop a tool to manage the data of the Centre 
d’Estudis d’Opinió, but it can be applied to another statistical center to 
enable open access to its data. The system is deployed on a cloud 
infrastructure that scales according to demand, implementing a 24/7 
solution. A user (or a computer program) can access the information 
on the website using the R language as a communication channel or 
using a programming application interface. Additionally, in the R 
language, a common framework can be defined to structure the various 
processes involved in any statistical operation. 

 
Keywords— Web; Cloud; R language; R-Serve; API; Surveys  

I. INTRODUCTION  
HE primary goal of the project is to develop a 

methodology that leads to the implementation of a tool to 
analyze statistical information online. This research has various 
facets. First, a mechanism must be defined to manage the large 
amount of data generated by the surveys and the studies, 
ensuring that the information remains safe and that the analysts 
can work with it. Second, a mechanism is required to define 
what information can be published on the web and what 
information is not ready to be published (e.g., information that 
must be anonymized). Finally, a mechanism is required to allow 
mass media, other research institutions, and the general public 
to work with the data to obtain new information. To solve these 
problems, a methodology was defined with the aim of 
simplifying the interaction with the data of all the actors 
involved. 

The tool that implements the proposed methodology (named 
UPCEO) addresses all of these various aspects; the last feature 
described in this paper allows the interaction of the users with 
the data. 

This project pursues the idea of open data, i.e., certain data 
should be freely available to everyone who desires to use them 
and republish them, as they wish. The concept of data open to 
everyone is not new. It was established with the formation of 
the World Data Center system (WDC) during the International 

Geophysical Year in 1957 – 1958 [1]. In the beginning, the 
WDC had centers in the United States, Europe, the Soviet 
Union and Japan, now it includes 52 centers in 12 countries. 
The Science Ministers of the Organization for Economic Co-
operation and Development (OECD) signed a declaration 
stating that all the information created or found by the public 
must be freely available [2]. Following this direction, certain 
legal tools, such as Open Data Commons [3] came into 
existence to simplify the use of Open Data over the Internet. In 
that sense, several tools exist that allow the final user to access 
information, such as the system in [4], a website devoted to the 
representation of information on a map, or the Socrata® system 
[5], a system that supports some interesting applications, such 
as Data.gov [6] that has the primary mission “.. to improve 
access to Federal data and expand creative use of those data 
beyond the walls of government by encouraging innovative 
ideas (e.g., web applications).” 

There not only exist several websites and tools to access 
information but also several applications that allow the reuse 
and sharing of code related to the access of public information, 
such as [7] or [8]. The next step is to allow users without 
technical knowledge to access the information and perform 
easy tasks with it. To do this, the user must be able to execute 
tasks on a remote server that stores both remote information and 
certain statistical functions. 

The possibility to allow end-users to execute certain 
statistical functions to obtain new information from the data 
were described by [9]. Several different tools exist to show 
information over the web and allow the execution of statistical 
functions by the end users, e.g., the NESSTAR system [10]. In 
parallel with these proprietary solutions, several efforts are 
focused to develop APIs to access statistical information. As an 
example, Data.org is preparing an API that allows users to 
interact with the system data to build their own applications and 
mash-ups; the [11] has also implemented an API to interact with 
its data. However, the question of how to develop and use these 
APIs remains. Every infrastructure that develops this type of 
solution implements a new API, and the developers must be 
able to address all of them. 

Another problem is related to the data preparation; several 
alternatives exist to define the surveys, e.g., [12] or [13]. These 
tools allow the user to export the data to various formats to 
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perform posterior analyses (a well-known format is the Triple-
S, an XML for survey software that enables the user to import 
and export surveys between different software). The main issue 
with this approach is that manual operations are required to 
process the data. In our proposed approximation, once the 
surveys are completed by the users, they can easily be uploaded 
in the system, and all of the answers can be related directly to 
the historical representation of each of the proposed questions. 

II. THE PROPOSED SOLUTION 
The statistical institutions that desire to publish complex 

studios often deal with complex and unstructured data. For this, 
we propose a methodology based on the R language [14] [15] 
that simplifies the CRUD (create, read, update and delete) 
operations that can be performed over the data. To be capable 
to interact with the data, it is necessary to define a flow for the 
statistical studies that a statistical institution wants to publish. 
To do so, it is first necessary to categorize the data that we own 
in the system. We have the surveys that are the elements that 
lead to obtaining information from the representative sample of 
the population of study. These surveys must also be managed 
by the system. In our proposal, they are represented by an initial 
matrix of data, containing the questions (and the answers to 
these questions). Because a survey can be related with other 
surveys (to obtain information over time), it is necessary to 
define a superstructure to relate the various initial matrixes 
between them at two levels: at the matrix level, and at the table-
field level.  

Additionally, often the data obtained from the survey cannot 
be published (maybe some information contained in the data are 
not anonymous), and hence some transformations to the data 
must be performed to assure the perfect anonymity of the data. 
After this is performed, several versions of a study can be 
published, for example, to correct errors detected in the data. 
The public must have access only to those matrixes of data that 
pass the necessary quality control, and the other matrixes are 
stored on the system as working matrixes but are not accessible 
to the general public. Every study has descriptors to identify the 
nature of the study and an identification number. For each one 
of the studies, at least one matrix representing the survey exists. 
All of the versions obtained from this work are stored in the 
study structure. Usually, this implies modifying the matrix 
structures or adding new information. For that, a working 
matrix exists, representing the last up-to-date matrix related to 
the studies. The definitive matrix is the matrix that the users can 
operate using R operations. 

Because various matrixes exist, different roles must be 
defined. Table 1 presents the minimum roles we propose to 
achieve with this approach. Each one of these roles has different 
privileges in the final application. For example, an analyst can 
add new studies, add new matrixes to the system, and modify 
working matrixes, whereas an external user can only perform 
the statistical operations allowed by the system with the 
definitive matrix. 

 
 

Table 1. System roles. 

Role Description 
Administrator:  
 

Controls access to the system and defines 
the roles of the other users. 

Analyst:  
 

Manages the information related to the 
studies (matrix, documentation, etc.) 

External:  
 

Can access the system to perform specific 
operations.  

 
To manage the matrices of data and allow a modification of 

these data over a cloud infrastructure, worldwide organizations 
are developing approaches to share statistical information over 
the Web using an API. From our point of view, this is not 
enough to address statistical information and data because of 
the inherent complexity of its nature, and this approach requires 
continuous modifications of the API functions to accommodate 
them to the new requirements of the users and institutions that 
use these data. In our approach, a statistical language is used, to 
provide a common mechanism to access all the information. 
The data contained in the proposed platform can be published 
over the internet using the statistical language itself. The result 
is that the user can interact with the system using the full power 
of the selected language, and there is no need to define new 
functions through the API to interact with the data. 

 

1.1 Beyond the API, using the R language 

In our approach, we select the R language [14] due to is 
power and because is a widely accepted language in the 
statistical community. R is a free software environment for 
statistical computing and graphics; see [16] [17] or the web site 
http://r-project.org. R software can be executed on a wide 
variety of UNIX platforms, on Windows, on Linux and on 
MacOS. 

This approach is opposite to the approach followed by API 
development. In this approach, the system allows an authorized 
user, or program, to access the data and obtain, using R syntax, 
all the data and information desired. The concern is related not 
with the implementation of new APIs or protocols to allow 
access to specific statistical information or data but with 
limiting the amount of information that can be obtained over the 
web. This implies limiting the R operations that can be 
implemented on the server. Fortunately, this configuration can 
be accomplished through the RServe package [18], which 
allows the user to define what instructions can be used over the 
web. 

The power of R does not rely only on strong statistical and 
graphical facilities but also on versatility. Any element of the 
research community can improve the system by adding new 
modules to perform statistical operations. One of the packages 
we need for our approach is RServe. R usually works in 
standalone applications, and to connect the different services to 
R, the R-Serve package must be used. R-Serve can be executed 
from a command. RServe is a TCP/IP server that allows other 
programs to use the R facilities from various languages without 
the need to initialize R or link to the R library [19]. Each 
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connection has a separate workspace and working directory, 
which is an essential feature for this project. 

The sequences to start using the service are (i) start the R 
console, (ii) on the console, load the RServe library, and (iii) 
start the RServe server. 

For most users, the default configuration is satisfactory; 
however, for this project, RServe must be configured to 
coordinate the different elements that comprise the system. 
RServe usually works with several default parameters that can 
be modified in the config file. The configuration file is located 
at /etc/Rserv.conf (on a Linux server, this location can be 
changed during compilation, specifying the option -
DCONFIG_FILE=<new path>). New configuration files can be 
added with the command --RS-conf (this is an argument in the 
command line). The complete documentation of the package 
can be found in [18]. 

1.1.1 Using R on the statistical study lifecycle 

Three main areas must be covered: the management of a 
questionnaire (starting a new study), the management of the 
matrixes related to the study, and the management of the 
operations that can be applied to the public matrixes of the 
study. In each one of these three areas, we propose to use R 
language as a basic element to simplify the interaction. This 
leads to a simplification in the maintainability and further 
expansion of the system. 

To prepare a new questionnaire, first and foremost, the 
questions must be defined. This is not an easy task because of 
the diversity of questions that can appear in a single 
questionnaire and also because the various surveys must 
consistently be related to each other to make it possible to 
obtain accurate conclusions over time. Various alternatives 
exists to prepare surveys, e.g., [12], or [13]. Using these 
alternatives, the questions can be defined, and they can be 
sorted on questionnaires that the respondents must answer. 
Often, these alternatives can export the data to various formats 
for posterior analysis (such as Triple-S). In our proposal, the 
relations between the various questions that compose the 
questionnaires must also be defined; this information (which 
can be stored in the database for its posterior use) helps us in 
the review of the complete history of the questions. The answers 
to the various questionnaires and the history of changes are also 
available. For example, if we include a question such as, “What 
party would you vote for in the next election?” and in a new 
version of a questionnaire, it changes to “If elections were to be 
held tomorrow, what party or coalition would you vote for?” we 
must keep the relation between both questions, indicating that 
they represent the same underlying concept. This simplifies the 
statistical use in the operations tool, merging the information to 
construct, for example, a time series. 

In that sense, the present approach simplifies the ulterior data 
management; however, this implies that the uploading process 
is not easy because it is necessary to create the relationships of 
the questions, surveys and answers in the database. 
Additionally, the matrix files can be large and represented in 
various formats. In our approach, all the information is 

transformed to a specific XML file that always has the same 
structure. This enables the user to work with surveys that have 
the answers in several formats, such as Excel, SPSS, Minitab or 
R, among many others.  

Thanks to the use of an XML base representation for the 
uploading and management of the data matrixes, it is possible 
to incorporate tools that access the questions. These questions 
can be presented to the user in various ways, i.e., editions. All 
of the editions of a question can be related, simplifying the 
operation of merging surveys. The users can build a new 
questionnaire, and after the questionnaires are defined in the 
system, they can be related in a matrix that contains the data 
obtained from the respondents. The key element of our 
proposed approach is to always retain the relation between the 
questions, the questionnaires and the answers.  

Finally, and because we propose to use the R language, the 
users can execute the operations written in R (from a subset of 
the allowed operations) with the data loaded on the system.In 
this approach, the relation between all of the various questions 
is preserved. Additionally, the R language will be used as an 
API to obtain information from the system instead of defining 
an API. 

III. THE UPCEO APPLICATION 
Three institutions are involved in this real project, the Centre 

d’Estudis d’Opinió (CEO), the InLab FIB and the Centre de 
Telecomunicacions i Tecnologies de la Informació (CTTI). The 
CEO is the official survey institute of the Generalitat de 
Catalunya. It handles the government’s political surveys, 
barometers, election studies, and other public opinion polls in 
Catalonia. As defined in their institutional functions, “It is a tool 
(the CEO) of the Catalan government aimed at providing a 
rigorous and quality service to those institutions and individuals 
interested in the evolution of Catalan public opinion.” One of 
its commitments is to make the information readily accessible 
to the public.  

InLab FIB is an innovation and research lab based in the 
Barcelona School of Informatics, Universitat Politècnica de 
Catalunya - Barcelona Tech (UPC) that integrates academic 
personnel from various UPC departments and its own technical 
staff to provide solutions to a wide range of demands that 
involve several areas of expertise. InLab FIB, formerly LCFIB, 
has more than three decades of experience in developing 
applications using the latest ICT technologies, collaborating in 
various research and innovation projects and creating 
customized solutions for public administrations, industry, large 
companies and SMEs using agile methodologies. 

The Centre de Telecomunicacions i Tecnologies de la 
Informació (CTTI) [20] is an infrastructure that can host all of 
the services that the various organizations that belong to the 
Generalitat de Catalunya requires. This infrastructure is 
maintained by a licensed private enterprise (now T-Systems). 
This is convenient for the project because, when the CEO 
publishes a new study, the quantity of resources required to 
supply the punctual demand can be bigger than the resources 
required in a usual day. Additionally, because CTTI ensures 
that the system is working 24/7, it can be convenient for the 
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daily work to provide the infrastructure for the CEO database 
to store all of the information regarding the studies. The CEO 
primarily manages surveys related to political public opinion. 
The studies derived from these surveys are published on the 
CEO website to ensure that the public has knowledge about the 
studies.  

We implement a system to simplify the management and use 
of statistical information over a web. The specific 
implementation is represented in Figure 1. The system is 
composed of different layers, each one of which is related to the 
various services that the system must provide. The web server 
is based on a WebLogic Oracle® application [21], using 
Apache Struts [22] [23] and Java as the infrastructure to define 
the interface of the system and to establish communication with 
the R system. The main purpose of using R is to implement 
various operations that deal with data (see 1.1.1). As an 
example, we use R to obtain the data from the matrix and the 
surveys that usually are in the original form of Excel 
spreadsheets, SPSS files or SAS files; here, R is used as the 
bridge between all of the various file formats. The R language 
can be used by users and other applications as an API to 
communicate with the system to obtain statistical data. In 
Figure 1, the structure of the system is shown. The entire system 
is on the CTTI cloud infrastructure. The various files related to 
the application are stored on an NAS system. The studies are 
stored in an Oracle database to manage the various files of the 
system. The R application is installed on the system with the 
RServe package, defining a set of operations (as an API) and 
publishing them on the internet using the WebLogic platform. 

 
 

 
Figure 1. System structure. 

From an operations point of view, when a user requests a 
specific study, he obtains its related documents, mainly .pdf 
files and links to other data related to the survey. With these 
data, the user can perform various operations (with R), 
obtaining new data and information. These results can then be 
exported in CSV file format that can be analyzed in more detail 
using any statistical package. As shown in Figure 1, the matrix 
is stored in its original form on the NAS, implying that various 
formats must be stored in the system. This way, the information 
generation process can be reproduced exactly as it was by the 
analyst. 

The main file formats that can be used by the CEO analyst 
are Excel spreadsheets, SPSS .sav files and .csv files. R is a key 
element to manage this diversity of formats. Because the 

application uses R, the information can be read and operated. R 
can also store or export the new matrix of data in a new format 
that can be stored again in the database or managed by an 
external user. 

The various functionalities in the system are: 
Questionnaire manager manages the questions related to 

each one of the different questionnaires of the system; see 
Figure 2 and Figure 3. In our approach, all of the questions must 
be related to allow a temporal analysis of the data stored on the 
database. 

Matrix manager manages the information related to the 
matrix generated by the surveys; see Figure 4. 

Operation shows the information to the users and other 
applications (websites) through the R language. 

The application can be accessed at 
http://ceo.gencat.cat/ceop/AppJava/pages. The website is in the 
Catalan language, and the option that gives access to the 
operations is “Banc de dades del BOP,” located at the bottom 
of the page. This option leads users to the page where a specific 
study, 
http://ceo.gencat.cat/ceoa/AppJava/OperacionsExtern.do, is 
found. This initial listing shows the latest studies performed by 
the CEO analysts. 

 

 
Figure 2. The process of creating a new question is integrated into the 
application, simplifying the process of reuse and relating the questions 
of all the questionnaires that exist in the system, as is proposed by our 
approach. 
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Figure 3. The process of defining a new survey can be performed 
entirely in the application, simplifying the survey management, as well 
as its posterior use. 

 
Figure 4. Uploading a new matrix containing the data of a survey to 
the system. 

IV. UPCEO IMPLEMENTATION AND CALIBRATION 
The entire application resides as a cloud solution supported 

by the Generalitat de Catalunya, hosted by the Centre de 
Telecomunicacions i Tecnologies de la Informació (CTTI). In 
this cloud solution, the options to work and to modify the 
upload code are limited, as is explained in section A. Because 
of the complexity of the structure and the required security 
concerns, a test infrastructure was implemented to test and 
implement the R operations. The test infrastructure is composed 
of a server and a client. On the server side, a machine acts as a 
Web server (using IBM WebLogic), hosting the MySQL 
database, storing the data on the NAS (Network Attached 
Storage) and executing R-Serve. On the client side, a java 
program (implemented on NetBeans and named JGUIforR; see 
Figure 5) is used to define the GUI and the R code needed to 
execute the operations and manage the matrixes. 

The client application must first be connected with the server 
side. The IP of the R server instance we want to use is defined. 
In this case, the application is connecting with a server that is 
executed on the same machine as the JGUIforR. 

Once this is completed, the connection with the server is 
established using the File menu. Two options are available. 
RComand implies that the user is working with a local instance 
of R. In that case, it is not necessary to define the IP. 
RComandTCP implies that the user is working with a remote 
instance of R; in that case, the IP of the remote server must be 
defined. 

If the connection is established without error, a message 
appears in the R Comands window showing the version of the 
R engine used on the server side. 

To start working, a dataset must be selected, in this case, an 
SPSS® dataset. Opening a new dataset is as easy as going to 
the File menu and selecting a new Matrix of data. 

Once the matrix is loaded, a message is shown to the user in 
the R Comands area, as shown in Figure 5. At this point, all 
the operations are active, and the user can start working with 
the matrix. 

 

 
Figure 5. Matrix successfully loaded. All of the options are now 
activated, and the user can start working with the matrix. The source 
code of JGUIforR can be downloaded for free at 
https://svn.java.net/svn/jguiforr~jguifor/. 

CEO analysts use this software to understand the operations 
that the system publishes and to understand the behavior desired 
in the final implementation of the client, using, in that case, 
Apache struts [22] to build the website. 

As shown in Figure 5, the operations are divided into two 
main groups. The first includes the preparation of the matrix, 
selection of a portion of the data of the entire matrix, 
segmentation of the matrix, weighting of some of the columns 
of the matrix and recodification. The other operations that can 
be executed operate over this matrix (calculating the mean, the 
max, the min values, compiling a contingency table or 
performing a mean comparison between two variables, etc.). 

A. Deploying the system 
After the operations perform as expected on the Java 

platform, the system can be deployed on the CTTI 
infrastructure. This project represents the first deployment of 
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RServe on the CTTI infrastructure, which implies the need to 
define roles and protocols to ensure 24/7 support. The system 
also has high security concerns. First, the application is 
deployed on the working server, a machine accessible only to 
the computers located at the InLab FIB laboratory. Once the 
application passes the tests on this machine, it is deployed at the 
integration level of the CTTI infrastructure. Here, the 
application is tested in an environment that is not equal to the 
production environment but has similar security levels and the 
same software. After the application performs well there, it can 
be deployed to a preproduction level. Here, the application runs 
on an exact replica of the final infrastructure, on the same 
hardware and executing the same software that the application 
will find in the production environment. At this level, a set of 
tests are performed, and the application must pass all of them to 
be deployed to the production level. 

At the production level, the application is available for public 
use. This is the last step of the deployment, and the current state 
of the case presented here. Once the system is deployed, the 
operations performed by the user must never modify the 
information stored in the server. The system must also be able 
to store information regarding the various activities that each of 
the users performs. 

When an operation is selected, the R syntax is stored in the 
database. This syntax is not executed immediately on the 
system; it is only executed when the user requests results (for 
example, executes the operations of basic statistics, a 
contingency table or a mean comparison). This is because the 
time required to perform an operation bottlenecks at the 
transference of the data and establishing the connections 
between the client and RServe. After the connections are 
established (less than a minute), R performs well and returns 
the new data very fast. 

V. CONCLUDING REMARKS 
This study develops a novel approach to present statistical 

information over the web following the open-data philosophy. 
In this approach, the R statistical package is a key element to 
manage and display the information, allowing the user to 
perform a number of statistical operations with the data.  

From the point of view of data management, the structure of 
the surveys, the structure that relates the questionnaires and the 
questions and the related matrix that contains the data, often 
follow different formats in a real environment. This is true even 
if a single team manages the information because technology 
changes and the tools used can be diverse, depending on the 
objectives of the specific work. This ecosystem of data formats 
often makes working with the data more difficult. Thus, 
mechanisms are necessary to translate the information from one 
format to another. Often, these mechanisms are prone to errors 
and require the use of tools that are often not well-known by all 
of the members of the team. In this approach, R is the bridge 
between the various formats that are stored in the database and 
is also the language used to recover and work with the 
information contained in the system. Thus, the CEO analysts 
store the information in the system using the format they use 
and understand, and the system is able, using R, to work with 

the data and to formulate new matrixes of data that can be used 
again by the experts using their common statistical tools. 

Because the system must be able to work at all times, a cloud 
solution must be implemented to simplify the management of 
the infrastructure. The amount of access of the external users 
depends on several factors, e.g., when a new study is offered to 
the public. This implies that, at times, the traffic to the site is 
heavy, an aspect that can become a problem for the servers and 
site management. The cloud solution proposed stores all the 
information obtained from the CEO studies, allowing 24/7 
access to all the information by all the users, and allowing, 
depending on the user role, the manipulation of the data and the 
creation of new information and matrixes. Working with the 
data is accomplished using R as a statistical engine; a user can 
execute queries and obtain new information regarding the 
matrixes of data related to a survey. Additionally, because all 
the operations implemented use R syntax, adding new 
operations is easy and only requires the addition of a new R 
code and the definition of a new interface. Thus, the systems 
implemented based on this approach are extremely scalable and 
expandable. 

Since all of the access to the statistical information is based 
on the R language, new websites or applications (such as 
JGUIforR) can be developed that access the data through the 
use of R statements. This implies that the application goes 
further than the definition of an API because it uses a statistical 
language. The power and extensibility of R ensures that we can 
obtain all the information needed, and the user must only define 
the subset (if it is needed) of the R instructions that an external 
user (application or website) can execute. Currently, 
researchers from various Catalonian institutions are building 
their own mash-ups using the application. In the future, more 
capabilities will be added to the application by adding new R 
language instructions open to public use. There is an additional 
goal of open access to the institutions, allowing them to access 
all the information from the CEO servers and define the queries 
they need for each application (in the broad sense that an 
application can be a simple query that can reside in a 
spreadsheet, or a complete web application with various mash-
ups). 

Last but not least, a set of operations can be defined as an R 
script. This definition implies that repetitive operations can be 
performed with fewer errors and in less time. 
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Abstract—In this paper, Hirota’s bilinear method is extended to 

the new and more general AKNS equations with variable coefficients. 
As a result, one-soliton solutions and two-solition solutions are 
obtained, from which the uniform formulae of n-soliton solutions are 
derived. It is shown that the Hirota’s bilinear method can also be used 
for constructing multisoliton solutions of some other nonlinear partial 
differential equations with variable coefficients. 
 

Keywords—Multisoliton solution, Hirota’s bilinear method, 
AKNS equations with variable coefficients.  

I. INTRODUCTION 
t is well known that nonlinear physical phenomena are often 
related to nonlinear partial differential equations (PDEs), 

which are involved in many fields from physics to biology, 
chemistry, mechanics, etc. As mathematical models of the 
phenomena, the investigation of exact solutions of nonlinear 
PDEs will help to understand these phenomena better. With the 
development of soliton theory, finding multisoliton solutions of 
nonlinear PDEs has gradually developed into a significant 
direction in nonlinear science and some effective methods have 
been proposed and developed, such as the inverse scattering 
transformation [1], Hirota's bilinear method [2], Bäcklund 
transformation [3], Painlevé expansion [4], homogeneous 
balance method [5], and the function expansion methods and 
some others [6]-[14]. Among these methods, Hirota’s bilinear 
method [2] is a purely algebraic method used for constructing 
multisoliton solutions of nonlinear PDEs, the process of which 
is fairly simple and convenient for computer operation. Not 
only is it applicable to KdV equation, mKdV equation and 
sine-Gordon (sG) equation, but also can be used for nonlinear 
differential-difference equations (DDEs) [15]-[22]. More and 
more studies show that the Hirota’s bilinear method is a more 
extensively applicable approach to solve nonlinear PDEs. 
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Recently, the study of variable-coefficient PDEs has attracted 
much attention because most of real nonlinear physical 
equations possess variable coefficients. 

In this article, we will extend Hirota’s bilinear method to 
construct multisoliton solutions of the following new and more 
general AKNS equations 

2
3 2( )( 6 ) ( )( 2 )t xxx x xxq a t q qrq a t q q r= − + − +                      

1 0( ) ( )xa t q a t q+ − ,                                         (1.1a) 

2
3 2( )( 6 ) ( )( 2 )t xxx x xxr a t r qrr a t r r q= − + −                   

1 0( ) ( )xa t r a t r+ + .                                      (1.1b) 

which is a special case at 3m =  of the generalized AKNS 
hierarchy with variable coefficients 

0
( )

m
i

i
it

q q
a t L

r r=

−   
=   

   
∑ , ( 1,2, )m =  ,       (1.2) 

where the recursion operator is employed as 

12 ( , )
q

L r q
r

 
       

, 
1 0

0 1


      
, 

x





, 

1 1 d d
2

x

x
x x






        . 

If setting ( ) 1ma t = , 1 1 0( ) ( ) ( ) 0ma t a t a t− = = = = , then 
from (1.2) we can obtain the following known 
constant-coefficient AKNS hierarchy [20]: 

m

t

q q
L

r r
−   

=   
   

, ( 1,2, )m = 

.              (1.3) 

It should be noted that (1.1) includes the KdV equation, the 
MKdV-NLS equation as special cases as long as selecting 

3 ( ) 1a t = − , 2 1 0( ) ( ) ( ) 0a t a t a t= = = , 1r = −  and 3 ( ) 1a t = − , 

2 ( )a t i= , 1 0( ) ( ) 0a t a t= = , r q= − , respectively.  
The rest of this paper is organized as follows. In Section 2, 

we extend Hirota’s bilinear method for constructing 
multisoliton solutions of the variable-coefficient AKNS 
equations (1.1). In Section 3, we conclude this paper. 

Multisoliton solutions to a generalized AKNS 
equations with variable coefficients 
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II. MULTISOLITON SOLUTIONS 
Firstly, we take the following transformation: 

( , )
( , )

g x tq
f x t

 , 
( , )
( , )

h x tr
f x t

 ,                  (2.1) 

and then obtain the bilinear forms of (1.1) as follows: 
3 2 1

3 2

3( )[ ( 2 ) ]t x x xD g f a t D g f D f f gh D g f
f

⋅ = ⋅ − ⋅ + ⋅      

2 2
2 ( )[ ( 2 )]x x

ga t D g f D f f gh
f

+ − ⋅ + ⋅ +          

1 0
1 0( ) ( )x xa t D g f a t D g f+ ⋅ − ⋅ ,              (2.2a) 

3 2 1
3 2

3( )[ ( 2 ) ]t x x xD g f a t D g f D f f gh D g f
f

⋅ = ⋅ − ⋅ + ⋅      

2 2
2 ( )[ ( 2 )]x x

ga t D h f D f f gh
f

+ ⋅ − ⋅ +             

1 0
1 0( ) ( )x xa t D h f a t D h f+ ⋅ + ⋅ .              (2.2b) 

Further supposing that 
2 2 0xD f f gh⋅ + = ,                       (2.3) 

then (2.2) are reduced to: 
3 2 1

3 2 1[ ( ) ( ) ( )t x x xD a t D a t D a t D− + −                                  
0

0 ( ) ] 0xa t D g f+ ⋅ = ,                                       (2.4a) 
3 2 1

3 2 1[ ( ) ( ) ( )t x x xD a t D a t D a t D− − − ,                                

 0
0 ( ) ] 0xa t D h f− ⋅ = ,                                        (2.4b) 

here the following Hirota’s bilinear operator is employed: 
( , ) ( , )m n

t xD D g x t f x t⋅ .                                                           

* * * *

* *

,
( ) ( ) ( , ) ( , )m n

t tt x x x t t
g x t f x t

= =
= ∂ − ∂ ∂ − ∂ . (2.5) 

Especially,  (2.5) gives 0 0 0x tD g f D g f⋅ = ⋅ = . 
We next construct multisoliton solutions of (1.1) by means 

of (2.3) and (2.4). For the one-soliton solution, we suppose 
2 (2 )

1
1 i i

i
f fε

∞

=

= + ∑ , 2 1 (2 1)

1

i i

i
g gε

∞
− −

=

= ∑ ,       (2.6a) 

2 1 (2 1)

1

i i

i
h hε

∞
− −

=

= ∑ ,                      (2.6b) 

and substitute them into (2.3) and (2.4) and then collect the 
coefficients of the same order of ε  yields a system of 
differential equations 

(1) (1) (1) (1)
3 2 1( ) ( ) ( )t xxx xx xg a t g a t g a t g− + −                        

(1)
0 ( ) 0a t g+ = ,                                       (2.7a) 

(1) (1) (1) (1)
3 2 1( ) ( ) ( )t xxx xx xh a t h a t h a t h− − −                          

(1)
0 ( ) 0a t h− = ,                                       (2.7b) 

(2) (1) (1)
xxf g h= − ,                                                 (2.7c) 

3 2 1 0
3 2 1 0[ ( ) ( ) ( ) ( ) ]t x x x xD a t D a t D a t D a t D− + − +         

(3) (1) (2)( 1 ) 0g g f⋅ + ⋅ = ,                        (2.7d) 
3 2 1 0

3 2 1 0[ ( ) ( ) ( ) ( ) ]t x x x xD a t D a t D a t D a t D− − − −         

(3) (1) (2)( 1 ) 0h h f⋅ + ⋅ = ,                         (2.7e) 
and so forth. If letting 

1(1) eg ξ= , 
3

0
1 1 1 1

0
( 1) ( )dj j

j
j

k x k a t tξ ξ
=

= − − +∑ ∫ ,  (2.8a) 

1(1) eh η= , 
3

0
1 1 1 1

0
( )dj

j
j

l x l a t tη η
=

= + +∑ ∫ ,             (2.8b) 

be two solutions of (2.7a) and (2.7b), from (2.7c) we obtain 

1 1 13(2) ef ξ η θ+ += , 13
2

1 1

1e
( )k l

θ = −
+

.             (2.9) 

Substituting (2.9) into (2.7d)-(2.7e) and those behind, we can 
verify that if 

                       (3) (3) (4) 0g h f    ,               (2.10) 
then (2.7d)-(2.7e) and those behind all hold. In this case, we 
write 

1 1 13
1 1 ef      , 1

1 eg  , 1
1 eh  ,         (2.11) 

and hence obtain the following one-soliton solutions of (1.1): 
1

1 1 13

e
1 e

q
ξ

ξ η θ+ +=
+

, 
1

1 1 13

e
1 e

r
η

ξ η θ+ +=
+

.             (2.12) 

 

 
Fig. 1. Spatial structure of one-soliton solution q  of  (2.12). 

 

 
Fig. 2. Spatial structure of one-soliton solution r  of  (2.12). 
 
In Figs. 1 and 2, the spatial structures of one-soliton 

solutions (2.12) are shown, where the parameters are selected 
as 1 1.2k = , 1 1l = , 0 ( ) 0.5secha t t= , 1( ) eta t = , 2 ( ) sina t t= , 

2
3 ( ) 1 0.5a t t= + , 0

1 0ξ = , 0
1 iη π= . 

If selecting 
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1 2(1) e +eg ξ ξ= ,                                                                  
3

0

0
( 1) ( )dj j

i i i j i
j

k x k a t tξ ξ
=

= − − +∑ ∫ , 1,2i =       (2.13a) 

1 2(1) e +eh η η= ,                                                                   
3

0

0
( )dj

i i i j i
j

l x l a t tη η
=

= + +∑ ∫ , 1,2i =                 (2.13b) 

then a direct computation gives 
 1 1 13 2 1 231 2 14 2 2 24(2) e +e +e +ef ξ η θ ξ η θξ η θ ξ η θ+ + + ++ + + += ,  (2.14a) 

1 2 1 12 13 23 1 2 2 12 14 24(3) e +eg ξ ξ η θ θ θ ξ ξ η θ θ θ+ + + + + + + + + += ,       (2.14b) 
1 1 2 13 14 34 2 1 2 23 24 34(3) e +eh ξ η η θ θ θ ξ η η θ θ θ+ + + + + + + + + += ,       (2.14c) 
1 2 1 2 12 13 14 23 24 34(4) ef ξ ξ η η θ θ θ θ θ θ+ + + + + + + + += ,                  (2.14d) 

where 
12 2

1 2e ( )k kθ = − − , 34 2
1 2e ( )l lθ = − − ,                  

( 2)

2

1e
( )

i j

i jk l
θ + = −

+
, , 1,2i j = .           (2.15) 

 

 
Fig. 3. Spatial structure of one-soliton solution q  of  (2.18). 

 

 
Fig. 4. Spatial structure of one-soliton solution r  of  (2.18). 
 
Substituting (2.14) into (2.7c)-(2.7e) and those behind, we 

can verify that if 
                       (5) (5) (6) 0g h f    ,             (2.16) 

then (2.7c)-(2.7e) and those behind all hold. In this case, we 
write 

1 1 13 2 1 231 2 14
2 1+e +e +ef                                             

1 2 1 2 12 13 14 23 24 342 2 24+e +e                      , (2.17a) 

1 2 1 12 13 231 2
2 e +e +eg                                                   

1 2 2 12 14 24+e          ,                                     (2.17b) 
1 1 2 13 14 341 2

2 e +e +eh                                                   
2 1 2 23 24 34e          ,                                    (2.17c) 

and hence determine the following two-soliton solutions of 
(1.1): 

2

2

gq
f

 , 2

2

hr
f

 .                         (2.18) 

In Figs. 3 and 4, the spatial structures of two-soliton 
solutions (2.18) are shown, where we select the parameters as 

1 0.6k = , 2 1.1k = , 1 0.7l = , 2 0.4l = , 0 ( ) 0.5secha t t= , 

1( ) eta t = , 2 ( ) sina t t= , 2
3 ( ) 1 0.5a t t= + , 0

1 0ξ = , 0
2 0ξ = , 

0
1 iη π= , 0

2 iη π= . 
Generally, if taking 

(1)

0
e i

n

i
g ξ

=

= ∑ ,
3

0

0
( 1) ( )dj j

i i i j i
j

k x k a t tξ ξ
=

= − − +∑ ∫ ,  (2.19a) 

(1)

0
e i

n

i
h η

=

= ∑ , 
3

0

0
( )dj

i i i j i
j

l x l a t tη η
=

= + +∑ ∫ ,       (2.19b) 

then the solutions of (2.7a)-(2.7e) and those equations behind 
can be expressed by 

2 2

1 1
1

0,1
( )e

n n

i i i j ij
i i j

nf A
µ ξ µ µ θ

µ

µ = ≤ <

+

=

∑ ∑
= ∑ ,                 (2.20a) 

2 2

1 1
2

0,1
( )e

n n

i i i j ij
i i j

ng A
µ ξ µ µ θ

µ

µ = ≤ <

+

=

∑ ∑
= ∑ ,                 2.20b) 

2 2

1 1
3

0,1
( )e

n n

i i i j ij
i i j

nh A
µ ξ µ µ θ

µ

µ = ≤ <

+

=

∑ ∑
= ∑ ,                 (2.20c) 

3
0

0
( 1) ( )dj j

i i i j i
j

k x k a t tξ ξ
=

= + − +∑ ∫ ,        (2.20d) 

3
0

0
( )dj

i i i j i
j

l x l a t tη η
=

= + +∑ ∫ ,                   (2.20e) 

2e ( )ij
i jk kθ = − − , ( )( ) 2e ( )i n j n

i jl lθ + + = − − ,   (2.20f) 

( )

2

1e
( )

i j n

i jk l
θ + = −

+
, , 1,2, ,i j n=  ,       (2.20g) 

we can obtain the following uniform formula of the n-soliton 
solutions of (1.1): 

n

n

gq
f

 , n

n

hr
f

 .                           (2.21) 

where the summation 0,1µ =Σ  refers to all possible 

combinations of each 0,1iµ =  for 1,2, ,i n=  , 1( )A  , 

2 ( )A   and 3 ( )A   denote that when we select all the possible 
combinations 0,1jµ = ( 1,2, ,2 )j n   the following 

conditions hold, respectively 
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1 1

n n

j n j
j j

  
 

  , 
1 1

1
n n

j n j
j j

  
 

   ,                 

1 1

1
n n

j n j
j j

  
 

   .                                

To the best of our knowledge, the obtained one-soliton 
solutions (2.12), two-soliton solutions (2.18), and n-soliton 
solutions (2.21) are new, they have not been reported in 
literature.  

III. CONCLUSIONS 
We have successfully obtained one-soliton solutions, 

two-soliton solutions and the uniform formulae of n-soliton 
solutions of a new AKNS equations with variable coefficients 
through Hirota’s bilinear method. It is easy to see that the 
obtained one-soliton solutions (2.12), two-soliton solutions 
(2.18) and n-soliton solutions (2.21) include integrable 
functions 1( )t , 2 ( )t  and 3 ( )t , which provide enough 
freedom for us to describe enrich structures of these obtained 
soliton solutions. In the procedure of extending Hirota’s 
bilinear method to the variable-coefficient AKNS equations 
(1.1), one of the key steps is to reduce (1.1) to the bilinear forms 
(2.3) and (2.4) by the transformation (2.1) introduced in this 
work. This paper shows that Hirota’s bilinear method may 
provide us with an effective mathematical tool for constructing 
multi-solition solutions of some other nonlinear PDEs with 
variable coefficients. This is our task in future. 
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Abstract—In this paper we try to generalize certain results of the 

spectral theory for a single S -decomposable ( S -spectral) operator 
to S -decomposable ( S -spectral) systems of operators. We 
investigate the behaviour of S -decomposable ( S -spectral) systems 
with respect to direct sums, by proving that the direct sum of two 
operator systems is an S -decomposable ( S -spectral) system if and 
only if each system is S -decomposable ( S -spectral); then one can 
prove several remarks concerning projections, separate parts of the 
Taylor spectrum, etc. Some of the previous general properties can be 
easily obtained as corollaries of certain theorems from homology and 
cohomology theory and from exterior product theory, but we also do 
some natural changes and basic calculations. 

The spectral decompositions are related to differential equations 
and to systems of differential equations ([20]) and can have various 
applications in quantum mechanics, in bifurcation and fractal theories 
([3]). 

Keywords— S -decomposable ( S -spectral) system; S -spectral 
capacity ( S -spectral measure); exterior form; homology and 
cohomology modules. 

I. PRELIMINARIES 

ET document nE  be the exterior algebra 
generated by n -tuple of indeterminates 

( )1 2, ,..., ns s sσ =  over the field of complex numbers   

([21] ). nE  is the complex algebra with identity e  satisfying 

the relations i j j is s s s∧ = − ∧ , where by 

( ),i j i js s s s→ ∧  we denote multiplication in nE . The 

algebra nE  is graded and 

0

n n
p

p

E E
∞

=

= ⊕∑ , where n
pE  is 

generated by the elements of the form 
1 2

...
pj j js s s∧ ∧ ∧ , 

with 1 21 ... pj j j n≤ ≤ ≤ ≤ ≤ , for 0p > , 

n n n
p q p qE E E +∧ ⊂ . We take 0

nE ≈  , where the elements 

of 0
nE  represent multiplies of the identity. Also, n

nE ≈   

 
 

has the single basis element 1 2 ... ns s s∧ ∧ ∧  and 

( )0n
pE = , for p n> . 

Let X  be a Banach space and let 

( ) ( )1 2, ,..., na a a a X= ⊂ B  be a system of commuting 

operators. Let A  be a complex algebra of operators whose 
centre containing the operators 1 2, ,..., na a a . We denote by 

[ ] ( ),p n n
p pX E X X EσΛ = = ⊗



 ([16], [21]) the 

space of all exterior forms of degree p  in s , having 

coefficients in X . The space [ ],p XσΛ  can be viewed as 

a module over any operator algebra A , having the above 

property. By writing x s  for x s⊗ , , nx X s E∈ ∈ , we 

note that [ ],p XσΛ  is composed by elements written as: 

1 2 1 2
1 2

1 2

...
1 ...

...

... ,
p p

p

p

j j j j j j
j j j n

j j j

x s s s

x X

ψ
≤ < < < ≤

= ∧ ∧ ∧

∈

∑

, for 0p > . 

We have the equalities [ ] [ ]0 , ,nX X Xσ σΛ = Λ =  and 

also we put [ ], 0p XσΛ =  for 0p <  or p n> . 
Through the spectrum of a system 

( ) ( )1 2, ,..., na a a a X= ⊂ B  one comprehends, broadly 

speaking, the complement in n
  of the set of all 

( )1 2, ,..., n
nz z z z= ∈  having the property of 

nonsingularity for the system 
( )1 1 2 2, ,..., n nz a z a z a z a− = − − − . Using the sense 

given to the notion of nonsingularity, one can obtain several 
notions of the spectrum. We are interested in the Taylor 
spectrum ([21]), because it seems to have more advantages 
over the classical ones. 

According to J.L. Taylor, the nonsingularity for the 
system z a−  means the exactness of a certain sequence 
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(determined by using the space and the operators). This 
sequence is a variant of the elementary sequence 

0 0z aX X−→ → →  
that – in the case of a single operator – shows the property of 
z a−  being both one to one and onto. 

There are two types of sequences used to define the 
nonsingularity of a system of operators: the Koszul chain 
complex ([17]) or the cochain complex very much similar 
with a complex of differential forms. Both of them can be 
described in terms of exterior algebra; a natural duality 
between the two complexes makes them simultaneously exact 
and therefore it define the same notion of nonsingularity. 

The common space basis of the two complexes is 

represented by the space [ ],p XσΛ  and both complexes 
are different only through the link operators (boundary and 
coboundary operators, respectively). 

If 1 p n≤ ≤ , we denote by  

( ) [ ] [ ]1: , ,p p
p p a X Xδ δ σ σ−= Λ → Λ  

the operator defined by 

( ) ( )
1 1

1

1
ˆ... 1 ... ...

p i p

p
i

p j j i j j j
i

x s s a x s s sδ −

=
∧ ∧ = − ∧ ∧ ∧ ∧∑

 
and 

( )1 1 1 1
1 1

... ...
1 ... 1 ...

... ...
p p p p

p p

p j j j j p j j j j
j j n j j n

x s s x s sδ δ
≤ < < ≤ ≤ < < ≤

 ∧ ∧ = ∧ ∧
 
 

∑ ∑

 

where the circumflex accent placed over an element marks its 
absence; for 0p ≤  or p n> , we put 0pδ = .  

We also denote by  

( ) [ ] [ ]1: , ,p p p pa X Xδ δ σ σ+= Λ → Λ  

the homomorphism that acts on an exterior form 

[ ],p Xψ σ∈ Λ , defined by the left exterior multiplication 

of this form by 1 1 ... n na s a sα = + +  (i.e. ψ α ψ→ ∧ ); 

for 0p ≤  or p n> , we put 0pδ = ). Using the 

commutativity of the system ( )1 2, ,..., na a a a= , the 

relations 1 0p pδ δ + =  and 1 0,p p pδ δ+ = ∈  are 

verified. The chain complex composed by the modules 

[ ],p XσΛ  and the boundary operators ,p pδ ∈  is 

called the Koszul complex associated with the system 
( ) ( )1 2, ,..., na a a a X= ⊂ B  and it is denoted by 

( ),E X a . The chain complex represented by the modules 

[ ],p XσΛ  and the coboundary operators ,p pδ ∈  is 

denoted by ( ),F X a . Hence we have 

( ) [ ] [ ]

[ ] [ ] [ ]

1

3 2 1

1

2 1 0

, : 0 , ,

... , , , 0

n nn nE X a X X X

X X X X

δ δ

δ δ δ

σ σ

σ σ σ

−−→ = Λ →Λ →

→Λ →Λ →Λ = →

 

and 

( ) [ ] [ ] [ ]

[ ] [ ]

0 1 2

2 1

0 1 2

1

, : 0 , , ,

... , , 0
n n

n n

F X a X X X X

X X X

δ δ δ

δ δ

σ σ σ

σ σ
− −

−

→ = Λ → Λ →Λ →

→ Λ → Λ = →
. 

Broadly speaking, the above sequences are not exact. The 
homology modules of the Koszul complex ( ),E X a  are the 

sequences of quotients A -modules: 

( )

( ) ( )1 1
1

,

Ker : / Im : ,

p
p p p p

p p

H X a

pδ δ+ −
+

=

Λ → Λ Λ → Λ ∈
 

and the cohomology modules of chain complex ( ),F X a  are 
denoted by 

( )

( ) ( )1 1 1

,

Ker : / Im : ,

p

p p p p p p

H X a

pδ δ+ − −

=

Λ → Λ Λ → Λ ∈

. 

One can easily verify that the two complexes ( ),E X a  and 

( ),F X a  are equivalent with respect to the notion of 
exactness ([16]). 

 
Definition 1.1. ([16]) The system 

( ) ( )1 2, ,..., na a a a X= ⊂ B  is said to be nonsingular on 

X  if the Koszul complex ( ),E X a  is exact or, 

equivalently, the complex ( ),F X a  is exact. The set of those 

( )1 2, ,..., n
nz z z z= ∈  for which the system 

( )1 1,..., n nz a z a z a− = − −  is nonsingular on X  is 

called the resolvent set of a  on X  and is denoted by 

( ),r a X . The complement in n
  of this set, 
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( )\ ,n r a X , is said to be the spectrum of a  on X  and 

is denoted by ( ),a Xσ . 
 

We shall use the following spaces of X -valued 

functions defined on an open set nU ⊂  : ( ),U XB  – the 
space of all continuous functions admitting (in the distribution 
sense) continuous partial derivatives with respect to 

1 2, ,..., nz z z  ([17]); ( )0 ,U XB  – the subspace of 

( ),U XB  consisting of all functions with compact support; 

( , )C U X∞  – the space of all continuous functions admitting 

partial derivatives of any order; ( )0 ,C U X∞  – the subspace 

of ( ),C U X∞  consisting of all functions with compact 

support; ( ),U XU  – the space of analytic functions on U . 
In addition, we permanently use the fact that 

( ) ( ), ,U X C U X∞=B  ([24]). 

If nU ⊂   is open, F  is one of the function spaces 
described above and ( )1 2, ,..., ns s sσ =  is a system of 
indeterminates, then we denote by α  the operator that acts on 

an exterior form [ ],pψ σ∈ Λ F  in indeterminates 

( )1 2, ,..., ns s sσ =  with coefficients in F  ([22]), in the 
following way: 
( )( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 ... ,n nz z a s z a s z a z z Uαψ ψ = − + − + + − ∧ ∈ 

 
and we also denote by α ⊕ ∂  the operator that acts similarly 

on the exterior forms [ ],p d zψ σ∈ Λ ∪ F  in 

indeterminates σ  and ( )1 2, ,..., nd z d z d z d z=  with 

coefficients in F  ([22]): 

( )( )( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 1
1

... ...n n n n
n

z z a s z a s z a s d z d z z
z z

α ψ ψ
 ∂ ∂

⊕ ∂ = − + − + + − + + + ∧ ∂ ∂ 

. 

 
Definition 1.2. ([16]) The analytic resolvent set of x  with 
respect to ( ) ( )1 2, ,..., na a a a X= ⊂ B  is the set of all 

( )1 2, ,..., n
nz z z z= ∈  such that there are an open 

neighborhood V  of z  and n  X -valued analytic functions 

1 2, ,..., nf f f  on V , satisfying the identity  

( ) ( ) ( ) ( )1 1 1 ... ,n n nx a f a f Vζ ζ ζ ζ ζ= − + + − ∈ . 

The complement of this set in n
  is said to be the analytic 

spectrum of x  with respect to a . We shall denote them by 

( ),a xρ , respectively ( ),a xσ . 
 

Definition 1.3. ([16]) The resolvent set of x  with respect to 

( ) ( )1 2, ,..., na a a a X= ⊂ B , denoted by ( ),r a x , is 

the union of all open sets V  in n
  having the property that 

there is an exterior form 

( )1 , ,n d z C V Xψ σ− ∞ ∈ Λ ∪   satisfying the equality 

( )

( ) ( )

( )

1 2

1 1 1 1
1

...

... ...

n

n n n n
n

x s s s

z a s z a s d z d z
z z

zψ

∧ ∧ ∧ =

 ∂ ∂
− + + − + + + ∂ ∂ 

∧
. 

The complement in n
  of this set is called the spectrum of 

x  with respect to a  and is denoted by 

( ) ( ), \ ,nsp a x r a x=  . 
 

In order to obtain a global solution ψ  for the 

equation ( )s x α ψ= ⊕ ∂ , it is necessary that the system 

( ) ( )1 2, ,..., na a a a X= ⊂ B  to satisfy a similar 
condition to the single-valued extension property from the 
case of a single operator. This condition is expressed by the 
following cohomology property: 

 
Definition 1.4. ([16]) We say that the system 

( ) ( )1 2, ,..., na a a a X= ⊂ B  verifies the cohomology 

property ( )L  or a  has the single-valued extension property 
if 

( )( )1 , , 0nH C G X α− ∞ ⊕ ∂ =  

for any open set nG ⊂  .  
For the commuting operator system 

( ) ( )1 2, ,..., na a a a X= ⊂ B , let aS  be the compact 
minimal set with the property that 

( )( )1 , , 0nH C G X α− ∞ ⊕ ∂ = , for any open set 

nG ⊂   such that aG S = ∅  (minimal means that aS  
is the intersection of all compact sets having the property 
above).  

aS  is called the spectral analytic residuum of the 
system a  ([25]). 
Obviously, ( ),aS a Xσ⊂  and 

( )( )\ , , 0, 0 1i n
aH C S X i nα∞ ⊕ ∂ = ≤ ≤ − ; if 

aS = ∅ , then a  verifies condition ( )L  (i.e. a  has the 
single-valued extension property) ([25]). 

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 28



 

 

For the system a  with the spectral analytic residuum 

aS , if H  is an arbitrary subset of n
  such that aH S⊃ , 

we denote 

[ ] ( ) ( ){ }
( ) ( ){ }

; , , and

; , , ;

a

a

X H x x X sp a x H

X H x x X a x Hσ

= ∈ ⊂

= ∈ ⊂
 

[ ] ( )aX H  and ( )aX H  are linear subspaces of X  and 

( ) [ ] ( )a aX H X H⊂ . 

  

II. PROCEDURE FOR DIRECT SUMS OF EXTERIOR FORMS. 
DIRECT SUMS OF HOMOLOGY AND COHOMOLOGY MODULES. 

 
In this chapter we remind some results published in [26] 

Lemma 2.1. If [ , ]p XσΛ  and [ , ]p YσΛ  are the spaces 

of all exterior forms of grade p in s  ( ( )1 2, ,..., ns s sσ = ) 

with coefficients in X , respectively Y , then  

[ ] [ ] [ ], , ,p p pX Y X Yσ σ σΛ ⊕ Λ = Λ ⊕ . 

 
Remark 2.2. If in the previous lemma we replace the 

system of indeterminates σ  with the system 

( )1 2 1 2, ,..., , , ,...,n nd z s s s d z d z d zσ ∪ =  and the 

spaces X  and Y  with ( ),C G X∞ , respectively 

( ),C G Y∞  ( )open setnG ⊂  , using moreover the 

obvious equality ( ) ( ), ,C G X C G Y∞ ∞⊕ =  

( ),C G X Y∞= ⊕ , we obtain 

( ) ( )

( )

, , , ,

, ,

p p

p

d z C G X d z C G Y

d z C G X Y

σ σ

σ

∞ ∞

∞

   Λ ∪ ⊕ Λ ∪   
 = Λ ∪ ⊕ 

. 
 
Lemma 2.3. Let , , ,A A B B′ ′  be modules over an algebra 

such that ,A A B B′ ′⊂ ⊂  and let ,h k  be two arbitrary 
maps between arbitrary given sets. Then we have 

( )
( )

/ / / ,
Ker Ker Ker ,
Im Im Im .

A A B B A B A B
h k h k
h k h k

′ ′ ′ ′⊕ = ⊕ ⊕
⊕ = ⊕
⊕ = ⊕

 

In the same manner, for a number 2n >  of modules and 

applications we have: 

( )

( )

( )

' ' '
1 1 2 2

' ' '
1 2 1 2

1 2

1 2

1 2

1 2

/ / ... /

... / ... ,

Ker Ker ... Ker

Ker ... ,

Im Im ... Im

Im ... .

n n

n n

n

n

n

n

A A A A A A

A A A A A A

h h h

h h h

h h h

h h h

⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

 

Proof. One can easily prove by direct verification, and for 
2n > , eventually, by mathematical induction. 

 
Proposition 2.4. If ( ) ( )1 2, ,..., na a a a X= ⊂ B , 

( ) ( )1 2, ,..., nb b b b Y= ⊂ B  are two operator systems and 

pH  are the homology modules, then we have 

( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( )

, , , ,

, , , ,

, ,

p p p

p p

p

H X z a H Y z b H X Y z a b

H C G X H C G Y

H C G X Y

α β

α β

∞ ∞

∞

− ⊕ − = ⊕ − ⊕

⊕ ∂ ⊕ ⊕ ∂ =

= ⊕ ⊕ ⊕ ∂ ⊕ ∂

 

for any nz ∈  and nG ⊂   open set. 
 
Lemma 2.5. Let ( ) ( )1 2, ,..., na a a a X= ⊂ B , 

( ) ( )1 2, ,..., nb b b b Y= ⊂ B  be two commuting systems of 

operators. Then the system 

1 1 2 2( , ,..., ) ( )n na b a b a b a b X Y⊕ = ⊕ ⊕ ⊕ ⊂ ⊕B  
has the property that the corresponding Taylor spectrums 
verifies the equality 

( ) ( ) ( ), , ,a b X Y a X b Yσ σ σ⊕ ⊕ =  . 

 
Proposition 2.6. Let ( ) ( )1 2, ,..., na a a a X= ⊂ B , 

( ) ( )1 2, ,..., nb b b b Y= ⊂ B . The systems a  and b  verify 

condition ( )L  if and only if the system 

1 1 2 2( , ,..., ) ( )n na b a b a b a b X Y⊕ = ⊕ ⊕ ⊕ ⊂ ⊕B   

verifies  condition ( )L . 

 
Proposition 2.7. If ( ) ( )1 2, ,..., na a a a X= ⊂ B  and 

( ) ( )1 2, ,..., nb b b b Y= ⊂ B  are two systems of operators 

that verify condition ( )L , then we have the equalities: 

1. ( ) ( ) ( ), , ,a b x y a x b yρ ρ ρ⊕ ⊕ =  ; 
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2. ( ) ( ) ( ), , ,a b x y a x b yσ σ σ⊕ ⊕ =  ; 

3. ( ) ( ) ( ), , ,r a b x y r a x r b y⊕ ⊕ =  ; 

4. ( ) ( ) ( ), , ,sp a b x y sp a x sp b y⊕ ⊕ =  ; 

5. ( )[ ] ( ) [ ] ( ) [ ] ( )a ba bX Y F X F Y F⊕⊕ = ⊕ ; 

6. ( ) ( ) ( ) ( )a ba bX Y F X F Y F⊕⊕ = ⊕  

where ,x X y Y∈ ∈  and nF ⊂   closed. 
Moreover, for n  systems of operators ( 2n > ) we have: 

1. 
( )
( ) ( ) ( )

1 2 1 2

1 1 2 2

... , ...

, , ... ,
n n

n n

a a a x x x

a x a x a x

ρ

ρ ρ ρ

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

  

; 

2. 
( )
( ) ( ) ( )

1 2 1 2

1 1 2 2

... , ...

, , ... ,
n n

n n

a a a x x x

a x a x a x

σ

σ σ σ

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

  

; 

3. 
( )
( ) ( ) ( )

1 2 1 2

1 1 2 2

... , ...

, , ... ,
n n

n n

r a a a x x x

r a x r a x r a x

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

  

; 

4. 
( )
( ) ( ) ( )

1 2 1 2

1 1 2 2

... , ...

, , ... ,
n n

n n

sp a a a x x x

sp a x sp a x sp a x

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

  

; 

5. 
( )[ ] ( )

[ ] ( ) [ ] ( ) [ ] ( )
1 2

1 2

1 2 ...

1 2

...

...
n

n

n a a a

a a n a

X X X F

X F X F X F

⊕ ⊕ ⊕⊕ ⊕ ⊕ =

⊕ ⊕ ⊕
 

6. 
( ) ( )

( ) ( ) ( )
1 2

1 2

1 2 ...

1 2

...

...
n

n

n a a a

a a n a

X X X F

X F X F X F

⊕ ⊕ ⊕⊕ ⊕ ⊕

= ⊕ ⊕ ⊕
. 

Proposition 2.8. Let ( ) ( )1 2, ,..., na a a a X= ⊂ B  be a 

commuting system of operators verifying condition ( )L . 

Then [ ] ( )aX F  is a linear manifold ultrainvariant to a , in 

other words it is invariant to all operators ( )b X∈B  

commuting with every ( )1,2,...,ia i n= . If [ ] ( )aX F  is 

closed, for nF ⊂   closed and [ ] ( )( ), aa X F Fσ ⊂ , 

then [ ] ( )aX F  is a spectral maximal space of a , i.e. for 

any subspace Y  invariant to a  with ( ),a Y Fσ ⊂  we have 

[ ] ( )aY X F⊂ . 

III. SEVERAL  PROPERTIES  OF  S -DECOMPOSABLE  SYSTEMS 

Definition 3.1. For the Banach space X , let ( )X  be 

the family of all linear closed subspaces of X , let nS ⊂   

be a compact set and let n
S  be the family of all closed 

subsets nF ⊂   which have the property: either 
F S = ∅  or F S⊃ . 

The application ( ): n
S S X→    is called S -spectral 

capacity if it verifies the conditions: 

(1) ( ) { } ( )0 , n
S S X∅ = =  ; 

(2) ( )
1 1

S i S i
i i

F F
∞ ∞

= =

 
  =
 
 
 

  , for any series 

{ } n
i SiF ∈ ⊂



 ; 

(3) for any open finite S -covering { } { } 1
m

S j j
G G

=
  of 

n
  we have  

( ) ( )
1

m

S S S j
j

X G G
=

= +∑  . 

A commuting operator system 

( ) ( )1 2, ,..., na a a a X= ⊂ B  is said to be S -

decomposable if there is an S -spectral capacity S  such that 

(4) ( ) ( )j S Sa F F⊂  , for any n
SF ∈  and for 

any 1 j n≤ ≤ ; 

(5) ( )( ), Sa F Fσ ⊂ , for any n
SF ∈ . 

In case S = ∅ , ( )n n
∅ =    is the family of all 

closed subsets of n
 , the S -spectral capacity is said to be 

spectral capacity and the system is decomposable ([16]). We 
must notice that for operator systems having 2n ≥ , we do 
not know whether the definition of S -decomposability (and 
of the decomposability) given for an operator ([10]) is 
equivalent with Definition 3.1 or not. 

 
Definition 3.2. Let ( ) ( )1 2, ,..., na a a a X= ⊂ B  be a 

commuting operator system and let nS ⊂   be a fixed 
compact subset. We say that a  verifies the cohomology 
property ( )SL  if 

( )( )1 , , 0nH C G X α− ∞ ⊕ ∂ =  

for any open set nG ⊂  , with G S = ∅ . 
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Theorem 3.3. Let ( ) ( )1 2, ,..., na a a a X= ⊂ B  be an 

S -decomposable system and let S  be an S -spectral 

capacity for a. Then ( )S F  is a spectral maximal space of 

a , where nF ⊂   is closed. 
Proof. Let Y  be a closed subspace of X  invariant to a  

with ( , )a Y Fσ ⊂ , for a certain closed set nF ⊂  . Let us 
choose F S⊃ . Therefore there is an open S -covering 

{ },SG G  of n
  such that SG F⊃  and G F = ∅  

and 

( ) ( )S S SX G G= +  . 

From an isomorphism theorem, the quotient space 

( )/ S SX G  is isomorphic to 

( ) ( ) ( ) ( ) ( )/ /S S S S S S SG G G G G G=     

. 
According to Taylor’s Theorem concerning the inclusion of 

the spectra ([21]) we obtain 
( ) ( )( ) ( )( ) ( )( ) ( ), / , ,S S S S S S Sa G G G a G G a G G G G Gσ σ σ⊂ ⊂ =       

, 
meaning 

( )( ), / S Sa X G Gσ ⊂ . 

Let us make the following notations: ϕ  is the canonical 

map of X  on ( )/ S SZ X G=  , ib  is the restriction of 

ia  to Y , ic  is the operator induced by ia  in 

( )/ S SZ X G=   and τ  is the restriction of ϕ  to Y . 

Putting ( )1 2, ,..., nb b b b= , ( )1 2, ,..., nc c c c=  we have 

found 

( ) ( ), ,b Y c Z F Gσ σ ⊂ = ∅  . 

If f  is the germ of the analytic function which is equal to 

1 on ( ),b Yσ , respectively to 0 on ( , )c Yσ , then 

( ) Yf b I=  and ( ) 0f c = . According to Proposition 

3.2.1, [8], one can obtain 0YIϕ ⋅ = , therefore 

( )S SY G⊂  . Since SG  is arbitrary under the property 

SG F⊃ , we can deduce that 

( ){ } ( );S S S SY G G F F⊂ ⊃ =   . 

The case n
SF ∈ , F S = ∅  can be obtained in a 

similar way. 
 

Corollary 3.4. If ( ) ( )1 2, ,..., na a a a X= ⊂ B  is an S -

decomposable system, then a  admits a unique S -spectral 
capacity S . 

Proof. Let 1S  and 2S  be two S -spectral capacities for 

a ; then, according to the previous theorem, ( )1S F  and 

( )2S F  are spectral maximal spaces of a  and from the 

inclusions 

( )( ) ( )( )1 2, , ,S Sa F F a F Fσ σ⊂ ⊂   

it follows that 

( ) ( )1 2S SF F⊂  , ( ) ( )2 1S SF F⊂  , 

consequently the two S -spectral capacities coincide. 
 
Theorem 3.5. If ( ) ( )1 2, ,..., na a a a X= ⊂ B  is S -

decomposable, then aS S⊂ . 
Proof. With minor modifications, the proof is similar with 

the proof for the case of decomposable systems 

( )when S = ∅  (Proposition 2.1.4, [16]).  

We intend to show that for any open polydisc nU ⊂   
such that U S = ∅  we have  

( )( ), , 0iH U X α =U  ( )0 1i n≤ ≤ − . 

One can contend this by mathematical induction on i . Let 
us begin with the initial step 0i = . Let ( ),f U X∈ U  such 

that 0fα = ; according to Proposition 3.5.8, [8], we have 

0f =  on any polydisc 'D  with 'D U⊂  and hence 

0f =  on U . We assume that for any open polydisc 
nD ⊂   with D S = ∅  we have  

( )( )1 , , 0iH D X α− =U  

for fixed i , 0 1i n< ≤ −  and we must prove that 

( )( ), , 0iH U X α =U . 

Let { }vD  be a sequence of open polydiscs, 

vD S = ∅  such that 1v vD D +⊂ , for any v  with 

1
v

v

D U
∞

=

=


 and let ( ), ,i U Xψ σ ∈ Λ  U  such that 

0α ψ = . Applying Proposition 3.5.8, [8] for 2D , we 
deduce that there is an exterior form 

( )1
1 2, ,i D Xϕ σ−  ∈ Λ  U  such that 1ψ α ϕ=  on 

2D ; analogously, we may find a form 2ϕ′  on 3D  with 
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2ψ α ϕ′=  on 3D . Consequently, one can obtain 

( )1 2 0α ϕ ϕ′− =  on 2D , whence, by applying the inductive 

hypothesis, we can deduce there is a form 

( )2
2, ,i D Xχ σ−  ∈ Λ  U  such that 1 2ϕ ϕ α χ′− = . 

We preserve a sufficient number of terms from the Taylor 
decomposition of χ  on 2D  such that 'χ  (the preserved 

part) verifies the inequality 
1'
2

α χ α χ− <  on 1D . If we 

replace 2ϕ′  with 2 2 'ϕ ϕ α χ′= + , we find a form on 3D  

such that 2ψ α ϕ=  on 3D  and 

1 2 1 2
1' '
2

ϕ ϕ ϕ ϕ α χ α χ α χ′− = − − = − <  on 

1D . 

Analogously, we can define a sequence of forms { }vϕ , 

( )1
1, ,i

v vD Xϕ σ−
+ ∈ Λ  U  under the conditions: 

vψ α ϕ=  on 1vD +  and 1 1
1

2
v v vϕ ϕ+ +

− < on vD . 

The sequence { }vϕ  obviously converges to a form 

( )1 , ,i U Xϕ σ−  ∈ Λ  U  having analytic coefficients on 

U  and satisfying the equation ψ α ϕ=  on U , hence the 
inductive proof is ended.  

Finally, we observe that ( )( ), , 0iH U X α =U  

( )0 1i n≤ ≤ −  implies  

( )( ), , 0iH C G X α∞ ⊕ ∂ =  ( )0 1i n≤ ≤ −  

where U  is any open polydisc of n
  and G  is any open 

subset of n
  such that U S = ∅  and G S = ∅ ; the 

proof of this observation is given in [16], Theorem 1.5.16, for 

any , nU G ⊂  . Applying the definition of aS , it results 

that aS S⊂ . 
 
Remark 3.6. If ( ) ( )1 2, ,..., na a a a X= ⊂ B  is an S -

decomposable system, on account of the proof of Theorem 3.5 
we have 

( )( )1 , , 0nH C G X α− ∞ ⊕ ∂ =  

for any open set nG ⊂   with G S = ∅ , hence a  

verifies the cohomology property ( )SL . 

 

Remark 3.7. If ( ) ( )1 2, ,..., na a a a X= ⊂ B  is an S -

decomposable system and S  is its S -spectral capacity, then 
we have the following properties: 

1) ( ) ( ) ( )1 2 1 2S S SF F F F= ⊕   , for 

1 2 1 2, ,n
SF F F F∈ = ∅ . 

2) ( )S F  is a spectral maximal space of a , for any 

n
SF ∈ . 

3) If aS = ∅ , then ( ) ( )S aF X F= , for any 

n
SF ∈  and ( )( ), aa X F Fσ ⊂ . 

4) If aS ≠ ∅ , then  

( ) ( )S aF X F= , for any ,n
SF F S∈ ⊃  and 

( )( ), aa X F Fσ ⊂  and  

( )S FF Y= , for any ,n
SF F S∈ = ∅ , where 

FY  is the spectral maximal space of a  defined by the 
equality  

( ) ( ) ( )
( ) ( )

S S S

a F a

F S F S

X F S Y X S

= ⊕ =

= ⊕





  
 and 

( ), Fa Y Fσ ⊂ . 

 
Lemma 3.8. If the system ( ) ( )1 2, ,..., na a a a X= ⊂ B  

is decomposable or S -decomposable and ( )aX F  are the 

spectral subspaces associated with a , then 

( ) ( ) ( )1 2 1 2a a aX F F X F X F=   

for 1 2, nF F ⊂   closed when a  is decomposable, for 

1 2, n
SF F ∈  when a  is S -decomposable with aS = ∅ , 

for 1 2 1 2, , ,n
SF F F S F S∈ ⊃ ⊃ , when a  is S -

decomposable with aS ≠ ∅ . 

Moreover, for 1 2, ,..., ,...iF F F  closed subsets of n
 or 

n
i SF ∈ , i I∈  we have  

( )a i a i
i I i I

X F X F
∈ ∈

  =  
 
 

. 

Proof. Let us suppose that a  is decomposable and let 

( )1 2ax X F F∈  ; therefore ( ),a xσ ⊂  1 2F F⊂  , 

hence ( ) ( )1 2, , ,a x F a x Fσ σ⊂ ⊂ , consequently 
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( )1ax X F∈ , ( )2ax X F∈ , whence 

( ) ( )1 2a ax X F X F∈  . Conversely, let 

( ) ( )1 2a ax X F X F∈  ; then we have ( ) 1,a x Fσ ⊂ , 

( ) 2,a x Fσ ⊂ , hence ( ) 1 2,a x F Fσ ⊂  , from where 

( )1 2ax X F F∈  . 

The second equality is proof in the same manner as above 
or by mathematical induction using the first equality. 

 
 
Proposition 3.9. (Criterion of S -decomposability for 

operator systems) 
A commuting operator system 

( ) ( )1 2, ,..., na a a a X= ⊂ B  is S -decomposable if and 

only if the following conditions are verified: 
(I) a  verifies condition ( )SL , the space ( )aX F  is 

closed and ( )( ), aa X F Fσ ⊂ , for any 

,n
SF F S∈ ⊃ ; 

(II) for any open S -covering { } { } 1
m

S j j
G G

=
  of n

  

and for any x X∈  we have  

1 2 ...S mx x x x x= + + + + , with 

( ) ( ), , , , 1, 2,...,S S j ja x G a x G j mσ σ⊂ ⊂ = . 

Proof. Let us suppose that a  is S -decomposable and let 

S  be its S -spectral capacity. According to Theorem 3.5, 

aS S⊂  and from Remark 3.6, a  verifies condition ( )SL  

(the system a  verifies condition ( )SL  means that a  

verifies condition ( )L  on \n S , in other words the 

system a  has the single-valued extension property (modulo 

S ) on \n S ).  

Let ,n
SF F S∈ ⊃ ; then aS F⊂  and ( )aX F  

makes sense. According to Theorem 3.3 and Remark 3.7, 

( )S F , for n
SF ∈ , is spectral maximal space of a , 

( ) ( )S aF X F= , for ,n
SF F S∈ ⊃  and 

( )( ), Sa F Fσ ⊂ . Therefore the space ( )aX F  is a 

spectral maximal space of a , hence it is closed. 
The second assertion of hypothesis is obviously verified, 

from condition (3) of the definition of S -decomposability.  
Conversely, let us suppose that the conditions (I) and (II) 

are satisfied. Let us first consider the case when the system a  

has the single-valued extension property, i.e. aS = ∅ .  

When aS = ∅ , it is known that ( )aX F  makes sense, 

for any n
SF ∈ .  

Let us denote by n
S′  the family of all subsets n

SF ∈  

with the property F S⊃  and by n
S′′  the family of all 

subsets n
SF ∈  having the property F S = ∅ . It is easy 

to observe that if we take ' n
SF ′∈  and '' n

SF ′′∈ , then 

we have ' '' n
SF F ′′∈  , hence the intersections of sets of 

both families n
S′  and n

S′′  are in fact intersections only 

with sets from n
S′′ .  

The space ( )aX F  being closed, for any n
SF ∈ , we 

denote by S  the application defined by the identity 

( ) ( )S aF X F= , for n
SF ∈  

and it is easy to show that S  is an S -spectral capacity 

for a . Indeed, from Corollary 1.5.10, [16], ( ),a xσ = ∅  

implies 0x = , hence 

( ) ( ) { }0S aX∅ = ∅ = , 

( ) ( ) ( )( ),n n
S a aX X a X Xσ= = =  . 

Let us verify the equality: 

( )S i S i
i I i I

F F
∈ ∈

  =  
 
 

  , n
i SF ∈ , when 

aS = ∅ . 

Let S i a i
i I i I

x F X F
∈ ∈

   ∈ =      
   
 

 ;  

then ( ), ia x Fσ ⊂ , for all i , hence 

( )a i
i I

x X F
∈

∈ =


 ( )S i
i I

F
∈

=


 . Conversely, let 

( ) ( )S i a i
i I i I

x F X F
∈ ∈

∈ =
 

 , hence ( )a ix X F∈ , 

for all i , whence it results that ( ), ia x Fσ ⊂ , for all i . 

Then ( ), i
i I

a x Fσ
∈

⊂


, 
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consequently a i
i I

x X F
∈

 ∈ =  
 


 S i
i I

F
∈

 =   
 


 . 

Let { } { } 1
m

S j j
G G

=
  be an S -covering of n

 . From 

condition (II), it follows that 

( ) ( ) ( ) ( )
1 1

m m

a S a j S S S j
j j

X X G X G G G
= =

= + = +∑ ∑  . 

On account of the relations above, it results that S  is an 

S -spectral capacity for a . Since ( )aX F  is ultrainvariant 

to a , for any n
SF ∈  (Proposition 2.8), by using (I) we 

deduce 

( ) ( ) ( ) ( )j S j a a Sa F a X F X F F= ⊂ =  , 

1 j n≤ ≤  and 

( )( ) ( )( ), ,S aa F a X F Fσ σ= ⊂  

therefore a  is S -decomposable. 
Let us now consider the case aS ≠ ∅ ; then ( )aX F  

does not make sense, for any n
SF ∈ . Then ( )aX S F  

is a spectral maximal space of a , for any n
SF ∈  (see 

Remark 3.7) and we can write  

( ) ( )a a FX S F X S Y= ⊕ , for n
SF ′′∈ , 

where FY  is also a spectral maximal space of a  and 

( ), Fa Y Fσ ⊂ . 

If we define S  by the following equalities 

  ( ) ( )S aF X F= , for n
SF ′∈  ( )F S⊃  

( )S FF Y= , for n
SF ′′∈  ( )F S = ∅  

where the space FY  is defined above, we can show that 

S  is an S -spectral capacity for a .  
From the equalities  

( ) ( ) ( )
( ) ( )

a a a

a a

X S X S Y X S

X S X S Y Y
∅

∅ ∅

∅ = ⊕ =

∅ = =



 

 

it follows that ( ) { }0S Y∅∅ = = . We obviously have 

that ( )n
S X= , because ( )n

S = . 

( ) ( )( ),n
a aX X a X Xσ= = = . Let us verify 

condition (2) from Definition 3.1: 

( )S i S i
i I i I

F F
∈ ∈

  =  
 
 

  , n
i SF ∈ , when 

aS ≠ ∅ . 

It is easily seen that the inclusion 1 2F F⊂ , for 

1 2, n
SF F ∈  implies ( ) ( )1 2S SF F⊂  . Indeed, for 

1 2, n
SF F ∈  with 1F S⊃  and 2F S⊃ , it is obviously 

that ( ) ( )1 2a aX F X F⊂ , hence ( ) ( )1 2S SF F⊂  ; 

for 1 2, n
SF F ∈  with 1F S = ∅  and 2F S = ∅ , 

from the inclusion  

( ) ( ) ( )

( )
1

2

1 2F a a a

F a

Y X S X F S X F S

Y X S

⊕ = ⊂

= ⊕

 

 

it follows that 
1 2F FY Y⊂ . 

Let us take n
i SF ∈ , with ,iF S i I⊃ ∈ ; we have 

i
i I

F S
∈

⊃


, a i
i I

X F
∈

 
  
 


 makes sense and using 

Lemma 3.8 we can write  

( ) ( )

S i a i
i I i I

a i S i
i I i I

F X F

X F F

∈ ∈

∈ ∈

   =      
   

= =

 

 




. 

When n
i SF ∈ , with ,iF S i I= ∅ ∈ , then 

,i j
i I

F F j I
∈

⊂ ∈


 implies ,
ji

i I

FFY Y j I
∈

⊂ ∈


, hence 

ii
i I

FF
i I

Y Y
∈ ∈

⊂




; but 
iF

i I

Y Y
∈

=


 is a spectral maximal 

space of a  and ( ), i
i I

a Y Fσ
∈

⊂


, hence 

( )
i

i I

a i aF
i I

Y X F S Y X S
∈∈

  ⊂ = ⊕      







, 

whence 
i i

i I

F F
i I

Y Y Y
∈∈

= ⊂




, consequently 

( )S i S i
i I i I

F F
∈ ∈

  =  
 
 

  . 

If we consider two sets 1
n

SF ′∈  and 2
n

SF ′′∈ , then 
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( ) ( ) ( )1 2 1 2S S SF F F F=    . Indeed, it is 

obviously that 
( ) ( ) ( ) ( )

1 2 1 2 21 2 1 1 2S F F F F a F S SF F Y Y Y X F Y F F= ⊂ = =


     

. From the inclusion ( )1 2 1 2, F Fa Y Y F Fσ ⊂  , it 

follows that ( )( )1 2 1 2F F aY Y X F F S⊂ =    

( )
1 2F F aY X S= ⊕


, hence 
1 2 1 2F F F FY Y Y⊂



 . 

Finally, if ,n
i SF i I∈ ∈  are arbitrary, then by putting 

i iF F′ = , for iF S⊃  and i iF F′′= , for iF S = ∅ , we 
obtain 

( ) ( ) ( ).

S i S i i
i I i I i I

S i S i
i I i I

S i S i S i
i I i I i I

F F F

F F

F F F

∈ ∈ ∈

∈ ∈

∈ ∈ ∈

      ′ ′′=                   

   ′ ′′= =      
   

   ′ ′′= =      
   







  

 

  

 

 

  

 

The conditions (3), (4), (5) from Definition 3.1 can be 
easily verified, by using conditions (I) and (II) of the 
hypothesis and therefore a  is S -decomposable. 
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Abstract—Multi-objective stochastic integer programming is
an optimization technique in which the objective functions and
some constraints of an optimization problem contains integer
variables and random data which follow discrete probability
distribution. Once a problem requires a stochastic formulation, a
first step consist in transforming the problem into an equivalent
deterministic formulation. In the second case, it is necessary to
transforming the multi-objective problem into a mono-objective
problem. An algorithm combined the integer L-shaped method
and branch and bound method with efficient cuts concept for
the search of integer efficient solutions.This approach has the
advantage to give the decision maker the efficient solution and
their corresponding optimal cost values of the random constraint
violations. A numerical example is included for illustration.

I. PROBLEM FORMULATION

We consider multi-objective integer linear programming
problems involving random variable coefficients in both ob-
jective functions and some constraints of the following model
(see [1], [6]):

(P )


min Ci (ξ)x, i = 1, ..., k

T (ξ)x = h (ξ)

x ∈ S, x integer

where k ≥ 2; Ci, T and h are random matrices defined on
some probability space (Ω, E, P ) ;S = {x ∈ Rn|Ax = b, x ≥
0}. The vector b ∈ Rm and A the m×n real matrix are given
and x is to be determined.

A. The transformed deterministic model

Assume that we have a joint finite discrete probability
distribution of the random data : {(ξr, pr) , r = 1, ..., R} . R
is the number of realizations (scenarios).

For each realization ξr we associate a criterion Ci (ξr)x, a
matrix T (ξr) , a vector h (ξr) and a recourse matrix W (ξr) =
W. In this article the recourse matrix W does not change, this
is called fixed recourse [3]. We assume that the decision maker
is able to satisfactorily specify the penalties qr of the constraint
violations zr. The above problem is equivalent to the so-called
Deterministic Equivalent (DE) Multi-Objective Integer Linear
Programs MOILP [2].

(DE)

{
min Zi = Źi +Q (x) , i = 1, ..., k

x ∈ S, x integer
(1)

where Źi = Eξ [Ci (ξ)x] , Q (x) = Eξ [Q (x, ξ)] and

Q(x, ξr) = min{(qr)tz | T (ξr)x+W (ξr)z = h(ξr), z ≥ 0}.
(2)

B. The transformed mono-objective model

We transform the DE problems in the following way

(DEλ)

{
min λT Ź +Q (x)

x ∈ S, x integer
where λT = (λ1, ..., λk) ≥ 0, with at least one component
strict inequality.

II. SOLUTION METHOD

(Pl)


min λTE

[
CTi (ξ)x

]
+ θ

Dlx ≥ dl, l = 1, ..., N

Elx+ θ ≥ el, l = 1, ...,M

x ∈ Sl

(3)

(Pl) obtained at node l in a structured tree.
Nl is the indices set of non-basic variables of efficient solution
xl;

Hl =
{
j ∈ Nl | ĉijl < 0

}
, where ĉijl is the component j of

the reduced cost vector of the objective function Źi.
Sl+1 =

{
x ∈ Sl \

∑
j∈Hl

xj ≥ 1
}
.

N and M indicate the number of feasibility cuts and optimality
cuts, respectively, added until step l.

Starting with θ = −∞ and without feasibility cuts,
optimality cuts and efficiency cuts. The objective
λTE

[
CT (ξ)x

]
is minimized under the deterministic

constraints. If for some realizations the second stage
problems yielded by the solution x are not feasible, a
feasibility cut is introduced. Then, the problem is optimized
again to obtain another feasible point x. If x is not integer,
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create two new branches at fractional component of x; and
get the ideal solution of each node then append the new
nodes to the list of dangling node if these nodes is not
dominated by ideal solution. Using xl, we solve the recours
problem for all realizations ξr, r ∈ {1, ..., R}, and compute
Q
(
xl
)
. If θl < Q

(
xl
)

then a new optimality cut Elx ≥ el
is added to the current problem(Pl) . In presence of integer
optimal solution, An efficient cut

∑
j∈Hl

xj ≥ 1 is then added

for deleting integer solutions that are not efficient and the
new program is solved. The method terminates when all the
created nodes are fathomed.

III. NUMERICAL ILLUSTRATION

Let us consider the following example with a similar struc-
ture to that of problem (P ) , k = 3, n0 = 4,m0 = m = n =
2, R = 2.

Deterministic constraints :

{
−4x1 + 2x2 ≥ −8

x1 + x2 ≤ 5
Objective function

C
(
ξ1
)

=


−9 4

3 −5

8 −11

 , C
(
ξ2
)

=


3 −2

7 1

−4 9

;

T
(
ξ1
)

=

(
1 2

−2 1

)
, T
(
ξ2
)

=

(
1 0

3 4

)
;

h
(
ξ1
)

=

(
3

5

)
, h
(
ξ2
)

=

(
6

1

)
;

q1 = q
(
ξ1
)

= (1, 0, 6, 2)
t, q2 = q

(
ξ2
)

= (5, 3, 2, 1)
t;

p
(
ξ1
)

= 1
2 , p

(
ξ2
)

= 1
2 ;

W (ξ) = W =

(
−2 −1 2 1

3 2 −5 −6

)
;

Ź1 = (−3, 1), Ź2 = (5,−2) , Ź3 = (2,−1).
λT = (1, 1, 1) , λTE

[
Ci (ξ)

]
= (4,−2)

• First iteration
Ξ0 = {(P0)}. The resolution of the problem (P0)

(P0)


min 4x1 − 2x2

s.t. 4x1 − 2x2 + x3 = 8

x1 + x2 + x4 = 5

x1, x2, x3, x4 ≥ 0

gives the following table I:
, minimum is at x0 = (0, 5) .

• Test of feasibility:

h
(
ξ1
)
− T

(
ξ1
)
x0 =

(
−7

0

)

h
(
ξ2
)
− T

(
ξ2
)
x0 =

(
6

−19

)

TABLE I
STOCHASTIC FEASIBLE SOLUTION

B Rhs x1 x4

x3 18 6 2

x2 5 1 1

λT Ź 10 6 2

Ź1 −5 −4 −1

Ź2 10 7 2

Ź3 5 3 1

TABLE II
OPTIMALITY CUT

B Rhs x1 x4

x3 18 6 2

x2 5 1 1

θ 26
4

7
4

5
4

λT Ź 10 6 2

Ź1 −5 −4 −1

Ź2 10 7 2

Ź3 5 3 1


max − 7σ1

1 + 0σ2
1

s.t. σT1 W ≤ 0

σ1
1 + σ2

1 ≤ 1

, maximum is at : σT1 = (0, 0)
max 6σ1

2 − 19σ2
2

s.t. σT2 W ≤ 0

σ1
2 + σ2

2 ≤ 1

, maximum is at : σT2 = (0, 0)
d1 − D1x

0 = 0, d2 − D2x
0 = 0. This means that x0 is

feasible for the second stage.
Optimality Test:{

max − 7π1
1 + 0π2

1

s.t. πT1 W ≤ (1, 0, 6, 2)T

,maximum is at : πT1 =
(
−1, −12

)
{

max 6π1
2 − 19π2

2

πT2 W ≤ (5, 3, 2, 1)T

, maximum is at : πT2 = (1, 0).

e1 =
2∑
r=1

prπ
t
rh (ξr) = 1

4 , E1 =
2∑
r=1

prπ
t
rT
(
ξ2
)

=
(
1
2 ,
−5
4

)
,

Q
(
x0
)

= e1 − E1x
0 = 13

2 , θ0 = −∞ < 13
2 = Q

(
x0
)
,

E0x + θ0 ≥ e0 ⇔ −7
4 x1 −

5
4x4 + s1 − θ = −26

4 . Add this
optimality cut to the last obtained table I to obtain table II.

The minimum is reached to x0 = (0, 5) , Z0 =
(
23
2 ,
−7
2 ,

3
2

)
.

Z̄ = (+∞, ...,+∞) is dominated by Z0 then the set of
non dominated solutions is updated ND = ND ∪

{
Z0
}
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TABLE III
STOCHASTIC EFFICIENT SOLUTIONS

Iteration i = 1 i = 2 i = 3 i = 4 i = 5

xi (2, 3) (1, 3) (1, 4) (0, 4) (0, 5)

θi 3 7
2

19
4

21
4

13
2

Źi (−3, 4, 1) (0,−1,−1)
(
1, −7

2
,−2
)

(4,−8,−4) (5,−10,−5)

Z̃i = Źi + θi (0, 7, 4)
(
7
2
, 5
2
, 5
2

) (
23
4
, 5
4
, 11

4

) (
37
4
, −11

4
, 5
4

) (
23
2
, −7

2
, 3
2

)
Proceeding in this manner, the algorithm terminates when

all dangling nodes are fathomed, then the set of the whole
integer efficient solutions is given by table III:

IV. CONCLUSION

In this paper, an exact method combining integer L-Shaped
method [7] with efficient cuts is described for generating
all efficient solutions for multiple objective stochastic integer
linear programming problems [4], [5], [8] is presented.
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Efficient matching for the Iterative Closest Point
algorithm by using low cost distance metrics

H. Mora-Mora*, J. Mora-Pascual, P. Martinez-Gonzalez, A. Garcia-Garcia

Abstract—Since its introduction, the Iterative Closest Point al-
gorithm (ICP) has become one of the most popular methods for
the geometric alignment of three-dimensional models. Given two
point clouds, named model and source, the algorithm iteratively
refines a transformation which is applied to the source cloud in order
to minimize the difference or distance between both point clouds.
Many applications of multiple fields currently use this algorithm
to reconstruct 2D or 3D surfaces from different data measurements
due to its simplicity and effectiveness. However, one of the main
problems of the algorithm is the high computational cost of certain
complex phases when dealing with high density point clouds. This
fact renders impossible some of the applications of the algorithm.
The goal of this work is the improvement of the ICP algorithm so
that a broader range of computational resources demanding problems
can be addressed. For that, a convergence analysis and validation of
point-to-point distance metrics with a lower computational cost than
the Euclidean one which is used as a de facto standard in the existing
implementations in the literature of the algorithm.

Keywords—Convergence of numerical methods, Error analysis,
Computational geometry, Computational efficiency, ICP algorithm.

I. INTRODUCTION

Nowadays, range sensors obtain depth information so that
we can capture three-dimensional datasets from different
points of view, each one of them represented using a particular
coordinate system. A lot of applications require a full or
partial scene reconstruction from the data provided by the
sensors over different points of view. In order to reconstruct the
surfaces or shapes of the original scene, we have to combine
the different datasets with their own coordinate systems in a
process called shape registration.

The goal of shape registration is the transformation of
different three-dimensional datasets to represent them in one
common coordinate system so that those elements which
overlap in both sets are properly aligned allowing the re-
construction of the original surfaces. The registration process
may be applied to rigid or non-rigid shapes. In the case of
rigid shapes, the transformation which aligns both surfaces is
rigid too (rotation and translation) so that the solution space
is bounded to six degrees of freedom (6DoF). On the other
hand, non-rigid shape require a non-rigid transformation which
takes into account the possibility of deformation so that the
solution space is increased considerably. A remarkable study
of the different registration techniques both rigid and non-rigid
is the work by Tam et al. [28] which includes an in depth
review of the registration problem; other important surveys

H. Mora-Mora, J. Pascual-Mora, P. Martinez-Gonzalez and A. Garcia-
Garcia are with the Department of Computer Technology and Computation,
University of Alicante, Spain, 03690, San Vicente del Raspeig, Alicante,
Spain. e-mail: ({hmora, jeronimo, pmartinez, agarcia}@dtic.ua.es).

are the ones by Van Kaik et al. [29] (focused on shape
correspondence techniques) and Audette et al. [3] (centered
on shape registration applied to medical images).

In addition, registration can be classified according to its
granularity, distinguishing coarse and fine grained methods.
The objective of coarse grained registration is to obtain a
quick estimate of the transformation to roughly align both
shapes while fine grained techniques use that initial estimate to
refine it iteratively in order to find the best alignment in terms
of precision under a set of restrictions. Reviews of multiple
techniques and methods that can be applied to solve both
coarse and fine problems have been carried out by Salvi et
al. [25] paying special attention to precision, robustness and
efficiency assessment; subsequently, Wang et al. [15] extended
this survey.

In this work we will deal with the ICP algorithm which is
a fine grained registration method which is currently the most
popular algorithm for 3D rigid registration for the Robotics
community; the cause of that popularity is mainly its simplicity
and effectiveness as well as the many variants that have been
developed, adapting the ICP to different scenarios to improve
its efficiency and precision [24].

As we mentioned before, a wide set of applications of
different fields make use of this algorithm in order to compute
rigid registrations due to its simplicity and effectiveness; how-
ever, the algorithm has got a high computational complexity
(quadratic with respect to the number of points in its original
variant) which renders impossible or at least difficults certain
applications which require the processing of high density point
sets provided by high precision sensors. Many variants have
been proposed in the literature to improve its performance,
either by reducing the number of points or by decreasing
the needed iterations or even reducing the complexity of its
most expensive phase in terms of computing resources: the
search of nearest neighbors. Nevertheless, despite reducing
its complexity, in many cases those variants tend to have
a negative impact on precision or even on the convergence
domain, limiting the possible application scenarios.

Therefore, it is a fact that any general improvement of the
algorithm which is able to accelerate its execution, without
affecting the quality nor reducing its possible application
scenarios, is a step forward for all those applications with
needs of precision and quality in their rigid registrations. In
that sense, this work proposes a general improvement for the
algorithm, carried out by an interdisciplinary research based
on the fusion of mathematical and geometric concepts, such as
distance metrics, with its computational component by taking
into account their associated operative cost and their impact on
the algorithm’s execution time. Our research group has expe-
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rience and successful examples of this kind of research about
accelerating mathematical methods at a low level [13], [16],
[26]. The hypothesis of the improvement is the following one:
distance metrics whose computational cost is reduced respect
to the Euclidean’s one, like Manhattan or Chebyshev distances,
may replace it and effectively reduce the computational cost
while preserving the algorithm’s convergence properties as
well as the registration quality in terms of convergence domain
and final registration error.

The rest of this paper is structured as follows: Section II
provides a general view of the most remarkable variants of
the ICP algorithm. Section III formulates the rigid registration
problem, establishing the notation which will be used during
the rest of the paper. Section IV describes or proposal in a
detailed manner. Subsequently, Section V declares the com-
parison methodology. Finally, Section VI presents the results
of the experiments, which are discussed along Section VII. At
last, Section VIII concludes this work with an overview of the
results and the accomplished goals to end the paper putting it
in context and enumerating some future work possibilities.

II. RELATED WORK

The work of Rusinkiewicz and Levoy [24] is one of the
main reviews about variants of the ICP algorithm and efforts
directed towards the improvement of the algorithm’s efficiency
at some aspect. That review states that the ICP algorithm was
introduced by parallel research works, one conducted by Besl
and McKay [4] and the other performed by Chen and Medioni
[5]. The difference between both works lays on the scope of
the method: on the one hand, Chen and Medioni consider the
specific problem of the alignment of multiple range images
while Besl and McKay propose the method using a more
general point of view, taking into account three-dimensional
shape registration using multiple representation forms, being
the point set the most popular one. In addition, this method
has a singular advantage: its convergence can be proven; that
is why, Besl and McKay’s paper has become so popular that
their approach is considered the standard ICP algorithm.

The variants arising from the original algorithm are usually
classified following the taxonomy created by Rusinkiewicz
and Levoy [24]. That classification has six categories which
represent each one of the phases in which the algorithm can
be divided: point selection, matching, pair weighting, outlier
removal, error metric and minimization.

Here we will review the most remarkable variants of the al-
gorithm focusing on matching and error metric phases because
our proposal will directly impact them.

A. Matching

The matching phase establishes the correspondences be-
tween the points of one point cloud and the closest ones in the
other. The original algorithm uses the Euclidean distance as the
metric to make correspondences. Some variants have focused
their contribution on the inclusion of additional properties in
the metric like surface normals [22], color [30] and even
some invariant features [9]. Other contributions adapted the
algorithm to take into account anisotropic and heterogeneous

noise, it is the case of the works carried out by Pennec et al.
[21] and Hansen et al. [12] in which the Euclidean metric was
replaced by the Mahalanobis distance, proving the possibility
of exchanging the distance metrics. Other variants, outside the
scope of this work, changed the matching strategy by using
expectation maximization techniques [10], normal shooting
[5], reverse calibration [2] or point-ray distances [8].

Our proposal introduces changes in this stage, the Euclidean
distance metric is replaced by other metrics like Manhattan or
Chebyshev to optimize the computational cost.

B. Error metric

There are two main error metrics which are profoundly
tested and widely used: the point-to-point metric introduced
by Besl and McKay [4] and the point-to-plane one by Chen
and Medioni [5]. The point-to-point distance of Besl and
McKay consists of the summation of the quadratic distances
between the points of the model and source point clouds:∑N

i=1‖Rdi + t−mi‖2. On the other hand, the point-to-plane
distance of Chen and Medioni takes into account the distance
between the points of the source to the tangent planes in which
the model points are: [(Rdi + t−mi) · ~ni]

2. These basic error
metrics can be modified to take into account other variants of
the original algorithm to improve its robustness. In fact, many
of the previously mentioned variants apply changes over the
error metric.

In our case, we will use the original point-to-point error
metric by Besl and McKay.

C. Other remarkable variants

Other variants have focused their contribution on the exten-
sion of the ICP algorithm for non-rigid registration [1], [6],
[9], [18] or even on the inclusion of a priori knowledge on
the original algorithm [7].

As we previously noted, one of the main problems of the
algorithm is its high complexity, quadratic with respect to
the number of points, because of the need of computing the
distances of all points of one point cloud to all points of the
other in order to obtain the closest point. In that sense, a lot
of variants have directed their efforts toward the reduction of
that complexity by using kd-trees [27], closest points caching
[27] or even parallel implementations on CPU [14] or GPU
[17], [20], [31].

III. PROBLEM FORMULATION

Rigid registration can be formulated as an optimization
problem with certain restriction whose objective is the align-
ment of surfaces or three-dimensional data, for the sake of
simplicity we will assume that the data will be given in
the form of point sets or clouds, although it can be applied
to several geometric representation forms. In this problem,
two point sets of n dimensions M

.
= {mi}NM

i=1 ∈ Rn y
D

.
= {di}ND

i=1 ∈ Rn, also known in the literature of the
algorithm as model y data (being NM ∈ R y ND ∈ R the
cardinalities of the sets M y D). The objective is to align
the source point cloud with the model one, in other words,
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obtain the rigid transformation Φ which minimizes the mean
square error between the model and the source points once the
transformation (a rotation R and a translation T ) is applied to
the source point set D. In order to simplify even more the
explanation, we assume that NM = ND and each point di to
have is corresponding point mi so the objective function that
has to be minimized is:

f(R, T ) =
1

ND

ND∑
i=1

‖mi −R(di)− T‖2 (1)

Taking this formulation into account, if the right corre-
spondences between the model points and the ones of the
source point cloud are known, we can find the optimal relative
transform to align both point sets in one step. However, the
difficult part of this problem when applied to a real life
scenario is that the correspondences are unknown and it is
also possible that some points of the source set have no
corresponding point in the model and vice versa. For that, a
need for a method for establishing the correspondences arises.

A. The ICP algorithm

The ICP algorithm, originally described by Besl and McKay
[4], is one of the most popular and widely used methods for
rigid registration. Its functioning is based on the closest point
criteria used for establishing the correspondences, so that the
corresponding point for a source point is its closest one in
the model. The distances between the points are calculated by
using the Euclidean distance metric to define the closest point
operator.

B. Finding matches

Given two three-dimensional points p1 and p2, the Eu-
clidean distance between both of them d(p1, p2) is the length
of the segment which connects them ‖p1−p2‖. Given a point
p and a point set A, we define the Euclidean distance of the
point to the set d(p,A) as the minimum of the distances of
p to each one of the points of the set A, in other words,
d(p,A) = min

i∈1...n
d(p, ai). The function c which obtains the

closest point to p in the point set A is the following one:

c(p,A) = argmin
a∈A

d(p, a) (2)

The algorithm sets a correspondence between each point di
of the source point set D and the closest point in the model
which will be named yi ∈ Y , forming the set of closest points
to D. From this statement we deduce that Y ⊆ M , y ∈ M
and NY = ND.

The closest point operator C which produces the point set
Y = C(D,M). This operator obtains the set Y

.
= {yi}ND

i=1

in which the point yi is the closest point in the model to the
point di to the source point set.

C(D,M) = {yi = c(di,M)}ND
i=1 (3)

Assuming this closest point criteria, the algorithm ensures
the convergence if the initial position of the source point set
is close enough to the model set position.

C. Phases of the algorithm

Given that, in general, the correspondences obtained using
the closest point operator are not the right nor the best ones
from the beginning, the ICP algorithm performs an iterative
refinement process. Each one of the iterations comprises three
main phases that can be extended, as we observed in Section
II, to improve different aspects of the algorithm. The main
phases are:
1) Correspondences or matching: In this phase, the closest

point operator is applied to obtain the closest points set Y .
2) Transformation calculation or minimization: In this

phase, the algorithm tries to find the rotation R and the
translation T which minimize the objective function of
rigid registration taking into account the correspondences.

f(R, T ) =
1

ND

ND∑
i=1

‖yi − (R(di)− T )‖2 (4)

3) Update transformation or apply it: In this last phase, the
transformation is accumulated or the source point cloud is
transformed by applying it so that the new position for each
point di is calculated as follows di = R(di) + T .

These phases are repeated until a certain stop criteria such
as a limit for the number of iterations or a threshold for the
difference of final registration error of the current iteration
and the previous one so that the algorithm stops if the
transformation has enough refinement. By using this process,
the algorithm’s convergence is stated in the following theorem:
the ICP algorithm always converges monotonically to a local
minimum with respect to the objective mean squared distance
error function in equation 4.

IV. PROPOSED IMPROVEMENT

Our proposal has the goal of reducing the execution time
of the algorithm in general by means of a reduction of the
computational cost of the matching phase. In this way, other
existing variants of the algorithm may be able to include this
improvement to increase execution speed.

In order to do that, our proposal replaces the Euclidean
distance metric, widely used in the existing implementations
of the algorithm to find the closest points during the matching
phase with the closest points operator, with other metrics with
a lower operative cost and thus reducing the execution time
of that phase. In addition, these new metrics must provide
similar quality as the Euclidean one, since it would not be
useful to reduce the execution time if the algorithm is not able
to provide an acceptable result because we are in a context of
high precision and lots of data.

In the previous section, the ICP algorithm was formulated
in function of a distance metric d and its functioning was
analyzed as convergent to a local minimum. In this section
we will proceed to define what a distance metric is and
then analyze the operative cost of the Euclidean, Chebyshev
and Manhattan distance metrics, being these two last ones
our candidate metrics for replacing the Euclidean one since
we expect an inferior computational cost from them. Next,
we will carry out an empirical study of the computational
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cost of the three metrics in order to estimate the possible
performance gain or speedup that we can expect when using
a certain metric, providing a starting point for comparing the
algorithm’s performance with the new metrics for matching.

A. Distance metrics

A distance metric d is defined as a non-negative function
in a set X so that d : X ×X → R, being R the set of natural
numbers. This function describes the distance between points,
for example x, y, z, of the X set. Furthermore, it must meet
the following conditions [11]:
1) d(x, y) + d(y, z) ≥ g(x, z)
2) d(x, y) = d(y, x)
3) d(x, x) = 0
4) d(x, y) = 0 =⇒ x = y

Once the concept of distance metric has been defined, we
can address the formulation of the Euclidean metric, used as a
standard in the original algorithm, as well as the formulation of
the Chebyshev and Manhattan metrics proposed as candidates
for the reduction of the computational cost because of their
low operative complexity.

1) Original Euclidean distance: The Euclidean distance
between the points x and y is defined as the length of
the segment which connects both of them xy. In Cartesian
coordinates, if x = (x1, x2, ..., xn) and y = (y1, y2, ..., y3)
are two points in a Euclidean n-space, then the distance from
x to y or y to x is determined by the equation 5.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (5)

In terms of operative cost, this metric requires the calcula-
tion of n products, 2n−1 sums/subtractions and 1 square root
to obtain the distance between two n-dimensional points.

2) Chebyshev distance: The Chebyshev distance between
the points x and y is defined as the maximum of the absolute
values of the differences between their coordinates. In this
way, if x = (x1, x2, ..., xn) and y = (y1, y2, ..., y3), then the
Chebyshev distance from x to y or y to x is described by the
equation 6.

d(x, y) = max (|x1 − y1|, |x2 − y2|, ..., |xn − yn|) (6)

In terms of operative cost, the Chebyshev metric requires
n subtractions, n − 1 comparisons and n absolute values to
obtain the distance between two n-dimensional points.

3) Manhattan distance: The Manhattan distance between
the points x and y is defined as the sum of the absolute
values of the differences of their coordinates. Being x =
(x1, x2, ..., xn) and y = (y1, y2, ..., y3), then the Manhattan
distance from x to y or y to x is determined by the equation
7.

d(x, y) =
n∑

i=1

|xi − yi| (7)

The operative cost of this metric is 2n−1 sums/subtraction
and n absolute values to obtain the distance between two n-
dimensional points x and y.

B. Computational cost comparison

As we could see before, it is clear that both the Chebyshev
and Manhattan metrics have a lower operative complexity than
the Euclidean one: the n products are replaced by n absolute
values whose cost is significantly inferior, and the square
root operation is no longer needed. However, this analysis
does not allow us to quantify the performance gain obtained
when using one metric or another because of the differences
of the processor architectures which include a different set
of arithmetic operations which are implemented differently
across the families of processors and microarchitectures. In
this sense, the only way of estimating the performance gain
is by determining the specific architecture operations needed
to implement the metric and calculate the number of cycles
needed for them for each processor family. In addition, modern
processors have reached an extremely high complexity level
in which superscalar processing and all kinds of instructions
optimization techniques take place so that it is quite difficult
to estimate a priori the gain or speedup obtained by using a
metric or another.

In this sense, before carrying out more extensive set of
tests to prove the viability of the use of the candidate metrics
and their impact on the results of the algorithm, we have
performed a set of empirical tests to determine an estimate
of the performance gain or speedup that may be expected by
using one metric instead of another. By doing this, we can
confirm that it is really worth to use low cost distance metrics
before modifying the algorithm. The rest of this section is
dedicated to describe the viability study.

The different distance metrics have been codified in C++.
For each one of them a test has been performed which con-
sisted of the computing of ten millions of distance operations
over two three-dimensional points. We have carried out one
hundred executions for each test with only the basic services
of the computer in execution to avoid altering the results;
the arithmetic mean of those one hundred executions has
been obtained discarding those times which were deviated a
20% from the median to smooth the noise introduced by the
different processes of the operating system being executed in
the background.

For that, we have used a typical platform currently, based
on the x86 architecture. The machine used to execute the tests
has got the following specifications: the operating system is
Debian 7.1, 64 bits based version, the processor used is an
Intel Core i5 2410M (2 cores, 4 threads, frequency 2.3 GHz),
the motherboard chipset is an Intel HM65 Express, the main
memory is composed by a single DDR3 4 GiB stick working
at a frequency of 1333 MHz.

To compile the executable we have used the C++ GNU com-
piler g++ version 4:4.7.2-1, carrying out a basic compilation
with no optimization flags: g++ -o main main.cpp.

The results of the benchmark, in terms of percentage of
change of the execution time needed to perform the ten million
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of distance operations, are shown on Table I together with the
speedups obtained over the Euclidean metric.

TABLE I
PERCENTAGE OF CHANGE OF EXECUTION TIMES AND SPEEDUPS OF THE

DIFFERENT METRICS AFTER TEN MILLION DISTANCE CALCULATIONS
OVER THREE-DIMENSIONAL POINTS.

Euclidean Chebyshev Manhattan
% of change (execution time) 0% -20% -43%

Speedup 1.000 1.247 1.766

As we can see, the Chebyshev distance shows a small
improvement in terms of execution time of approximately a
20% over the Euclidean distance metric while the Manhattan
one achieves a significant improvement which can be quan-
tified in a 43% over the Euclidean one approximately. These
facts confirm our operative cost analysis that we performed in
previous subsections; it is a remarkable fact that the Mahanttan
distance is clearly better than the Chebyshev one while its
operative complexity is quite similar; this happens because of
the cost of the call to the maximum function which is higher
than performing a simple sum or subtraction which requires
no additional logic.

In addition, we would like to note that we can’t expect to
obtain an improvement of a 20% or a 43% in the execution
time of the algorithm just by simply applying the Chebyshev
or Manhattan distance metrics because this change would only
accelerate the matching phase which is just a fraction of the
overall computation that is performed by the algorithm. The
obtained speedup is bounded by different factors such as the
computing fraction P represented by the accelerated phase
and the total speedup that we can apply to that fraction Sp

according to the Amdahl’s law [23] shown in the equation 8.

S =
1

(1− P ) +
P

Sp

(8)

V. VALIDATION OF TOPOLOGICAL SPACES

In order to assess the performance and quality of our pro-
posal, we carried out several experiments on a heterogeneous
set of synthetic situations trying to generate a representative
sample of the different surfaces and scenarios where three-
dimensional rigid registration techniques are often used. These
scenarios are described in section V-A

For all the experiments, we have used our own Matlab
implementation of the original ICP algorithm from Besl and
McKay without any optimization and with the needed modi-
fications to include the different metrics. Execution time data
has been obtained with the own Matlab tools for time mea-
surement. Each test has been performed one hundred times so
we took the average time of all executions, discarding values
with a deviation of 20% from the median in order to avoid
noise due to system overloads while executing background
processes.

For each test scenario we have considered three different
situations: one without any noise, other with noise in both
the model and the data, and the last one only applying noise

to the data to be registered and not to the model. The goal
of these situations is to verify the robustness of the proposal
against noise. The applied noise consists on the application of
random displacements to all coordinates of all the points of
the set. This deviations are bounded in order not to deform
excessively the point cloud.

Additionally, each scenario with a particular noise situation
has been executed for the three distance metrics already
mentioned before: Euclidean, Manhattan and Chebyshev. The
results of these experiments are presented in Section VI and
their discussion in Section VII.

A. Test scenarios

Scenarios are synthetic situations generated from the Venus
shape [19] by applying a set of cuts, and deleting some
points with the goal of generating an heterogeneous set of
possibilities for the registration. For each test, we will try
to register a point set into another one called model; for
each scenario, the source set has been initially transformed
applying a rotation of R0(30◦, 20◦, 15◦) and a translation of
T0(0.12m,−0.08m, 0.1m) to the surface.

1) Full: In this first scenario we perform a registration
where both model and data have exactly the same point set:
the complete shape composed by 5688 points. The starting
situation of this scenario (once applied the initial transforma-
tion explained before) is represented without noise in Figure
1. It is a simple situation for the algorithm and it is not very
useful from a practical point of view, although it allows us to
evaluate the difference among metrics in a basic scenario.

Fig. 1. Left: Model used for the registration and data set for the full scenario.
They are the same shape, as we can see. Right: Model used for the registration
in the horizontal cut with overlap scenario and data set for the same scenario.
We can observe an overlapping area between the two sets.

2) Horizontal cut (top): In this scenario we have performed
a horizontal cut to the point set, leaving just the top part
of the Venus to be registered with the complete model. The
starting situation is shown in Figure 2, without noise. Despite
being a simple and unrealistic scenario, this kind of situation is
closer to those found in practical applications of the algorithm.
Furthermore, this part of the shape has a smaller number of
points in a simpler surface.

3) Double horizontal cut: In this situation, which is a
combination of the two previous scenarios, we have performed
a section of the figure with two horizontal planes, and we
will try to register it to the complete model. This situation
is common in several practical applications of the algorithm
such as tomography image registration. Figure 2 shows the
resulting data set to be registered.
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Fig. 2. Data set for top horizontal cut (left) and double horizontal cut (right)
scenarios.

4) Horizontal cut (overlap): The last scenario is composed
by a combination of both horizontal cuts, top and inferior; in
this case a top horizontal cut has been applied to the model
(the model consists of the top part of the shape) and an
inferior horizontal cut has been done to the data set (the bottom
part of the shape), so that an overlapped area exists between
the two point sets. This last situation is the one that more
resembles a real three dimensional registration application.
Figure 1 reflects the starting point for this scenario.

B. Stop criteria

The registration will stop when the difference between the
registration error in the current iteration and the one from the
previous iteration is less than 0.05mm. The error is computed
as the RMS of the data set and the correspondences established

at the iteration k: ek =
1

NS

NS∑
i=1

‖yi − si‖2.

C. Test machine

The machine where we have executed tests has the following
specifications: the operating system is Windows 7 Professional
(64 bits), the processor is an Intel Core i5 3570K (4 cores,
4 threads, frequency 3.4 Ghz), the motherboard chipset is an
Intel Z77, the main memory is composed by two 4 GiB DDR3
modules working with a frequency of 1866 MHz.

The Matlab version that we have used is 8.1 (R2013a).

VI. EXPERIMENTAL RESULTS

In this section we will show the obtained results from the
experimentation whose methodology was defined in Section V.
This result presentation is organized by subsections according
to the scenarios described in Section V-A, so that we will
show, for each one, the execution time of the registration and
its associated error for each one of the metrics proposed in
Section IV, and also for each specified noise situation: without
noise, with noise applied to both model and data, and with
noise only applied to data.

In the same way, we will show a successful registration
example for each one of the scenarios, except for the full
scenario, whose result is easily imaginable.

A. Full

On Table II we show the experimentation results for the full
scenario, there we can observe, regarding execution time, that
Chebyshev distance has worse performance than Euclidean
one, meanwhile Manhattan distance offers a remarkable im-
provement in comparison with this last distance. Regarding
final registration error, all of them show similar results so nei-
ther Chebyshev nor Manhattan get significantly worse quality
registrations than the one obtained with the Euclidean distance,
except for the case with noise using Chebyshev.

TABLE II
FULL SCENARIO RESULTS, THE EXECUTION TIME IS EXPRESSED IN

SECONDS, AND THE ERROR (IN PARENTHESES) IN MILLIMETRES.

Noise Euclid. (s(mm)) Cheby. (s(mm)) Manh. (s(mm))
No 3.5(6.3 · 10−7) 9.1(1.1 · 10−5) 2.9(6.3 · 10−7)
Full 6.8(44.0) 17.0(45.0) 4.8(46.0)
Data 3.4(55.0) 9.8(59.0) 2.9(57.0)

B. Horizontal cut (top)

Table III contains the experimentation results from the
top horizontal cut scenario. The information that we can
can extract from this data is the same as in the previous
scenario: Chebyshev gets worse times meanwhile Manhattan
gets an appropriate improvement in this aspect; regarding the
registration error, both metrics keep a quality comparable to
Euclidean distance except noiseless Chebyshev.

TABLE III
RESULTS OF THE HORIZONTAL CUT (TOP) SCENARIO, THE EXECUTION

TIME EXPRESSED IN SECONDS, AND THE ERROR IN MILLIMETRES..

Noise Euclid. (s(mm)) Cheby. (s(mm)) Manh. (s(mm))
No 4.6(3.6 · 10−12) 17.0(8.1 · 10−6) 4.0(2.9 · 10−12)
Full 6.7(44.0) 23.0(46.0) 5.7(46.0)
Data 4.9(54.0) 17.0(59.0) 4.2(57.0)

Fig. 3. Left: Successful registration example of top horizontal cut scenario.
Middle: Successful registration example of double horizontal cut scenario.
Right: Successful registration example of horizontal cut with overlap scenario.
(Data set in red, model in blue).

C. Double horizontal cut

In the double horizontal cut scenario, the results shown at
Table IV prove that in this case the Euclidean and Manhat-
tan metrics provide a very similar performance and quality,
meanwhile Chebyshev one keeps providing significantly worse
performance.
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TABLE IV
RESULTS OF THE DOUBLE HORIZONTAL CUT SCENARIO, THE EXECUTION

TIME EXPRESSED IN SECONDS, AND THE ERROR IN MILLIMETRES.

Noise Euclid. (s(mm)) Cheby. (s(mm)) Manh. (s(mm))
No 1.6(2.0 · 10−5) 4.1(2.0 · 10−5) 1.7(2.0 · 10−5)
Full 2.9(44.0) 6.3(46.0) 2.9(45.0)
Data 2.0(55.0) 3.9(59.0) 1.9(58.0)

D. Horizontal cut (overlap)

At last, data from the horizontal cut with overlap scenario is
presented on Table V. It shows again what we have observed
in previous scenarios, but in this case the Manhattan metric
gets a slightly lower speedup in comparison with the ones
obtained in previous scenarios while keeping a very similar
quality to the Euclidean metric. Chebyshev metric gets worse
performance once again, although registration error remains
closer to the original implementation.

TABLE V
RESULTS OF THE HORIZONTAL CUT WITH OVERLAP SCENARIO, THE
EXECUTION TIME IN SECONDS, AND THE ERROR IN MILLIMETRES.

Noise Euclid. (s(mm)) Cheby. (s(mm)) Manh. (s(mm))
No 2.1(1.1 · 10−2) 3.9(1.7 · 10−2) 2.0(1.2 · 10−2)
Full 2.5(1.3 · 10−2) 6.0(1.3 · 10−2) 2.2(1.3 · 10−2)
Data 2.3(1.3 · 10−2) 8.0(1.4 · 10−2) 1.8(1.4 · 10−2)

VII. DISCUSSION

In this secttion we will discuss the results in depth and anal-
yse the conclusions in order to check the possible implications
that they may have on our work and the algorithm.

First, it should be noted that the two distance metrics tested
showed different results in terms of performance, and quite
similar ones regarding the quality of the registration in terms
of final error. In those different results, the Chebyshev metric
has shown a contradictory behaviour since a performance gain
was expected instead of a loss. The Manhattan metric showed
the expected behaviour regarding to its performance.

The proposal implemented with the Manhattan metric has
shown, in all cases, a better or similar performance than the
original implementation with the Euclidean one. Execution
time speedups obtained by this metric, calculated with the
experimental data of Section VI, are listed by Table VI. In
most of the scenarios we can see a performance improvement,
a 5% in the worst case and a 29% in the best of them. The
average of the computed speedups is about 13%. In some
scenarios, such as the double horizontal cut, time results are
similar to those obtained by the euclidean metric, so the effect
of the metric in them is irrelevant. It is also important to
note that greater accelerations have been obtained in those
scenarios where a greater number of points on the surfaces
were available (full, and top horizontal cut), than those where
the figure has more aggressive cuts (double horizontal cut and
horizontal cut with overlap).

It is remarkable that in Section IV-B we performed a predic-
tion of a maximum improvement, that was of approximately
a -43%, based on empirical data about the execution of C++
implementations of the metrics. In this case we have obtained

TABLE VI
SPEEDUPS COMPUTED FROM TIME DATA PRESENTED ON SECTION VI.
THE SPEEDUPS SHOW THE PERFORMANCE GAIN OBTAINED WITH THE

MANHATTAN METRIC OVER THE EUCLIDEAN ONE. THE EXECUTION TIME
PERCENTAGE OF CHANGE IS SHOWN IN PARENTHESES.

Scenario Noise Speedup (Man. over Euc.)
Full None 1.21 (-17%)
Full Full 1.42 (-29%)
Full Data 1.17 (-15%)

Horizontal Cut (Superior) None 1.15 (-13%)
Horizontal Cut (Superior) Full 1.18 (-15%)
Horizontal Cut (Superior) Data 1.17 (-14%)

Double Horizontal Cut None 0.94 ( +6% )
Double Horizontal Cut Full 1.00 ( +0% )
Double Horizontal Cut Data 1.05 ( -5% )

Horizontal Cut (Overlap) None 1.05 ( -5% )
Horizontal Cut (Overlap) Full 1.14 (-12%)
Horizontal Cut (Overlap) Data 1.28 (-22%)

Average speedup (Percentage of change) 1.14 (-13%)

an improvement of -29% for the noisy top horizontal cut,
in the same way that in certain situations such as noiseless
horizontal cut with overlap, we have obtained a lower gain
than expected with a single -5%; this is due to the same cause
as the Chebyshev metric worse performance: changing the
distance metric affects the convergence rate because of the
quality of the matchings, making it better in some situations
where we get a higher gain than the expected due to the lower
number of iterations performed, and others where we get a
lower convergence speed with more iterations and therefore
the obtained performance is lower than the expected.

Despite this fact, it has been experimentally proven that the
Manhattan metric offers, in general, better performances in the
tested scenarios than the Euclidean one regarding execution
time, and at the same time it keeps a similar registration
quality, as we show in the final errors listed in Section VI.

VIII. CONCLUSIONS AND FUTURE WORK

In this article, we have presented an improvement proposal
for the ICP algorithm which able to reduce its computational
cost effectively for high resolution applications. This cost
reduction affects the execution time of the algorithm, making it
decrease significantly in different scenarios. The performance
improvement is due to the replacement of the Euclidean
distance metric with another one with less computational cost,
such as the Manhattan distance metric. First, we made a
brief analysis about the viability of the improvement using
the Chebyshev and Manhattan metrics execution times, and
comparing them to the Euclidean metric ones; in that analysis
we proved, based on the obtained experimental results, that
the Chebyshev metric reduced the execution time by a 20%,
while Manhattan did it by a 43%.

Since the metric is intensively used during the matching
phase to find the closest neighbour for each point, and taking
into account that the matching phase represents a significant
part of the execution time of the algorithm, a positive impact
is caused on performance by using these low cost metrics. The
performance improvement obtained by using this modification
of the algorithm with the Manhattan distance ranges from 5%
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to 29% time reduction on tested scenarios, having a mean
execution time reduction of a 13%. In some situations with
low computational load, the proposal performs roughly at
the same level than the original algorithm, with variations
which range from -5% (execution time decrease) to 6% (time
increase). The speedup is boosted in scenarios with a higher
computational load, so that the proposal is quite useful when
dealing with high density point sets in high precision applica-
tions. Additionally, the registration quality is kept at the same
levels as the ones obtained with the Eucliden distance, with
variations which, in some scenarios, were slightly better for
Manhattan and others for the original implementation. Since
fine registration is required in many real-time applications
which need a quick and robust response, our proposal has
a high impact potential.

Finally, the proposed contribution can be extended or im-
proved in several ways: the same concept of cost reduction
could be applied in parallel architectures, both in CPU and
GPU to explore both possibilities to increase performance.
It is also possible to modify variants where the matching
phase has not been altered, in order to apply this performance
increase to other contributions that improve other parts of the
algorithm. Furthermore, a custom low cost distance metric
might be created to test its effect over the algorithm.
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Abstract ─ This paper presents and evaluates a parallel 
time domain analysis of a rectangular reflector on 
multicores machine. Rectangular reflector antennas 
have motivated the time-domain analysis of 
electromagnetic scattering problems. The asymptotic 
time domain physical-optics (TDPO) is applied to the 
analysis of a rectangular reflector illuminated by a 
Gaussian-impulse. It is a numerical technique used in 
computational electrodynamics. The effects of time-
delayed mutual coupling between points on the surface 
will be ignored because of utilizing the TDPO method 
for determining the equivalent surface-current density 
on the reflector. As a result, the scattered signals at the 
specular reflection point, at the edges, and at the 
corners can be clearly distinguished. Furthermore, this 
paper evaluates and compares the performance of the 
sequential time-domain analysis against the parallel 
time-domain analysis on multicores machine. 
 
Index Terms - Parallel computing, Time domain; 
Rectangular reflector; Electromagnetic scattering.  
 

I. INTRODUCTION 
Reflector antennas are intensively applied in the 

radars, communication, and guidance, etc. Nowadays, 
the problems of electromagnetic (EM) scattering have 
been widely applied in fields of remote sensing, target 
identification, radar detection, and so on. The interest in 
the transient analysis of EM phenomena has been 
growing in recent year. This is due to the advance of 
Ultra-Wide Band (UWB) radars and their associated 
antennas, various antennas have been proposed for 
UWB application [1], with mobile radio channels by 
means of their response to pulsed excitation [2]. There 
are several methods that are used to analysis the EM 
scattering that will be explored in next section. They 
have inherent difficulties with numerical instability, 
interpolation errors, and need of extensive computer 
memory and CPU time to solve problems involving 
large scatterers. It is more efficient do deal with the 
transient analysis directly in the time domain. The time 

domain physical-optics (TDPO) [5], [6] is an alternative 
method that requires relatively small amounts of 
computer memory and CPU time.  

Consequently, this paper will focus on 
implementing the TDPO approximation method on 
parallel computer system. However, this section will 
discuss several CEM numerical methods either 
implemented in sequential or in parallel as follows.   

Physical-optics (PO) approximation is one of 
these techniques. It has been widely used and 
considered as a good approximation of the far field 
electromagnetic scattering [16]. Starting from the 
Stratton-Chu integral equations, the PO expressions can 
be obtained for the PO scattered magnetic field in 
frequency domain [17]. The PO approximation is 
initially applied in the frequency-domain with the 
inverse Fourier transform [9] and [10]. Those equations 
are obtained directly from Maxwell's equations by 
applying Green's theorem in its vector form [17, 18]. 
The PO requires integration over the illuminated 
surface of the scatterer. Due to the complex exponential 
term, the integrand of the PO integral is a very 
oscillatory function, especially at high frequencies. 
Therefore, it is very expensive to compute these kinds 
of integrals by simple numerical integration techniques 
such as Levin’s integration method [19]. For large 
scatterer, the PO approximation is an efficient method 
in the frequency domain [7], [8]. To accelerate the 
computing of the PO, there are some researches that 
handle PO in parallel based shared memory [28] and 
distributed memory [29, 30].   

Moreover, there exist several analytic and 
numerical techniques for obtaining the response of 
scattering problems directly in the time domain, which 
is the most natural approach to be used, such as the 
finite-difference time-domain method (FDTD) [3, 11, 
12]. Recently, the FDTD method is being used to solve 
a wide variety of practical problems, because it can be 
competitive with the FEM in terms of versatility and 
solve time, even on a single PC or laptop computer 
loaded with a 2 GB memory. However, the main 
advantage of the FDTD becomes increasingly apparent 
when it is run either on multi-core processors or MPI 
protocol with low-cost high speed networks, because it 
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can be parallelized more efficiently than the FEM [21-
25]. There are several works [26, 27] present a hybrid 
FDTD numerical algorithm which has been 
successfully developed and validated. They employ 
distributed and shared memory thorough of MPI and 
OpenMP [14]. 

 
II. THEORY AND FORMULATION  

 
The TDPO integral is evaluated over the 

illuminated with a closed-form expression based on 
Gaussian-impulse. The formula of the TDPO is derived 
with the inverse Fourier transform. The scattered field 
of the TDPO is obtained as follows [20]:  
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where the vector r` locates the integration point on the 
scatterer surface, r is the distant observing point, c is 
the velocity of the light and is oη  the intrinsic free 
space impedance, 

)),(,( `` rtrj PO
s τ  is the surface-current distribution in 

the time domain and ),(,( `` rtrh inc τ  is the time-domain 
magnetic field incident on the surface.  
The delay time of the propagation is given by: 
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Based on equation (1) the surface-current density does 
not need to be solved. Consequently minimum 
computer memory is required and no interpolation 
evaluation needs to be carried out because the incident 
fields are known for all positions and times. This 
benefit makes this approach suitable for limited 
computer-memory requirement (e.g. personal 
computer).   

Fig. 1 shows the geometry of a rectangular 
reflector illuminated by an incident wave. We assume 
that incident wave is bandpass Gaussian-pulse transmit 
from x-polarized small dipole point source, which has 
the following form: 
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Fig.1. Geometry of a rectangular reflector 
 
σ is the standard deviation of Gaussian envelope, B is 
the magnitude parameter of impulse, and oω  is the 
angular frequency.  
From Eq.(5) we can form the time – domain 
representation v(t): 
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as a real signal, we can write v(t) as: 
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where F(t) is analytic low pass input signal,  
 
F(t) = I – j Q,                          where  
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where I and Q are the In-phase and Quadrate parts. 
F(t) corresponds to the complex envelope of v(t) and 
useful to know the intensity of the scattered wave in 
time domain. 
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The next step is being able to show how such a 
bandpass system can be given an equivalent baseband 
representation at the center frequency, as  

U (t) = ττωτ
π

d ] j [- Exp )(u 
T 2

1 2
  

2
  

∫
+

−

Tt

Tt

o
                        (8) 

The baseband output is the sum over each path, of the 
delayed replicas the baseband input. When we get the U 
(t), it is possible to draw dB plot, as shown in Fig. 3-b. 

III. PARALLEL IMPLEMENTATIONS OF THE 
TDPO 

 
In this paper, the OpenMP [14] programming 

interface was employed to parallelize the computations 
of the EM based on the TDPO method. It was 
developed on the multicore central processing unit 
(CPU) in multiple precisions arithmetic. OpenMP has 
been used to parallelize the code and memory-
hierarchy-based optimization techniques to reduce the 
computer time of the code. Using these techniques, the 
computer time can be reduced in a factor close to the 
number of cores of the CPU. While acceleration of the 
computational electromagnetic methods on graphics 
processing units (GPUs) has recently become a hot 
topic of investigations, multicore CPU still remains a 
source of significant computational power comparable 
to the GPU throughput for specific algorithms [15]. To 
the best of our knowledge, accurate computation of 
scattered field of the TDPO over rectangular reflector 
illuminated by a Gaussian-impulse for rectangular 
require the multiple precision arithmetic, which has not 
been implemented as a library on GPUs yet. Therefore, 
it can be anticipated, that the proposed parallel CPU 
implementation will open the door to the 
implementation of the TDPO method on heterogeneous 
computing systems simultaneously deploying the 
computational power of multicore CPUs and GPUs for 
the tasks best suited for each. 

In this paper the authors implemented their 
computing solution on parallel using OpenMP as 
follows. It begins with a single thread of control, called 
the master thread, which exists for the duration of the 
program. The set of variables available to any particular 
thread is called the thread’s execution context. During 
execution, the master thread may encounter parallel 
regions, at which the master thread will fork new 
threads, each with its own stack and execution context. 
At the end of the parallel region, the forked threads will 
terminate, and the master thread continues execution.  

The master thread performs the following steps to 
compute scattered field of the TDPO: 

• The geometry parameters of the rectangular 
reflector antennas are input to master thread. In 

addition, it initializes the constant values, uses 
equation 3 to calculate surface current density 

PO
sj and then calculates the incident wave 

),( ` trh k
inc that is shown in equation 5, 

• Calculate the scattered field of the TDPO equation 
),( tre TDPO  by transforming the integral in 

equation 1 into sum of scatter fields over M x N 
small rectangular reflectors. The master thread 
creates NTHREADS worker threads where each 
one calculates the sum over a small rectangle 
reflector. 

The computing of the scattered field of the TDPO 
over rectangular reflector is obtained by equation 1. 
The rectangular reflector can be divided into M x N 
small rectangular reflectors as shown in fig. 1, where 
M=2a/0.1λ , N=2b/0.1λ, and λ denotes the wavelength.  
Consequently, the integration in equation 1 can be 
expressed as the summation of scattered fields over 
these M x N small rectangular reflectors. Therefore, it is 
time-consuming calculations that need to be performed 
on parallel. At this time, the code has been parallelized 
by distributing the M vectors of rectangular reflectors 
into NTHREADS threads. Each thread calculates the 
sum of the scattered field over N rectangular reflectors. 
The sum total of all the scatter fields by M x N small 
rectangular reflectors constitutes the scattered field by 
the target as follows.  

#pragma omp parallel shared () private () { 
 #pragma omp for schedule (static) 

     for ( i=-M ; i<=M; i++) 
          for (j= -N; j<=N; j++) 
                sum =sum + Compute_ScatteredField(i, j); 
         } 

The main problem that appears in using OpenMP is 
the order of the loops. If the directions of the 
observation points are used as outer loop, then each 
core can compute the scattered field created by all the 
rectangular in one direction, and at the end, it should 
store the result in a position of the output vector. But if 
the index of the rectangular is used as the outer loop, 
then each core must compute the scatter field over this 
small rectangular and then use the reduction method to 
add all the results. Unfortunately, the reduction method 
is not well implemented for vectors in OpenMP, and 
each core must wait for the others to write their results. 

 
IV. NUMERICAL RESULTS AND DISCUSSION  

 
To explore the effectiveness of the used parallel 

technique, this paper implemented and carried out 
sequential and parallel experiments to examine the 
processing time needed to compute of the scattered 
field of the TDPO over rectangular reflector. 
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Fig. 2 (a-d). Scattered field rectangular reflector with Gaussian-impulse excitation TDPO with reflector diameters, d, 2d, 4d and 
8d, respectively 
 
A. Setup 

Theses computing algorithms were implemented 
using Microsoft Visual Studio Professional 2012 on a 
HP server (ProLiant ML350p Gen8) with two Intel 
Xeon (R) processors (E5-2620 @ 2.00 GHz), each 
processor has 6 cores and 32 GB RAM. The total 
number of physical cores is 12. Hence, it is capable of 
running 12 threads simultaneously. The multicore CPU 
implementation was performed using the OpenMP 
programming model as in [14, 31]. 

B. Numerical Results 
Numerical results were obtained for a variety of 

configurations. As a target, we use a PEC rectangular 
plate as shown in Fig. 1, where λ  is the wave length, 
σ  is the standard deviation of  Gaussian-impulse and 

σ
τ ott −

=  and d = cσ  is the reflector diameter.  

Fig. 2 (a-d) shows the scattered field of the TDPO 
of an exact solution. The three scattering components 

shall be distinct, i.e. specular reflection at the center of 
rectangle, edge diffraction at the center of the edge, and 
corner diffraction at the corners shown in Fig. 2 (a-d), 
respectively. In Fig. 2 (a-d), the reflectors diameters are 
d, 2d, 4d and 8d, respectively. The scattered field 
TDPO increases with increasing reflectors diameter d 
by factors 2, 4, and 8. The results appear to be more 
accurate and stable faster than those obtained by 
frequency domain physical optics [20]. For greater 
reflector size, the time domain solution requires 
considerably more computing power consequently we 
implemented it in parallel.  

 Fig. 3-a, shows that the observation point is very 
close to the reflector shadow boundary associated with 
upper diffraction point, Gaussian-impulse excitation 
with coordinates  r = 100 m, oo 0 ,65 == φθ .  
Radiation pattern for Gaussian-impulse excitation, 
based in the peak response at the three scattering 
components is plotted in Fig. 3-b. 
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Fig. 3-a Scattered field of a rectangular reflector with 
Gaussian-impulse excitation at  r = 100 m, 

oo 0,65 == φθ  
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Fig. 3-b. Radiation pattern for Gaussian-impulse 

excitation. 

 

To compute the scattered field of the TDPO over 
rectangular reflector with diameter 10d the single-
threaded code requires 177.422 seconds. While the 
multi-threaded code with 12 threads requires 19.73 
seconds. The merits of the parallel computing are 
speedup Sl and efficiency El using l parallel threads that 
can be computed as follows [32], Sl = Tsequential /Tl  and 
El = Tsequntial/(l . Tl) where Tequential is the computing time 
in sequential, Tl is the computing time using l threads 
and 1≤ Sl ≤ l. However, the computing overhead is 
determined as follows O(l)=Tl (1-El)= Tl – (Tequential /l).  
This experiment shows that with 12 threads the 
computing is speedup by 8.99x and efficiency is 75%.   
Fig. 4.a shows the plot showing the speedup as a 
function of reflector diameters (d, 2d, 4d, 6d and 8d 
respectively). 

The code is multi-threaded that achieves an 
excellent speedup when executed on multiple cores.  
Fig. 4.b demonstrates the required computing time 
according to different reflector diameters along with 
increasing the number of parallel threads. This figure 
shows that for small wavelength the effect of parallel 
has less significant however it shows significant impact 
while increasing the reflector's diameter. Moreover, we 
extend our experiments to reflector diameter 25d and 
we are able to calculate the scatter field in sequential 
within 12 hours and 14 minutes however it take one 
hour and 35 minutes and 20 seconds with carrying out 
12 threads per 12 cores. This experiment shows that 
with 12 threads the computing is speedup by 8.02x and 
efficiency around %.65.  

 
 

IV. CONCLUSION 
To determine the analysis of a rectangular reflector 

illuminated by a Gaussian-impulse considering the 
UWB radar application, this work extends the concept 

of the frequency-domain physical optics approximation 
to time-domain. The scattered field of the TDPO is 
obtained by performing the inverse Fourier transform 
over the frequency-domain scattered field that is 
obtained by calculating the integral over the illuminated 
surface using the free space Green’s function. The 
numerical results show the applicability of TDPO, as 
the scattered signals at the specular reflection point, 
edge diffraction and corner diffraction. Fig. 2(a-d) 
shows comparisons of the TDPO results with a 
reference solution based on a frequency domain 
physical optics. The frequency domain physical optics 
solution requires considerably more computer time and 
becomes inherently unstable. Moreover, the TDPO can 
reduce CPU time drastically. The parallel 
implementation of the TDPO is developed over 
multicores using OpenMP. The parallel performance of 
the parallel TDPO program is measured. And the 
results show that the speed up ratio is approximately 
equal to 8.99x with 12 threads. 
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Abstract—The genetic algorithm has a wide range of search 

capability, showing a multi-objective optimization problem solving 
strengths. In this paper, we use the balance of return and risk 
multi-objective optimization theory based on the Harry M. Markowitz 
mean variance model, introducing the risk preference as well as VaR 
constraints in Genetic Algorithm. Through the MATLAB simulation, 
the stock portfolio is optimized for the investors to make decision. 
 
Keywords—Genetic algorithms, optimization, portfolio, stock 

 

I. INTRODUCTION 
HE most common stock selection and the most important 
points for us to consider is the degree of return and risk: the 

return of investment income determines how much risk we 
determine to bear when we invest. Highly profitable often 
associated with high risk investments, so investors should not 
only pursue the high profits and ignore the risk. Both of which 
should be considered in conjunction with their own situation to 
be weighed [1-2]. 

From the theoretical model improvements, the latest research 
results include the introduction of portfolio theory transaction 
costs; long-term investment portfolio theory continuous time; 
VaR portfolio theory; behavioral portfolio theory;  non-utility 
maximization portfolio theory. From the aspect of calculation 
methods in recent years, there are a lot of approaches different 
to traditional optimization algorithms, such as genetic 
algorithms, neural networks, heuristic algorithm, simulated 
degradation algorithm [3-6]. 

This paper intends to use the genetic algorithm to measure the 
portfolio by consideration of the rate of earning and the standard 
deviation. Pursuant to constitute a multi-objective function of 
the problem, we use genetic algorithm for optimization of the 
solution to get the stock of non-dominated solutions.  

II. GENETIC ALGORITHM 
The basic principle of the genetic algorithm is applied by a 

gene on the chromosome [7]. Chromosome can solve the 
problem and find a good one. It requires each chromosome 
generated by the algorithm to be evaluated and selected based 
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on the fitness of the chromosome, so that the good adaptability 
chromosome can get more chance to reproduce. In genetic 
algorithm, the random number is generated by the digital code, 
namely the chromosome form the initial population. Through 
the fitness function for each individual with numerical 
evaluation, the low fitness individuals are eliminated and the 
high fitness individuals are chosen to participate in genetic 
manipulation. The function 

 
GA = (P (0), N, l, s, g, p, f, t)        (1) 

 
Where P (0) = ((0), (0), ⋯ , (0)) represents the initial 

population; N represents the number of individual populations 
contain; l is  the length of the binary string representation; S 
indicates the selection strategy; g indicates genetic operators, 
usually including breeding operator: I × I, crossover: I × I, and 
mutation operators: I × I; p indicates the probability of the 
child's genetic operator operations, including breeding 
probability, crossover probability and mutation probability; f is 
the fitness function; t  is the termination criteria. The genetic 
algorithm is as follows [8]: 
(1) Initialization: Since the implementation of population-based 

genetic algorithm operation, it must be a part of the solution 
space by a number of initial solution consisting of genetic 
manipulation to prepare for the initial population. Set 
evolution generation counter t = 0 and the maximum 
evolution algebra T. Individuals N is randomly generated as 
the initial population. 

(2)  Self-evaluation: Calculate the fitness population P (t) of 
each individual. 

(3) Select the operator: The purpose is to select an excellent 
number for individuals from the current population, so that 
they have the opportunity as a parent on behalf of the next 
generation of breeding. 

(4) Cross-operation: The crossover effect in groups. The 
so-called cross refers to the part of the structure of the two 
parent individuals to generate new individuals to replace the 
restructuring operation. The crossover plays a central role in 
Genetic algorithm. 

(5) Mutation operation: A randomly selected string is mutated 
into a new generation of individuals to provide the 
opportunity for evolution. Population P (t) after selection, 
crossover and mutation operation to get the next generation 
of population P(t+1) thereafter. 
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(6) Determine the termination condition: if t = T, places the 
resulting evolution of the fitness with the largest output as 
the optimal solution to terminate the calculation. 

Cross refers to the part of the structure of the two parent 
individuals to generate new individuals to replace the 
restructuring operation. By cross, genetic algorithm can 
improve search capability to leap. Crossover rate will be based 
on the population of the two individuals randomly switching 
certain genes to produce new genetic combinations. 

Discrete recombination can exchange the value of variable 
between individuals. Considering the following individual with 
three variables: 

parent 1:      12     25    5 
parent  2:     123    4     34 

Each son individual can choose the parent value randomly 
with equal probability to reorganize a new son individual entity: 

Son  l;     123    4     5 
Son 2:     12      25   34 

For the multi-point crossover, m cross location has no 
repeated random selection. To produce two new generations, 
continuous exchanges happen in the point of intersection 
between the variables, except the first variable and the first 
intersection. For example, the intersection location was 2, 6, 10 
as follows. 

parent 1:  01110011010  01101111011  Son 1 
parent 2:  10101100101  10110000100  Son 2 

 

III. IMPROVED MULTI-OBJECTIVE GENETIC ALGORITHMS 

A. Multi-objective Genetic Algorithm 
Multi-objective genetic algorithm is to construct a 

non-dominated set for optimal solution. Evolutionary 
optimization algorithm can be obtained by a multiple pareto 
optimal solution, forming a pareto non-dominated set rather 
than a single solution, it has the advantage of solving 
multi-objective optimization problem. 

SMOCEA has two evolutionary stages: population 
evolutionary stage and the outstanding individual evolutionary 
stages. In population evolutionary stage, the various population 
groups maintain a belief in evolutionary set, and select 
outstanding individuals to update their belief set from the 
population evolution. The annexation population reflects the 
relationship between collaboration and competition among 
populations. In outstanding individual evolutionary stages, the 
various groups of individuals maintain the belief set to explore 
more outstanding individuals in the sparse area neighborhood 
by way of further evolution. 

B. Population culture 
Culture algorithm is a double evolutionary mechanism 

proposed by Robert G · Reynolds in 1994 as a cultural 
experience in the past. In cultural algorithm, various groups are 

maintaining a population evolutionary set.  The algorithm 
selects outstanding individuals from the population 
evolutionary belief set, the set of individual belief is to maintain 
a certain number of coefficients by extrusion. After the 
maintenance is completed, the knowledge and cultural 
formation of population are extracted. 

Maintaining the diversity of population distribution is one of 
the key issues to solve multi-objective evolutionary algorithm. 
In this paper, we use biodiversity indicators to measure the 
diversity of belief set. 

C. Co-evolution 
After the evaluation is completed, the belief set from the 

finest populations N2 individuals is randomly selected to 
participate in the next evolution of the population. The number 
is set to participate: 

 

2N Nη µ= ⋅ ⋅                            (2) 
 

Where, η [η ∈  (0,1)] represents outstanding individual 
utilization; N is the population size; μ [μ ∈  (0,1)] is the 
proportion of the population. 

 If μ population is greater, the degree of internal learning (1 
-μ) is smaller. Thus, set  N '= η • N. Where N' represents the total 
number of individuals participating in the next generation of 
evolution, including N1 and N2. The next generation of the 
population N0 (N0 = N-N1-N2) individuals press the partial 
order to fill the next population. 

D. SMOCEA algorithm flow 
After obtaining the data set initialized to n populations and 

establishing a separate set, the set can be used for the evolution 
of population evolution based on the objective function. After 
selecting the outstanding individuals from the population 
evolutionary belief set into a new set N2, individuals are 
randomly selected to participate the next evolution. By 
calculating the population control capabilities, the continuous 
generation of population control I defined the vulnerable 
populations. 

Termination conditions for each generation sub-populations 
govern the degree of similarity of sub-optimal capacity and 
ability to control populations of the weakest among 
sub-populations of 70%. 

IV. EMPIRICAL ANALYSIS 
We start from the analysis of the balance between profit 

ability and risk level, to increase profitability and risk control as 
the two major goals of investment decision, combining with 
genetic algorithm for multi-objective optimization and optimal 
trade-off of stock on the profitability and risk degree. Stock 
daily net growth rate is identified to measure the earnings, and 
the net growth rate of standard deviation is used to measure the 
risk, which constitute a multi-objective function by using 
genetic algorithm with systematic optimization for a 
non-dominated solution set, the optimal portfolio. 
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A. Data processing 
Collect 40 open-end stock 2013 annual data, including 

cumulative net profit and the risk free rate of return. The 
average weekly net stock of the net growth rate is calculated for 
Gw, the stock profit ability Aw and the anti-risk ability Rw are 
also computed. In addition, based on the original data, the 
abnormal data is rectified so that each stock can get 45 samples. 
Then the multi-objective genetic algorithm is used to calculate 
the optimization results under the balance of profit and risk. 

B. Optimization of multi-objective genetic algorithm 
In accordance with the evolution of evolutionary design 

process, the 40 stocks initial population is set. For population 
diversity, this study chose parameters Gw, Aw, Rw with 
0.3,0.5,0.7 for testing, and ultimately determine the most 
appropriate value. 

Let the weak dominated population be annexed, retaining the 
outstanding individuals for population variation and evolution. 
This paper set the termination criteria with commonly used 200 
iterations. In each generation of sub- populations, when the 
optimal sub-population control ability and the weakest control 
ability among sub-populations achieve similar degree, then the 
iteration is terminated. The output of the solution set is the final 
result, namely the non dominated set. 

The solution set is derived from the demand for non-pareto 
dominating set. By means of Matlab, the investment portfolio 
results is obtained and shown in Figure 1, the screened six 
outstanding stocks are number 1, 5, 8, 9, 29, 34 respectively, 
which is shown in Table 1. 

The results show that the number of iteration constraint can 
not be too strict, otherwise no choice may be excluded; and the 
iterative constraint can not too loose, otherwise no restraint. 

With the increase of generation, the evolution results become 
better and better. After 200 iterations of population, the optimal 
solution of the objective function is shown in Figure 2. We run 
the program 3 times again, and the results are shown in Figure 3, 
Figure 4, and Figure 5. It can be seen that the stability is very 
good under 200 iterations, the multi- objective genetic 
algorithm has achieved a satisfactory result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1  Genetic algorithm result 

 
Table 1  Multi-objective genetic algorithm result 

Multi-objective results 
Yield 
(Gw) 

Individual risk 
(δ) 

1 National Agricultural 
Technology 0.026 0.0017 
5 card Electronic 0.030 0.0020 
8 Golden Shares 0.029 0.0018 
9 letter states pharmacy 0.033 0.0029 
29 Santai Electronics 0.029 0.0022 
34 Fudan Fuhua 0.030 0.0029 

 
 

 
Fig. 2  Optimal solution 1 scatter 

 

 
Fig. 3  Optimal solution 2 scatter 

 

 
Fig. 4  Optimal solution 3 scatter 
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Fig. 5  Optimal solution 4 scatter 

 

C. Comparison with Mean-variance portfolio model 
Portfolio is usually expressed as a combination of the 

expected rate of return. Weighted average expected rate of 
return can be used to calculate the return of portfolio investment 
which consist of a variety of securities. Portfolio risk is usually 
expressed by a combination of standard deviation and the  
covariance between the weighted average 

The return of portfolio is: 

1
( )

n

p i i
i

E r w r
=

= ∑                               (3) 

Portfolio risk formula is： 

 
1
2

1 1

n n

p i j ij
i j

w wσ σ
= =

 
=  

 
∑∑                            (4) 

Based on the data collected  from January 1, 2013 to 
December 30, 2013, we chose the general investor risk 
preferences to calculate the portfolio by using Markowitz  
Mean-variance model with the constraint of return and risk have 
the equal weights, the result shows that the best performance 
stocks are number 4,10,8,30,29,39 as shown in Table 2. 

 
Table 2  Mean-variance portfolio algorithm result 

Artificial screening results 
Yield 
(Gw) Individual risk (δ) 

4 Wright 0.023 0.0052 
10 South Building 0.025 0.0073 
8 Golden Shares 0.029 0.0018 
30 Dongyirisheng 0.021 0.0041 
29 Santai Electronics 0.029 0.0022 
39 New South Seas 0.013 0.0023 
 
The return and risk calculation by genetic algorithm is 

obtained such as shown in Figure 2. In accordance with the 
investment portfolio, the return of six outstanding stock 
portfolio based on the genetic algorithm is 0.026, and the risk is 
0.00341.  Manually screened stock portfolio return is 0.020, and 
the risk is 0.00428, it is concluded that the use of genetic 
algorithm provides a fair performance for the portfolio. 

V. CONCLUSION 
In financial decision, due to the complicated procedures in 

Markowitz portfolio with many different combinations, the 
optimal portfolio is usually difficult to obtain. This paper 
proposes a new model based on genetic algorithms by 
introducing VaR constraint to solve the problem. In order to 
meet the requirements of different risk preferences of the 
portfolio, we also introduced a portfolio's risk preference factor, 
resulting in a multi-set of optimized portfolio. Through case 
studies, the genetic algorithm model has got a satisfied result, 
showing the new model proposed in this paper provides an 
effective theoretical guidance and decision-making basis for 
investors.  
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Some Properties of The Solution of Beltrami
Equation

Melike Aydoğan and Durdane Öztürk

Abstract—Let f(z) = h(z) + g(z) be the sense-preserving
harmonic mapping, then it satisfies Beltrami differential equation
fz = ω(z)fz . In the present paper we will investigate the solution
of this equation in the open unit disc D = {z| |z| < 1}.

Keywords—Distortion theorem, Growth theorem, Complex dilata-
tion.

I. INTRODUCTION

LET Ω be the family of functions φ(z) which are analytic
in D and satisfying the conditions φ(0) = 0, |φ(z)| < 1

for all z ∈ D, and let Ωa denote the class of functions ψ(z)
which are regular in D and satisfy the condition |ψ(z)| < a
for every for every z ∈ D.

Next, An denote the class of analytic functions of
the form s(z) = z + cn+1z

n+1 + cn+2z
n+2 + . . . ,

and let Pn(a) designate the class of functions
p(z) = 1 + pnz

n + pn+1z
n+1 + . . . which are analytic

in D and satisfies the condition∣∣∣∣1− p(z)1 + p(z)

∣∣∣∣ < a, (1)

where 0 < a ≤ 1. Let s(z) be an element of An and

satisfies the condition

∣∣∣∣∣∣∣∣
z
s′(z)

s(z)
− 1

z
s′(z)

s(z)
+ 1

∣∣∣∣∣∣∣∣ < a, (0 < a ≤ 1)

for all z ∈ D, then s(z) is called starlike of order a. This
definition was given by K.S. Padmanabhan [7], the class
of such function is denoted by S∗n(a). Let s1(z), s2(z) be
elements of A1, if there exists a function φ(z) ∈ Ω such that
s1(z) = s2(φ(z)) for every z ∈ D, then we say that s1(z) is
subordinate to s2(z) and we write s1(z) ≺ s2(z). Specially
s2(z) is univalent in D then s1(z) ≺ s2(z) if and only if
s(D) ⊂ s2(D) and s1(0) = s2(0) implies s1(Dr) ⊂ s2(Dr),
where Dr = {z| |z| < r, 0 < r < 1}. (Subordination and
Lindelöf principle [2])

Finally, a planar harmonic mapping in the open unit
disc D is a complex-valued harmonic function f , which
maps onto the some planar domain f(D). Since D is a
simply connected domain, the mapping f has a canonical
decomposition f(z) = h(z) + g(z), where h(z) and g(z) are

M. Aydoğan and D.Öztürk are with the Department of Mathematics, Işık
University, Istanbul, TURKEY e-mail: melike.aydogan@isikun.edu.tr

Manuscript received April 19, 2005; revised January 11, 2007.

analytic in D and have the following power series expansions

h(z) =
∞∑
n=0

anz
n, g(z) =

∞∑
n=0

bnz
n, (2)

where an, bn ∈ C , n = 0, 1, 2, . . . as usual we call
h(z) the analytic part of f and g(z) is co-analytic part
of f . An elegant and complete account of the theory of
harmonic mapping is given Duren’s monograph [1]. Lewy
proved in 1936 [2] that the harmonic mapping is locally
univalent if and only if its Jacobian Jf = |h′(z)|2 − |g′(z)|2
is different from zero. In the view of this result, locally
univalent harmonic mappings in the unit disc D are either
sense-preserving if |h′(z)| > |g′(z)| or sense-reversing if
|g′(z)| > |h′(z)| in D. In this paper, we will restrict ourselves
to the study of sense-preserving harmonic mappings. We
will also note that f(z) = h(z) + g(z) is sense-preserving
in D if and only if h′(z) does not vanish in D, and the

second dilatation ω(z) =
g′(z)

h′(z)
has the property |ω(z)| < 1

for all z ∈ D. Therefore, the class of all sense-preserving
harmonic mappings in the open unit disc with a0 = b0 = 0
and a1 = 1 will be denoted by SH , thus SH contains the
standard class S of univalent functions. The family of all
mappings SH with the additional property g′(0) = 0, i.e.,
b1 = 0 is denoted by S0

H . Hence it is clear that S ⊂ S0
H ⊂ SH .

In this paper, we consider the class of sense-preserving
harmonic mappings which is defined by

SH(n) =
{
f(z) = h(z) + g(z)

∣∣∣ h(z) = z + an+1z
n+1+

an+2z
n+2 + . . . , g(z) = b1z + bn+1z

n+1+

bn+2z
n+2 + . . . , |b1| < 1

}
,

and the solution of non-linear elliptic partial differential

equation fz = ω(z)fz under the condition
g′(z)

h′(z)
= b1pn(a),

h(z) ∈ S∗n(a). Therefore, the aim of this paper we will need
the following lemmas and theorem.

Lemma 1.1([5]) Let φ(z) = αnz
n + αn+1z

n+1 + . . .
(α 6= 0, n ≥ 1) be analytic in D. If the maximum value of
|φ(z)| on the circle |z| = r < 1 is attained at z = z0, then
we have z0φ′(z0) = mφ(z0), m ≥ n and every z ∈ D.

Lemma 1.2([2])

p(z) ∈ Pn(a)⇐⇒ p(z) =
1− znψ(z)

1 + znψ(z)
, ψ(z) ∈ Ωa
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Theorem 1.3([2])

s(z) ∈ S∗n(a)⇐⇒ s(z) = z exp

−2

a∫
0

tn−1ψ(t)

1 + tnψ(t)

 dt

then
z
s′(z)

s(z)
=

1− znψ(z)

1 + znψ(z)
,

where ψ(z) ∈ Ωa.

II. MAIN RESULTS

Lemma 2.1 Let h(z) be an element of S∗n(a), then
r

(1 + arn)2/n
≤ |h(z)| ≤ r

(1− arn)2/n
, (3)

1− arn

(1 + arn)1+2/n
≤ |h′(z)| ≤ 1 + arn

(1− arn)1+2/n
, (4)

and the boundary values of z
h′(z)

h(z)
on |z| = r at z = z0 is

z0
h′(z0)

h(z0)
=

1 + 2arneiθ + ar2n

1− a2r2n
. (5)

These results are sharp because the extremal function is
s(z) =

z

(1− azn)2/n
.

Proof. Using Theorem 1.3, then we can write

z
h′(z)

h(z)
=

1− znψ(z)

1 + znψ(z)
, (6)

where ψ(z) ∈ Ωa. Thus we can write zψ(z) = aφ(z), φ(z) ∈
Ω. Consequently we have

z
h′(z)

h(z)
=

1− azn−1φ(z)

1 + azn−1φ(z)
. (7)

On the other hand, the transformation w(z) =
1− azn−1φ(z)

1 + azn−1φ(z)
maps the circle |φ(z)| ≤ r onto the

circle ∣∣∣∣w(z)− 1 + a2r2n

1− a2r2n

∣∣∣∣ ≤ 2arn

1− a2r2n
. (8)

Using (6), (8) and the subordination principle, then we obtain∣∣∣∣z h′(z)h(z)
− 1 + ar2n

1− a2r2n

∣∣∣∣ ≤ arn

1− arn

=⇒ 1− arn

1 + arn
≤ Re

(
z
h′(z)

h(z)

)
≤ 1 + arn

1− arn
(9)

On the other hand, we have

Re

(
z
h′(z)

h(z)

)
= r

∂

∂r
log |h(z)|

Therefore the inequality (9) can be written in the following
form

1− arn

r(1 + arn)
≤ ∂

∂r
log |h(z)| ≤ 1 + arn

r(1− arn)
. (10)

Integrating this inequality, we get (3). (4) and (5) are simple
consequences of (9).

Remark The proof of this lemma can be found in [6]
different way.

Theorem 2.2 The solution of the non-linear elliptic
partial differential equation fz = ω(z)fz is

g(z)

h(z)
= b1

1− azn−1φ1(z)

1 + azn−1φ1(z)
, (11)

under the condition
g′(z)

h′(z)
≺ b1p(z), p(z) ∈ Pn(a),

h(z) ∈ S∗n(a).

Proof. Since
g(z)

h(z)
≺ b1p(z), p(z) ∈ Pn(a), h(z) ∈ S∗n(a),

then we can write

ω(Dr) =
{ g′(z)
h′(z)

∣∣∣∣∣
∣∣∣∣ g′(z)h′(z)

− b1(1 + a2r2n)

1− a2r2n

∣∣∣∣ ≤ 2|b1|arn

1− a2r2n
,

0 < r < 1
}

(12)

Now we define the function φ(z) by

g(z)

h(z)
= b1

1− (φ(z))n

1 + (φ(z))n
, (13)

then φ(z) is analytic and φ(0) = 0. We need to show that
|φ(z)| < 1 for all z ∈ D. Assume to the contrary that there
exists a z0 ∈ ∂Dr that |φ(z0)| = 1. If we take derivative of
(13) and after the simple calculations we get

g′(z)

h′(z)
= b1

1− (φ(z))n

1 + (φ(z))n
− 2b1n

zφ′(z)(φ(z))n−1

(1 + φ(z))2n
· h(z)

zh′(z)

Considering (12), Lemma 1.1, Lemma 2.1 and (13) together,
then we obtain

ω(z0) =b1
1− (φ(z0))n

1 + (φ(z0))n

− 2b1n
mφ(z0)(φ(z0))n−1

(1 + φ(z0))2n
· 1− a2r2n

1 + 2arneiθ + ar2n
6∈ ω(Dr)

But this is a contradiction. Therefore |φ(z)| < 1 for all z ∈ D.
On the other hand, using Lemma 1.2 we can write

g(z)

h(z)
= b1

1− znψ(z)

1 + znψ(z)
, ψ(z) ∈ Ωa (14)

Thus we can write zψ(z) = aφ1(z), φ1(z) ∈ Ω. Consequently

g(z)

h(z)
= b1

1− azn−1φ1(z)

1 + aznφ1(z)
.

This shows that the theorem is true.

Corollary 2.3 Let f(z) = h(z) + g(z) be the solution of the
non-linear elliptic partial differential equation fz = ω(z)fz
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under the condition ω(z) =
g′(z)

h′(z)
= b1p(z), p(z) ∈ Pn(a),

h(z) ∈ S∗n(a). Then

[(1 + |b1)− (1− |b1|)arn][(1− |b1|)− (1 + |b1|)arn]

(1− arn)2
≤

1− |ω(z)|2 ≤
[(1 + |b1) + (1− |b1|)arn][(1− |b1|) + (1 + |b1|)arn]

(1 + arn)2

(1 + |b1|) + (1− |b1|)arn

1 + arn
≤ 1 + |ω(z)|

≤ (1 + |b1|)− (1− |b1|)arn

1− arn

(1− |b1|)− (1 + b1|)arn

1− arn
≤ 1− |ω(z)|

≤ (1− |b1|) + (1 + |b1|)arn

1 + arn

Proof. This corollary is a simple consequence of (12).
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Abstract—In this paper a model of two masses sliding 

along an elastic cable is presented. There is a delay between 

two masses, so the problem has been divided into two phases. 

In phase one there is only one mass and the solution at the 

end gives the initial conditions for phase two. In phase two 

the second mass is added and a system of eight differential 

equations with eight unknowns with initial conditions is 

derived. The validation of the model is shown in one 

example. 

 

Keywords—Delay differential equations (DDE), elastic cable, 

sliding masses 

I. INTRODUCTION 

WO bodies sliding along a cable represent an 

engineering problem related to special structures. In 

practice we have encountered this problem when designing 
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zip-lines for adrenalin amusement parks. The situation with 

two delayed masses occurs when two persons for some 

reason follow each other on the zip-line. 

It has been shown in [1] that the problem of a mass sliding 

along a cable is a coupled system where there is no 

equilibrium without the sliding mass because the cable 

imposes nonlinear constraints onto dynamic equations of 

mass movement. This paper is an extension of the previous 

work in [1] with an addidtional mass included in the analysis. 

The added mass slides along the cable with a delay, after the 

first mass has already been released from the support. The 

analytical model of two masses sliding along a cable is 

derived and solved. 

This coupled problem is modeled as a system of delayed 

differential equations (DDE). There are works developing 

special finite elements suited for cable structures like [4] but 

without the capability to solve delayed problems. The 

geometry of the problem is relatively simple so there is no 

need for space discretization, and kinematic relations are 

built into the system of DDEs. As a consequence, a DDE 

system can be solved using only time discretization, e.g. 

Runge-Kutta, but for simplicity we have adopted 

Mathematica solver [3] as a black box. 

 

Analysis of Two Masses Sliding along a Cable 

with Delay 

Tea Rukavina, Ivica Kožar 

T 

 
Fig. 1 Two masses sliding along a cable (phase two) 
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II. THE MODEL 

To form a model of two masses sliding along a cable (Fig. 

1), we could use a system of delay differential equations [2].  

Since there exists a delay   between the two masses, all the 

variables related to the second mass would not depend only 

on time t , but on time .t  This would lead to a system of 

eight delay differential equations with eight unknowns and 

the determination of initial conditions would be a rather 

complicated task.  

To simplify the problem, we will divide it into two phases.  

In phase one, only the first mass is sliding along the cable 

(Fig. 2), and in phase two the second mass is added (Fig.1).  

We take the assumption that the cable is straight and the 

self-weight of the cable is neglected. Also, friction is not 

taken into account.   

A. Phase one 

As it was said earlier, in phase one there is only one mass 

sliding along the cable. This phase lasts until we introduce 

the second mass, at time .1 t  

Equations for the first phase are derived in [1], so only the 

final system of equations with initial conditions will be listed 

here. The nomenclature is taken from Fig. 2, where a is the 

horizontal, and f the vertical position of the mass. 

 

From [1] we obtain: 
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 Regarding the initial conditions, an assumption is made for 

,0a and
0f  is obtained from the following equation: 
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Also, both horizontal and vertical mass velocities are 

initially equal to zero. So, it can be written: 

 

.0

,0

0

0





v

u
 (3) 

 

 When we compute this system of four differential 

equations with for unknowns, a solution at time t is 

found. We obtain the values for aτ , fτ , uτ , and vτ that will 

become the initial conditions for the first mass in phase two. 

B. Phase two 

In phase two, the second mass is added, while the first 

mass continues to slide along the cable. Of course, this will 

lead to differential equations that will depend on variables 

related to both masses. We assume that the time starts again 

from zero, so it will be named .2t  We can start from the 

dynamic balance equations of two masses sliding along the 

cable (Fig. 3). The force T is constant along the rope. 

In Fig. 3 we can see the forces that act on each mass, so by 

adding up the forces along the x and y axes, we obtain the 

following equations for the first mass:  

 

,sinsin

coscos

11132

1132

fmgmTT
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 (4) 

 

and for the second mass: 

 

 

 
Fig. 2 One mass sliding on the cable (phase one) 
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 Of course, a1 and a2 are horizontal positions of the first 

and second mass, and f1 and f2 are their vertical positions.  

Angles are calculated from the geometry: 
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We introduce another equation that is related to the length 

of the rope. Since we have an elastic cable, the following 

relation must be satisfied: 

 

.321 LLLLL       (7) 

 

Since L is the elongation of the cable that is equal to: 

 

,
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we can transform (7) to obtain: 
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The lengths of the cable are obtained from geometric 

relations: 
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If we substitute (9) and (6) into (4) an (5), with a few 

transformations we get: 
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and: 
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With four additional equations: 

 

,,,, 22221111 vfuavfua    (13) 

 

we form a system of eight differential equations with eight 

unknowns. The unknowns are a1, f1, u1, v1, a2, f2, u2, and v2.  

We have to determine the initial conditions for both 

masses. As it was mentioned earlier, the initial conditions for 

the first mass are the final results from phase one, so we can 

write: 

 

.,,, 10101010  vvuuffaa   (14) 

 

For the second mass we determine the initial conditions in 

a similar way it was done for the first mass in phase one. We 

assume an initial value for a20, and we determine f20 from the 

second equation in (11) when :02 f  
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In this case the horizontal and vertical velocities of the 

second mass are also equal to zero: 020 u and .020 v  

This completes the defining of the model of two masses 

sliding along a cable. 

Of course, when in phase two all the variables related to 

the second mass are assumed to be zero, we obtain the same 

results as in [1], when only one mass was taken into account. 

III. EXAMPLE 

We take the same geometric and material properties of the 

cable as in the example with a longer cable in [1]: 

 

NEA

mL

mh

ml

6106

2.603

0.60

0.600









  

 

Also, the masses are equal: 

 

kgmm 0.15021    

 

The total analysis time in phase one is .101 st   The 

total analysis time in phase two is taken to be slightly before 

 
 

Fig. 3 Dynamic equilibrium of the sliding masses 
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the first mass reaches the end of the cable. In this case we 

take .152 st   So, the total analysis time for both phases is 

.2521 sttt   

 

 

Fig. 4 shows the path of the first mass in both phases, and 

Fig. 5 shows the path of the second mass in phase two.  

We can see that in ,152 st  the first mass reaches the end 

of the cable, while the second mass reaches approximately  

ma 242  and .432 mf   

The tension force in the cable for phase one is shown on 

Fig. 6, and for phase two in Fig. 7. 

 

IV. CONCLUSION 

The application of the analytical model formulated as a 

system of DDEs and its solution without the usual finite 

element discretization has proven successful in this case of 

non-linear and somewhat exclusive type of structure. 

Authors plan to extend this model by adding pendulums on 

which masses will be attached. That will make it possible to 

describe engineering structures in a more realistic way 

because usually the center of the mass is dislocated from the 

axis of the cable.  
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Fig. 7 Tension force in the cable for phase two 
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Fig. 5 The path of the first mass in both phases 
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Fig. 5 The path of the second mass in phase two 
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Fig. 6 Tension force in the cable for phase one 
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Abstract—Let d is a  positive integer. In this article we will 

study the elliptic curve defined over the ring       ;     . 

More precisely we will give many various explicit formulas 

describing the binary operations calculus in        .  

 

Keywords—Elliptic Curves, Finite Ring, Cryptography.  

I. INTRODUCTION 

ET d be an integer, we consider the quotient ring A = 
 

     

    
  where      is the finite field  of order   . Then 

the ring A is identified to the ring        with       

ie: see [1] and [2], A = {    +       |   ;           }. 

 We consider the elliptic curve over the ring A which 

is given by equation:                  
     

where a, b and c are in A and     is invertible in 

A,  but we can take  c = 1; see, [3].  

II. NOTATIONS 

Let a,  b   A  such that b is invertible in A and  c = 1. 

We denote the elliptic curve  over A by         and 

we write: 

        = { [X : Y : Z]         |           
        }. 

If             and       , we also write: 

      
      = { [X : Y : Z]           |        

      
      

 }.   

III. CLASSIFICATION OF ELEMENTS OF          

Let [X :Y :Z]          , where X, Y and Z are in A. 

We  have two cases for Z: 

• Z  invertible: then [X : Y : Z] = [X    : Y    : 1]; 

hence we take  just [X:Y:1].  

• Z non invertible: So  Z =    , see [4], in this cases 

we have tow cases for Y. 

        -     Y invertible: Then  [X : Y : Z] = [X    : 1 : 

Z    ]; so we just take [X : 1 :    ] ; then is verified 

the equation of                            

    , 

so we can write:  

a =        

 
A. Chillali is with the USMBA, LST,  FPT, Taza, Morocco, 

 e-mail: abdelhakim.chillali@usmba.ac.ma.  

A. Tadmori., is with UMP, FSO , Oujda. 
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b =        

X =        

We have:                          
  

                 
                 

    
Which implies that 

            
     

        
      

Then 

             
     

        
      

Since       is a base of the vector space A over    , 

then       so X =     and                 

hence                : 1 :0]. 

-    Y non invertible: then we have            
          is invertible so we take 
                    thus                
         which is absurd. 

Proposition 1:  

 Every element of         , is of the form          or 

         , where        and  we write: 

         [X:Y:1]      |             

 } {        |      }  [1].  

IV. EXPLICIT FORMULAS 

We consider the canonical projection   defined by:  

                

          

We have   is a morphism of ring. 

* Let    the mapping defined by : 

                   
      

                                             
The mapping    is a surjective homomorphism of groups. 

Theorem1:  

Let                            in          then  

               :  
• If             then : 

                
      

   
  

    
        

            
    

     
   

           
          

  

    
   

        
          

          
    

       
   

      
          

    

      
   

       
             

    

         
      

   
       

   
  

      
           

            
    

       
         

   
  

       
           

      
      

    
       

   
      

       
      

     
           

         
      

       
          

           
    

      
    

• If             then : 

 The sum over       
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Proof:  
 Using the explicit formulas in W.Bosma and H.Lenstras 

article see, [5], we prove the theorem.                

V. MAIN RESULTS 

Let                  

Lemma1:  

Let             and             two points in 

        then:                         
Proof :  

As             , then by applying the formula (1) in 

theorem, we find the result. .                               

The following lemmas may be proved by using the 

explicit formulas in [5, p. 236—238]. 

Lemma 2: 

 Let             and                     two 

points in        , then : 

                 
                 

Lemma3:     

 Let                    and                    
two points in          then : 

            
        

      
         

           
            + 

    
                  

      
  

                   
             

   

    
                    

                
    

      
        

     

      
    

         
   

       
      

 

       
        

        
 

     
   

  
                       

             
 

   
    

        
Lemma4: 

  Let                      and       
            two points in        , where      Then : 

          
        

      
        

      
     

           
   

     
     

        
        

 

       
        

      

       
           

      

     
      

             

     
        

        
   

   
        

   
       

           
   

                    
   

Lemma5: 

 Let                        ;       
                two points of        ,where     , 

then : 

          
        

        
      

 

                   
      

       

            
      

        
        

   

                   
   

     
      

     
            

      
         

   

   
   

       
        

      
   

  

      
        

                       
 

                          
 

  

         
        

                 

       
          

      
 

     
   

            
        

    
   

    
   

              
        

      
 

  

              
        

        
    

   
     

              
       

  
          

      
      

        
    

 

     
    

           
   

Lemma6: 

   Let                        ;       
                two points in         , where      , or 

     , then : 
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Abstract— Cell computing works on computational models 

based on cell's behavior to process the information in a faster way 

than usual. Recently, numerous biological models have been 

developed and implemented. In particular cell membrane systems are 

structures that simulate the behavior and the evolution of membrane 

systems found in Nature. This paper proposes an application capable 

to supervise a cells membrane model through a multiagents system 

(MAS).  By using multiagent systems the membrane models 

functionality improves. This creates the possibility of having 

scenarios where biological systems and multiagent systems work 

together to enhance the performance in bio-inspired models.  

 

Keywords— Multiagent systems, membrane computing, 

supervised learning, biological models, P-systems. 

  

I. INTRODUCTION 

Natural computing is the science which develops new 

computational models based on the way Nature works. These 

computational models are classified in three fields: 

 

� Neuronal networks.  

� Genetic Algorithms  

� Biomolecular computation.  

 

Membrane cells computing are included in bimolecular 

computation. A new logical computational device appears: 

The P-system. These P-systems are able to simulate the 

behavior of the membranes on living cells when absorbing 

nutrients, producing chemical reactions, dissolving 

membranes, etc) 

Membrane computing formally represents, through the use of 

P-systems, the processes that take place inside of the living 

cells.  

This works shows a multiagent system that it is able to conduct 

the functionality of a given P-system to resolve complex 

problems in fast way.  

 

Contents of this paper are classified as follows: 

 

� Introduction to cell membranes theory. 

� Components of a particular multiagent system 

� Proposal for a multiagent system which controls a 

transaction P-system 

■    Example and code 

� Conclusions and further work 

 

II. CELL MEMBRANES THEORY 

This section introduces the paradigm of the P-systems 

(Membrane computing). A P-system is a computational model 

inspired by the way the living cells interact with each other 

through their membranes. The elements of the membranes are 

called objects. A region / membrane can either contain objects 

or other membranes. 

 
Fig. 1. The membrane's structure (left) represented in tree 

shape (right)  

 

According to Păun 's definition, a transition P System of 

degree n, n > 1 is a construct: [[1]] 

 

 ( )0,1,11 ),),..((,,..,,, iRRV nnn ρρωωµ=∏  

Where: 

1. V is an alphabet; its elements are called objects; 

2. µ is a membrane structure of degree n, with the 

membranes and the regions labeled in a one-to-one 

manner with elements in a given set ; in this section we 

always use the labels 1,2,..,n; 

3.  
nii ≤≤1ω

, are strings from 
*V  representing 

multisets over V associated with the regions 1,2,..,n of µ  
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4. 
niRi ≤≤1

, are finite set of evolution rules over V 

associated with the regions 1,2,..,n of µ; iρ
 is a partial 

order over 
niRi ≤≤1

, specifying a priority relation 

among rules of iR . An evolution rule is a pair (u,v) 

which we will usually write in the form vu →  where u 

is a string over V and v=v’ or v=v’δ  where v’ is a string 

over 

{ }( ) { }( )njinVouthereV j ≤≤×× 1, ∪ , 

and δ   is a special symbol not in. The length of u is 

called the radius of the rule vu →  

5. oi is a number between 1 and n which specifies the output 

membrane of  ∏  

 

 Let U be a finite and not an empty set of objects and N the set 

of natural numbers. A multiset of objects is defined as a 

mapping:  

1

:

ua

VM

i →

Ν→

 

Where ia  is an object and iu  its multiplicity. 

 

As it is well known, there are several representations for 

multisets of objects. 

( ) ( ) ( ){ } .........,,,,, 21

21332211
nu

n

uu
aaauauauaM ⋅⋅==

 
 Evolution rule with objects in U and targets in T is defined by 

( )δ,,cmr =  where 

( ) ( ) { }, ,m M V c M VxT and to dissolve no t to d isso lveδ∈ ∈ ∈  

From now on 'c' will be referred to as the consequent of the 

evolution rule 'r' 

 The set of evolution rules with objects in V and targets in T is 

represented by R (U, T). 

Rules are represented as: 

δyxoryx →→
 where x is a multiset of objects in 

M((V)xTar) where Tar ={here, in, out} and y is the 

consequent of the rule. When δ  is equal to “dissolve”, then 

the membrane will be dissolved making its set of evolution 

rules disappear.  

P-systems evolve, which makes it change upon time; therefore 

it is a dynamic system. Every time that there is a change on the 

p-system a new transition is generated. The step from one 

transition to another one is defined as an evolutionary step, 

and the set of all evolutionary steps is named computation. 

Processes within the p-system will be acting in a massively 

parallel and non-deterministic manner. (Similar to the way the 

living cells process and combine information). 

 

The whole info is processed successfully if:  

 

1 The halt status is reached. 

2 No more evolution rules can be applied. 

III. MULTIAGENT SYSTEM TECHNOLOGY 

Multi agent system can reach goals that are impossible for 

single agent systems (one agent system).  

The main properties of multiagent systems are: 

� Proactivity 

� Autonomy 

 

Formally speaking an agent is a real or virtual entity that: 

1. Is able to act within a given environment. 

2. Is able to communicate with other agents. 

3. Have their own resources. 

4. Is able to retrieve information and to (at least partially) 

know the environment. 

5. Can reproduce. 

According to the definition of agent, a multiagent system is 

defined as a system of computers which containing the 

following elements: 

1. An environment E, which is a space. 

2. A set of objects  EO∈ . 

3. A set of agentes OA∈ . 

4. A set of relations R between objects and agents.   

5. A set of operations that allows to the agents interact with 

the objects. 

 

IV. AGENTS LEADING THE MEMBRANE MODEL: 

PROPOSAL 

Once p-systems and multiagent systems are described 

separately, this section shows a way to create a multiagent 

system that supervise and control the membranes operations 

during the computation process. This agent supervised system 

will be referred as MSSA (Membrane system supervised by 

agents) from now on.  As there are different components in a 

membrane system it is necessary now to establish how the 

multiagent system can manage the whole model. The following 

proposal is inspired in the model in [7] .  

 

• In a p-system, given a set of membranes  

{ }niimM i ≤≤Ν∈= 1,|
 where im

 is a 

membrane,  For any membrane mi it is necessary to 

define a single agent, . This can be defined as an 
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injective function. 

:

( ) , n number of

membranes

agent

agent i i

f M A

f m a i i n

→

= ∀ ∈ Ν ≤  

• 
Aai ∈

In this way, every single agent is in charge of a 

single membrane. The agent is called membrane-

agent 

• The Multiset of objects  within the region enclosed by 

the membrane 
Mmi ∈

 and the rules to  to be 

applied on them are supervised by the membrane-

agents 

• All agents relate and communicate with each other. 

 

In order to set up the synchronism in our system, a 

synchronization agent called 
Aasync ∈

is needed. This agent 

ensures a proper synchronization between the membrane 

agents. 

 

The Multiagent system has to supervise the 2 major processes 

occurring in the membranes model. These are: 

 

1. Dynamic behavior of the p-system (Computation and 

communication) 

2. Synchronism between membranes. 

 

 

Let us define each agent. 

 

1. iname

name

aif

nameAgentf

=

→Ν

)(

:

 

2. 
{ } { } sourcesRRRf nnresource Re,..,,,..,,: 2121 →×ωωω

 

3. 
behaviorAgenttransitiondynamicfoperation →:

Every agent ia  is linkedto a set of resources called   

iRes
  and set of operations . 

Formally speaking, the multiagent system associated to a p-

system with n membranes  will have the set of resources as the 

union of all the objects, and the union of all the set of 

evolution rules included in every membrane i.e   

VRsources
n

i

i ∪







=

=
∪

1

Re

 where iR  is the set of 

evolution rules which are included in the membrane i.  

    The multiagent system contains the agents ia  ,         

 resources iR  and a set of operations iOp
 

 

Now let us define the multiagent system to evolve  in order to 

control the transition P-system. This uses an operator that 

returns the status of the transition of a p-system to a specific 

time. In order to do this we create a new resource called sync 

which is defined as: 

1. An integer (computing step)   

2. A letter (Status)  

The initial transition status is the integer 0 

The System status for every step is defined as a letter (A,B or 

C), meaning as follows : 

 A. Rules election,  

 B. Objects consumption,. 

 C. Communication between membranes  

The synchronizing agent ensures: 

CsyncBsyncAsync 4,23 321 ===

Ν∈≠∀= jijisyncsync ji ,
 

Initially. 
Ν∈≤∀= inisync i 0

. 

 

Example: 

Let us have three membranes 321 ,, mmm
 

and 321 containswhichcontains mmm
. The multiagent system 

has 3 membrane agents   321 ,, aaa
 where 1a  represented as 

follows: 

 

 

 

 

  Fig. 2.  Three membrane agents.  

 

Below there is a diagram describing the relationship between a 

membrane system (left) and the supervisor Multiagent system.  
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            Fig. 3. MMAS description  

 

Example of a computation process supervised by a Multiagent 

system 

 

For this example a 3 membrane p-system has been chosen. 

This p-system is able to calculate the square of a given 

number. [ 5]. There are 2 evolution steps described.  (the 

initial one and the final one)  The P-system acts according the 

Multiagent system instructions.    

 

a) Components  

 

 The P-system  has: 

� A set of membranes M=
{ }321 ,, mmm

 

� An Alfabet V={a,b,c,d,e,f} 

� A set of multiset of objects 

M(V)=
{ }}{{},{}, 321 af=== ωωω

 where iω
 is the 

multiset of objects within the region delimited by the 

membrane 
3≤Ν∈∀ iimi  . 

� A Multiset of evolution rules R(U,T)= 

( , ) {e  e }, ( , ) {b  d, d de, (ff  f  f   )},
1 out 2

( , ) {a  ab, a b , f  ff}
3

R UT R UT

R UT

δ
δ

= → = → → → > → 
 = → → → 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 P-system  calculating a random square number.  

 

 

The set of agents A={
{ }

syncaaaa ,,, 321  

The resources used by the agent ia  are referred as isRe
, these 

are the multiset of objects  and set of evolution rules. 

 

 

Now we go step by step 

� Rules election 

� Objects consumption 

� Communication Stage 

Initial Transition Status 
Ν∈≤∀= iisync i 30

  

This condition is checked by the agent synca
 

 

In the transition status 1), the p-system evolves, In the Region 
3 the rule number 1 and number three are applied. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The  agent synca
  makes sure that 

Ν∈≤∀= iiAsync i 31
. In every region the 

candidate rules to be applied are analyzed. Then every agent 

selects from its resources the rules to be applied.  

In the mean time synca
 ensures the synchronization between 

regions.
Ν∈≤∀= iiBsync i 31

. Here the 

agents execute the action “apply rules”. agent  3a
 makes the 

P-systems choose 31 randr
 3Re s

.After applying rules 

synca
 assures all the agents are synchronized. i.e.  

Ν∈≤∀= iiCsync i 31
.  After the first 

computing step, the P-system looks like this:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-system controlled by agents. 

 

 

 

e�e
out 

b � d 

d � de 

ff � f  >  f � δ 

a � ab 

a � bδ 
f � ff 

af 

e�e
out 

b � d 

d � de 

ff � f  >  f � δ 

a � ab 

a � bδ 
f � ff 

af 

e �e
out 

b � d 

d � de 

ff � f  >  f � δ 

a � ab 

a � bδ 
f � ff 

abff 

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 71



 

 

 

The resources used by the agents are:  

 









=








= )]}e[(e,[{)]},(f,f),(ff,de),(d,d),[(b,{[,

)},,(),,(),,[(],{[
Re

out1 δ
δ fffbaabaabff

s
n

i

i∪
 

 

In the end the program ends like follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The number (4) besides the object (d) indicates the 

multiplicity of the object 

The system returns 16=
24  . The agents have supervised 

every single computing step and have ensured a minimum 

number of operations to optimize the functionality of the 

membrane system.  The main difference with the standard P-

system is that elections are chosen in an intelligent way by the 

agents who supervise the membrane model 

 

 

Example and code. 

Rules R 

Objects w 

Dissolve = false 

 

While NOT finished 

 waitsync 

 //EVOLVE 

 R’ = Rules_election(w,R by agent)  

 w’ = Rules_Application (w,R,P)  by agent 

   

  waitsync 

 //COMUNNICATION between agents 

 w = COMMUNICATION(w’)  

 dissolve = finish(w) 

 

waitsync: Sinchronization between agents  

Rules_election: Selection of the rules 

Rules application: Application of the rules  

communication (w) Communication between agents and 
exchange of the objects w 

Finish: The computation is finished  

 
 

V. CONCLUSIONS 

This paper contributes with an implementation of a multiagent 

system that manages and supervises a cell membrane model. 

The agents along with their relations and resources are able to 

modify the membrane system functionality based on the 

agent’s configuration. Therefore, the main idea of this work is 

to define a new model created from the original membrane 

computing technology. This update involves a multiagent 

system which is the one who takes care of the process. The 

most interesting part of this work is that a new way to define a 

biological model in terms of a multiagent supervised system 

has been created.  

It is important to stress that the membrane systems described 

here is a generic one. The rules election, priorities between 

rules, etc are not fully described as this is not the main purpose 

of it. Moreover, the Multiagent system technology has been 

generally described to understand better the concepts of 

systems supervised by agents. In order to understand it better 

refer to [6]  ”An Introduction to Multiagent Systems”, Wiley, 

2002. or [8] “Multi-Agent Systems. An Introduction to 

Distributed Artificial Intelligence. 

The code provided here is a proposal but it is not the main 

goal of this work.  By formally defining a multiagent system it 

would be possible to take full advantage of the Multiagent 

system technology and apply it into cells membrane system or 

any other biological model. 

Refer to [2] for checking links between Multiagents and P-

systems.   

Membranes agents are independent and autonomous which can 

modify the entire functionality of the membrane systems.  The 

example provided shows how the membrane system can 

improve performance when a proper set of agents is chosen. 

The agents are the intelligent entities who supervise the entire 

membrane system and optimize the functionality. 

Thus, the whole idea of this proposal is to improve and take all 

the possible advantages of the Multi agents systems to apply 

them into biological systems and make them work better in 

terms of performance.   

 

. 
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Abstract—In this paper, a generalized exp-function method is 

proposed for constructing exact solutions of the complex nonlinear 
partial differential equations. As one application of the generalized 
method, the nonlinear Schrödinger equation is considered and new 
single-, double- and three-wave solutions with parameters are 
obtained, from which a uniform formula of N-wave solution is derived. 
Thanks to the arbitrariness of the included parameters, not only 
possess these obtained multiwave solutions enrich structures like the 
breather solutions and envelope solutions, but also high-wave solution 
can give all the low-wave solutions. It is shown that the generalized 
exp-function method combined with appropriate ansätz may provide 
with a straightforward, effective and alternative method for 
constructing multiwave solutions of some other complex nonlinear 
partial differential equations. 
 

Keywords—Exp-function method, Multiwave solution, Nonlinear 
Schrödinger equation, Breather solution, Envelope solution. 

I. INTRODUCTION 
earching for exact solutions of nonlinear partial differential 
equations (PDEs) plays an important role in the study of 

some nonlinear phenomena involved in many fields from 
physics to biology, chemistry, mechanics, etc. In the past 
several decades, there has been significant progression in the 
development of many methods for solving nonlinear PDEs, 
such as those in [1]-[14]. With the development of soliton 
theory, finding multiwave solutions of nonlinear PDEs has 
gradually developed into a significant direction in nonlinear 
science. Since proposed by He and Wu in 2006, the 
exp-function method [15] has been applied to many kinds of 
nonlinear equations [16]-[30]. More and more studies show that 
the exp-function method is available for many nonlinear PDEs 
and can be used to construct multiple types of exact solutions 
due to its more general ansätz with free parameters.  

The present paper is motivated by the desire to generalize the 
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exp-function method to construct multiwave solutions of the 
nonlinear Schrödinger equation [31]:  

2i | | = 0t xxu u u u+ + ,                           (1) 

where i  denotes the imaginary number unit, | |u  is the 
modules of u .  

II. METHODOLOGY 
In this section, we describe the basic idea of the generalized 

exp-function method with a general ansätz for multiwave 
solutions of the given complex nonlinear PDE, say, in two real 
variables x  and t : 

( , , , , , , ) = 0t x tx tt xxP u u u u u u  ,                  (2) 
where P  is a polynomial of u  and its derivatives, otherwise, a 
suitable transformation can transform Eq. (2) into such an 
equation. The generalized exp-function method for single-wave 
solution is based on the assumption that Eq. (2) has a solution in 
the form:  

    

1 2 *
1 1 2 1

1 2
=0 =01 2

1 2 *
1 1 2 1

1 2
=0 =01 2

e
( , ) =

e

p p
i i

i i
i i

q q
i i

j j
j j

a
u x t

b

ξ ξ

ξ ξ

+

+

∑∑

∑ ∑
,                  (3) 

where 1 1 1 1= k x c tξ ω+ + , * * * *
1 1 1 1= k x c tξ ω+ +  denotes the 

complex conjugate of 1ξ ; 
1 2i ia , 

1 2j jb , 1c  or *
1c , 1k  or *

1k are 
unknown complex constants to be determined; 1ω  or *

1ω  is an 
arbitrary complex constant; and the real values of 1p , 2p , 1q , 

2q  can be determined by balancing the linear term of highest 
order in Eq. (2) with the highest order nonlinear term. 

In order to seek N-wave solution for arbitrary integer > 1N , 
we generalize Eq. (3) to the following form:  

=1

=1

*( )21 2

1 2 2
=0 =0 =01 2 2

*( )21 2

1 2 2
=0 =0 =01 2 2

e
( , ) =

e
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g
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g

pp p i iN g g g N g

i i i N
i i i N

qq q j jN g g g N g

j j j N
j j j N

a
u x t

b

ξ ξ

ξ ξ

+ +

+ +

∑

∑

∑∑ ∑

∑ ∑ ∑









,      (4) 

where =g g g gk x c tξ ω+ + , * * * *=g g g gk x c tξ ω+ +  is the 
complex conjugate of gξ ; 

1 2 2i i i N
a  , 

1 2 2j j j N
b  , gc  or *

gc , gk  
or *

gk  are undetermined constants; gω  or *
gω  are arbitrary 
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complex constants; and the real values of 1p , 2p ,  , 2Np , 
1q , 2q ,  , 2Nq  are embedded integers.  
If give = 2N  to Eq. (4), one has:  

2

=1

2

=1

*( )31 2 4 2

1 2 3 4
=0 =0 =0 =01 2 3 4

*( )31 2 4 2

1 2 3 4
=0 =0 =0 =01 2 3 4

e
( , ) =

e

g

g

pp p p i ig g g g

i i i i
i i i i

qq q q j jg g g g

j j j j
j j j j

a
u x t

b

ξ ξ

ξ ξ

+ +

+ +

∑

∑

∑∑∑∑

∑ ∑ ∑ ∑
,        (5) 

which can be used to construct double-wave solution of Eq. (2). 
When = 3N , Eq. (4) gives:  

3

=1

3

=1

*( )3 5 61 2 4 3

1 2 3 4 5 6
=0 =0 =0 =0 =0 =01 2 3 4 5 6

*( )3 5 61 2 4 3

1 2 3 4 5 6
=0 =0 =0 =0 =0 =01 2 3 4 5 6

e
( , ) =

e

g

g

p p pp p p i i ig g g g g

i i i i i i
i i i i i i

q q qq q q j jg g g g

j j j j j j
j j j j j j

a
u x t

b

ξ ξ

ξ ξ

+ +

+ +

∑

∑

∑∑∑∑∑∑

∑ ∑ ∑ ∑ ∑ ∑
,  (6) 

which is effective for obtaining three-wave solution of Eq. (2). 
Substituting Eq. (5) into Eq. (2), then equating to zero each 
coefficient of the same order power of the exponential functions 
yields a set of equations. Solving the set of equations, we can 
determine the double-wave solution, and the following 
three-wave solution by means of Eq. (6), provided they exist. 

III. MULTIWAVE SOLUTIONS 
In this section, let us apply the generalized exp-function 

method described in Section 2 to the nonlinear Schrödinger 
equation (1).  

Firstly, we suppose that Eq. (1) has a single-wave solution in 
the form:  

* *
1 1 1 1

0 1 2 3
* *

1 1 1 1
1 2 3

e e e=
1 e e e

a a a au
b b b

ξ ξ ξ ξ

ξ ξ ξ ξ

+

+

+ + +

+ + +
.               (7) 

Substituting Eq. (7) into Eq. (1), and using Mathematica, then 
equating to zero each coefficient of the same order power of *

1 1eθξ ϑξ+ ( , = 1,2,3,4θ ϑ ) yields a set of equations for 0a , *
0a , 

1a , *
1a , 2a , *

2a , 3a , *
3a , 4a , *

4a , 1b , *
1b , 2b , *

2b , 3b , *
3b , 

1c , *
1c , 1k , *

1k , three simplest equations of which read:  
           2 *

1 2 1 = 0a a b , * 2
1 2 2 = 0a a b , 2 *

3 3 3 = 0a a b .              (8) 
Supposing 3 0b ≠ , from the third one of Eq. (8) we have 

3 = 0a . In this case, the foregoing set of equations give two 
simple equations: 

  2 * 2
2 3 3 1 1( i ) = 0a b b k c− ,  2 * *2 *

1 3 3 1 1( i ) = 0a b b k c− ,       (9) 
If 1 0a ≠ , Eq. (9) means that 2

1 1= ic k  and 2 = 0a . At the same 
time, 2 = 0a  justly solves the first two equations of Eq. (8). 
Thus the foregoing set of equations are further simplified and 
give a simple equation: 

* *2
1 1 3 3 12 = 0a b b b k− ,                           (10) 

which let one choose 1 = 0b . Otherwise, 1 = 0k  and hence 
only a trivial solution of Eq. (1) can be obtained if it exists. This 
is not the one we expect. Substituting 1 = 0b  into the foregoing 
set of equations, we have *

0 1 = 0a a  and then 0 = 0a  because 
that 1 0a ≠  is supposed beforehand. Using 0 = 0a  to simplify 

the foregoing set of equations, we have 
2 *

1 2 1 12 = 0a b k k− ,                            (11) 

which shows 2 = 0b  is the only choice. 
 

 
(1a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(1b) [ 8,8]x∈ − , = 0t  

Fig. 1. Modulus of single-wave solution (15). 
 

 
(2a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(2b) = 1x − , [ 8,8]t ∈ −  

Fig. 2. Real part of single-wave solution (15). 
 
Through a series of algebraic simplifications, the foregoing 

set of equations give the last two equations:  
  2 * 2 * *2

1 1 1 3 1 1 3 1 1 1 3 12 4 2 = 0a a a b k a b k k a b k− − − ,       (12) 
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2 * * 2 * * * *2
1 1 3 1 3 3 1 1 3 3 1 1 1 3 3 12 4 2 = 0a a b a b b k a b b k k a b b k− − − .  (13) 

Solving Eqs. (12) and (13), we have 
*

1 1
3 * 2

1 1

=
2( )

a ab
k k+

,                          (14) 

and therefore obtain the single-wave solution of Eq. (1):  
1

1
*

* 1 1 13
1 1

e=
1 e A

au
a a

ξ

ξ ξ+ ++
,                      (15) 

with  
2

1 1 1 1= ik x k tξ ω+ + ,  * * *2 *
1 1 1 1= ik x k tξ ω− + ,        (16) 

13
* 2

1 1

1e =
2( )

A

k k+
.                           (17) 

where 1a  or *
1a , 1k  or *

1k , 1ω  or *
1ω  are arbitrary complex 

constants. 
 

 
(3a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(3b) = 1x − , [ 8,8]t ∈ −  

Fig. 3. Imaginary part of single-wave solution. 
 

In the other hand, if 3 = 0b , from Eq. (8) we can see that the 
third equation holds automatically but 1 = 0a  or 2 = 0a . 
Otherwise, 1 = 0b  and 2 = 0b , this will lead to a trivial 
solution of Eq. (1). For the case of 1 = 0a , 1 0b ≠  and 2 0b ≠ , 
we obtain 3 = 0a . Then the subsequent computation shows 
either 0 = 0a  or 2

1 1= ic k− , however both cases result in a 
trivial solution of Eq. (1). By the similar analysis, for both the 
case of 1 = 0a , 1 0b ≠ , 2 = 0b  and the case of 1 = 0a , 

1 = 0b , 2 0b ≠ , we can obtain only a trivial solution of Eq. (1). 
Similarly for the case of 0 = 0a , 1 0b ≠ , 2 0b ≠  or 2 = 0a , 

1 0b ≠ , 2 = 0b  or 1 = 0a , 1 = 0b , 2 0b ≠ , Eq. (1) has only a 
trivial solution. Without loss of generality, we reconsider Eq. 
(9) under the assumption of 1 = 0a  and 3 0b ≠ , but there is not 
a non-trivial solution of Eq. (1) can be obtained. 

Taking into consideration the constructional features of the 

single-wave solution (15), we next suppose that Eq. (1) has a 
double-wave solution in the form: 

* *
1 2 1 2 1 1 2 2

1 2 3 4
* * * * * *

1 1 1 2 2 1 2 2 1 2 1 2
1 2 3 4 5

e e e e=
1 e e e e e

a a a au
b b b b b

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

+ + + +

+ + + + + + +

+ + +

+ + + + +
. 

(18) 

 
(4a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(4b) [ 8,8]x∈ − , = 0t  

Fig. 4. Modulus of double-wave solution (24). 
 
Substituting Eq. (18) into Eq. (1), and using Mathematica, 

then equating to zero each coefficient of the same order power 
of 

* *
1 2 1 2eθξ ϑξ µξ ρξ+ + + ( , , , = 1,2,3,4)θ ϑ µ ρ  yields a set of 

equations for 1a , *
1a , 2a , *

2a , 3a , *
3a , 4a , *

4a , 1b , *
1b , 2b , 

*
2b , 3b , *

3b , 4b , *
4b , 5b , *

5b , 1c , *
1c , 2c , *

2c , 1k , *
1k , 2k , 

*
2k . Solving the set of equations, we have: 

* 2
1 2 1 1 2

3 * 2 * 2
1 1 2 1

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, 
* 2

1 2 2 1 2
4 * 2 * 2

1 2 2 2

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, (19) 

*
1 1

1 * 2
1 1

=
2( )

a ab
k k+

, 
*

1 2
2 * 2

1 2

=
2( )

a ab
k k+

,               (20) 

*
2 1

3 * 2
2 1

=
2( )

a ab
k k+

, 
*

2 2
4 * 2

2 2

=
2( )

a ab
k k+

,               (21) 

* * 2 * * 2
1 2 1 2 1 2 1 2

5 * 2 * 2 * 2 * 2
1 1 2 1 1 2 2 2

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,     (22) 

2
1 1= ic k , 2

2 2= ic k ,                             (23) 
 and then obtain the double-wave solution of Eq. (1) as follows:  

* *
1 2 1 2

* *
1 2 1 2

( , , , )=
( , , , )

fu
g

ξ ξ ξ ξ
ξ ξ ξ ξ

,                         (24) 

 with  
*

* * * 1 2 1 12 13 231 2
1 2 1 2 1 2 1 2 1( , , , ) = e e e A A Af a a a a a ξ ξ ξξ ξξ ξ ξ ξ + + + + ++ +

*
* 1 2 2 12 14 24

1 2 2e
A A Aa a a ξ ξ ξ+ + + + ++ ,                              (25) 
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* *

* * * *1 1 13 1 2 14
1 2 1 2 1 1 1 2( , , , ) = 1 e eA Ag a a a aξ ξ ξ ξξ ξ ξ ξ + + + ++ +  

* *
* *2 1 23 2 2 24

2 1 2 2e eA Aa a a aξ ξ ξ ξ+ + + ++ +   
* *

* * 1 2 1 2 12 13 14 23 24 34
1 2 1 2e

A A A A A Aa a a a ξ ξ ξ ξ+ + + + + + + + ++ ,     (26) 
2

1 1 1 1= ik x k tξ ω+ + , 2
2 2 2 2= ik x k tξ ω+ + ,           (27) 

* * *2 *
1 1 1 1= ik x k tξ ω− + , * * *2 *

2 2 2 2= ik x k tξ ω− + ,        (28) 

212
1 2e = 2( )A k k− , , 2

* 2

1e =
2( )

Aj l

j lk k
+

+
, ( , = 1,2)j l ,  (29)  

* * 234
1 2e = 2( )A k k− ,                          (30) 

where 1a , *
1a , 2a , *

2a , 1c , *
1c , 2c , *

2c , 1k , *
1k , 2k , *

2k , 1ω , 
*
1ω , 2ω , *

2ω  are arbitrary complex constants.  
If we suppose Eq. (1) has a three-wave solution in the form:  

* * *
1 2 3 1 2 3

* * *
1 2 3 1 2 3

( , , , , , )=
( , , , , , )

fu
g

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ

,                   (31) 

 with  
*

* * * 31 2 1 2 1
1 2 3 1 2 3 1 2 3 4( , , , , , ) = e e e ef a a a aξξ ξ ξ ξ ξξ ξ ξ ξ ξ ξ + ++ + +  

* * **
1 2 3 1 3 1 1 3 21 2 2

5 6 7 8e e e ea a a aξ ξ ξ ξ ξ ξ ξ ξ ξξ ξ ξ + + + + + ++ ++ + + +  
* * *

1 3 3 2 3 1 2 3 2
9 10 11e e ea a aξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + + ++ + +  

* * * * *
2 3 3 1 2 3 1 2 1 2 3 1 3

12 13 14e e ea a aξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + + + + + + ++ + +  
* *

1 2 3 2 3
15ea ξ ξ ξ ξ ξ+ + + ++ ,                                                (32) 

  
** *

* * * 1 31 1 1 2
1 2 3 1 2 3 1 2 3( , , , , , ) = 1 e e eg b b b ξ ξξ ξ ξ ξξ ξ ξ ξ ξ ξ ++ ++ + +  

 
* * ** *

2 3 3 1 3 22 1 2 2
4 5 6 7 8e e e e eb b b b bξ ξ ξ ξ ξ ξξ ξ ξ ξ + + ++ ++ + + + +  

* * ** *
3 3 1 2 1 31 2 1 2

9 10 11e e eb b bξ ξ ξ ξ ξ ξξ ξ ξ ξ+ + + ++ + ++ + +  
* * * * * *

1 2 2 3 1 3 1 2 1 3 1 3
12 13 14e e eb b bξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + + + + + ++ + +  

* * * * * *
1 3 2 3 2 3 1 2 2 3 1 3

15 16 17e e eb b bξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + + + + + ++ + +  
* * * * *

2 3 2 3 1 2 3 1 2 3
18 19e eb bξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + + + + ++ + .                (33) 

By the similar manipulations mentioned above, we can obtain  
* 2

1 2 1 1 2
4 * 2 * 2

1 1 2 1

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, 
* 2

1 2 2 1 2
5 * 2 * 2

1 2 2 2

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, (34) 

* 2
1 2 3 1 2

6 * 2 * 2
1 3 2 3

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

,  
* 2

1 3 1 1 3
7 * 2 * 2

1 1 3 1

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, (35) 

* 2
1 3 2 1 3

8 * 2 * 2
1 2 3 2

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, 
* 2

1 3 3 1 3
9 * 2 * 2

1 3 3 3

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

,  (36) 

* 2
2 3 1 2 3

10 * 2 * 2
2 1 3 1

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, 
* 2

2 3 2 2 3
11 * 2 * 2

2 2 3 2

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

, (37) 

* 2
2 3 3 2 3

12 * 2 * 2
2 3 3 3

( )=
2( ) ( )

a a a k ka
k k k k

−
+ +

,                  (38) 

* * 2 2 2 * * 2
1 2 3 1 2 1 2 1 3 2 3 1 2

13 * 2 * 2 * 2 * 2 * 2 * 2
1 1 2 1 3 1 1 2 2 2 3 2

( ) ( ) ( ) ( )=
4( ) ( ) ( ) ( ) ( ) ( )

a a a a a k k k k k k k ka
k k k k k k k k k k k k

− − − −
+ + + + + +

(39)  
* * 2 2 2 * * 2

1 2 3 1 3 1 2 1 3 2 3 1 3
14 * 2 * 2 * 2 * 2 * 2 * 2

1 1 2 1 3 1 1 3 2 3 3 3

( ) ( ) ( ) ( )=
4( ) ( ) ( ) ( ) ( ) ( )

a a a a a k k k k k k k ka
k k k k k k k k k k k k

− − − −
+ + + + + +

 (40) 
* * 2 2 2 * * 2

1 2 3 2 3 1 2 1 3 2 3 2 3
15 * 2 * 2 * 2 * 2 * 2 * 2

1 2 2 2 3 2 1 3 2 3 3 3

( ) ( ) ( ) ( )=
4( ) ( ) ( ) ( ) ( ) ( )

a a a a a k k k k k k k ka
k k k k k k k k k k k k

− − − −
+ + + + + +

(41) 

 
*

1 1
1 * 2

1 1

=
2( )

a ab
k k+

, 
*

1 2
2 * 2

1 2

=
2( )

a ab
k k+

, 
*

1 3
3 * 2

1 3

=
2( )

a ab
k k+

,  (42) 

*
2 1

4 * 2
2 1

=
2( )

a ab
k k+

, 
*

2 2
5 * 2

2 2

=
2( )

a ab
k k+

, 
*

2 3
6 * 2

2 3

=
2( )

a ab
k k+

, (43) 

*
3 1

7 * 2
3 1

=
2( )

a ab
k k+

, 
*

3 2
8 * 2

3 2

=
2( )

a ab
k k+

, 
*

3 3
9 * 2

3 3

=
2( )

a ab
k k+

, (44) 

* * 2 * * 2
1 2 1 2 1 2 1 2

10 * 2 * 2 * 2 * 2
1 1 2 1 1 2 2 2

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,    (45) 

 
* * 2 * * 2

1 2 1 3 1 2 1 3
11 * 2 * 2 * 2 * 2

1 1 2 1 1 3 2 3

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,     (46) 

* * 2 * * 2
1 2 2 3 1 2 2 3

12 * 2 * 2 * 2 * 2
1 2 2 2 1 3 2 3

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,     (47) 

* * 2 * * 2
1 3 1 2 1 3 1 2

13 * 2 * 2 * 2 * 2
1 1 3 1 1 2 3 2

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,     (48) 

* * 2 * * 2
1 3 1 3 1 3 1 3

14 * 2 * 2 * 2 * 2
1 1 3 1 1 3 3 3

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,     (49) 

* * 2 * * 2
1 3 2 3 1 3 2 3

15 * 2 * 2 * 2 * 2
1 2 3 2 1 3 3 3

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,     (50) 

* * 2 * * 2
2 3 1 2 2 3 1 2

16 * 2 * 2 * 2 * 2
2 1 3 1 2 2 3 2

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,    (51) 

* * 2 * * 2
2 3 1 3 2 3 1 3

17 * 2 * 2 * 2 * 2
2 1 3 1 3 1 3 3

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,    (52) 

* * 2 * * 2
2 3 2 3 2 3 2 3

18 * 2 * 2 * 2 * 2
2 2 3 2 3 2 3 3

( ) ( )=
4( ) ( ) ( ) ( )

a a a a k k k kb
k k k k k k k k

− −
+ + + +

,    (53) 

* * * 2 2 2 * * 2
19 1 2 3 1 2 3 1 2 1 3 2 3 1 2= [ ( ) ( ) ( ) ( )b a a a a a a k k k k k k k k− − − −  

* * 2 * * 2 * 2 * 2
1 3 2 3 1 1 2 1( ) ( ) ]/[8( ) ( )k k k k k k k k× − − + +            

* 2 * 2 * 2 * 2
3 1 2 1 2 2 2 3( ) ( ) ( ) ( )k k k k k k k k× + + + +                  

* 2 * 2 * 2
3 1 3 2 3 3( ) ( ) ( ) ]k k k k k k× + + + ,                        (54) 

2
1 1= ic k , 2

2 2= ic k , 2
3 3= ic k .                    (55) 

With the help of Eqs. (32)–(55), the three-wave solution (31) 
can be finally determined. 

If we continue to construct the N-wave solutions for any 
4N ≥ , the following similar manipulations becomes rather 

complicated since equating to zero the coefficients of the 
exponential functions implies a highly nonlinear system [19]. 
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Fortunately, by analyzing the obtained solutions (15), (21) and 
(26) and introducing the following notations:  

2= ij j j jk x k tξ ω+ + ,                       (56) 
* * *2 *= = iN j j j j jk x k tξ ξ ω+ − + , ( = 1,2, , )j N ,     (57) 

2e = 2( )
Ajl

j lk k− , ( < = 2,3, , )j l N ,         (58) 

,
* 2

1e =
2( )

Aj N l

j lk k
+

+
, ( , = 1,2, , )j l N ,        (59) 

*
* * 2, ,e = e = 2( )

A AN j N l j l
j lk k+ + − , ( < = 2,3, , )j l N , (60) 
*=N j ja a+ , ( = 1,2, , )j N ,                  (61) 

 we obtain a uniform formula of the N-wave solution of Eq. (1):  
2 2

=1 =1

2 2

=1 =1

2

1
=0,1 =1

2

2
=0,1 =1

( ) e
=

( ) e

N N

j j

N N

j j

AN j j j l jlj
j

j

AN j j j l jlj
j

j

B a
u

B a

µ ξ µ µ
µ

µ

µ ξ µ µ
µ

µ

µ

µ

+

+

∑ ∑

∑ ∑

∑ ∏

∑ ∏
,             (62) 

where the summation =0,1µΣ  refers to all combinations of each 
= 0,1jµ  for = 1,2, ,j N , 1( )B µ  and 2 ( )B µ  denote that 

when we select all the possible combinations = 0,1jµ for 
= 1,2, ,j N  the following conditions hold, respectively  

 
=1 =1

=
N N

j N j
j j

µ µ +∑ ∑ , 
=1 =1

= 1
N N

j N j
j j

µ µ + +∑ ∑ .           (63) 

We would like to note that solutions (15), (24), (31) and (62) 
with arbitrary constants are more general than the ones 
constructed by the existing methods, for example, Hirota’s 
bilinear method [31] as stated. To the best of our knowledge, 
these obtained solutions have not been reported in literature. In 
addition, we can easy to see that the obtained multiwave 
solutions with arbitrary constants have another advantage over 
the ones in [31], that is the high-wave solution can give all the 
low-wave solutions. Or, more specifically, the three-wave 
solution (26) given 3 = 0a  turns into the double-wave solution 
(21). Giving 2 = 0a  and 3 = 0a  to the three-wave solution 
(26) or giving 2 = 0a  to the double-wave solution (21), we can 
reach the single-wave solution (15). Similarly, the N-wave 
solution (47) can give any low-wave solution as long as these 
constants = 1ja ( = 1,2, ,j N ) are properly selected.  

Figs. 1-12 display the modulus, real part and imaginary part 
of the single-wave solution (15), double-wave solution (24) and 
three-wave solution (31) respectively, which propagate along 
x -axis. In Figs. 1-3, the parameters are selected as 1 = 1 2ia + , 

1 = 1 0.8ik − , 1 = 0ω . In Figs. 4-6, the parameters are selected 
as 1 = 1a , 2 = 1a , 1 = 1k , 2 = 2k , 1 = 0ω , 2 = 0ω . In Figs. 
7-9, the parameters are selected as the same as Figs. 4-6 except 
for the different 1 = 1 0.5ik − , 2 = 2 0.05ik + . In Figs. 10-12, 
the parameters are selected as 1 = 1a , 3 = 1a , 2 = 1a , 

1 = 1 0.2ik − , 2 = 2 ik + , 3 = 3k , 1 = 0ω , 2 = 0ω , 3 = 0ω . 
It is easy to see from Figs. 3-12 that the “breather” phenomena 
have occurred at different locations in the process of 
propagation of the solutions (15), (24) and (31). Besides, Figs. 
8-12 show that some envelopes have been shaped in the 
interaction of the double-wave solution (24) and three-wave 

solution (31). It is due to the arbitrariness of the included 
parameters, these obtained multiwave solutions possess enrich 
structures. 
 

 
(5a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(5b) = 1x − , [ 8,8]t ∈ −  

Fig. 5. Real part of double-wave solution (24). 
 

 
(6a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(6b) = 1x − , [ 8,8]t ∈ −  

Fig. 6. Imaginary part of double-wave solution (24). 
 
Remark 1. All solutions (15), (24) and (31) obtained above 

have been checked with Mathematica by putting them back into 
Eq. (1). 

IV. CONCLUSIONS 
In summary, the single-wave solution (15), double-wave 
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solution (24), three-wave solution (31) and the uniform formula 
of N-wave solution (62) of the nonlinear Schrödinger equation 
(1) have been obtained due to to the generalization of the 
exp-function method presented in this paper. Even if these 
obtained solutions can be constructed by some a future 
improved version of Hirota’s bilinear method [31], the 
proposed method with the help of Mathematica for generating 
single-, double-wave and three-wave solutions (15), (24) and 
(31) is more simple and straightforward. 

Generally speaking, when we use Hirota’s bilinear method 
[31], the considered equation must be reduced to the so-called 
Hirota bilinear form of one or more new dependent variables by 
means of a suitable transformation and the defined bilinear 
operator. For Eq. (1), we may take a rational transformation:  

= Gu
F

, = ( , )F F x t , = ( , )G G x t ,                 (64) 

then it is reduced to the so-called Hirota bilinear forms:  
2(i ) = 0t xD D G F+ ⋅ , 2 *=xD F F GG⋅ ,          (65) 

 where xD  and tD  are the bilinear operators [31].  
Secondly, expanding each of new dependent variables in 

infinite series of a formal expansion parameter, we spit the 
Hirota bilinear form into a system of linear differential 
equations, from which we truncate the infinite series by 
selecting some appropriate exponential function solutions of the 
obtained differential equations. Finally, we use the selected 
exponential function solutions to determine the new variables 
and hence the multi-wave solutions of the given equation. 

Compared with Hirota’s bilinear method, the generalized 
exp-function method presented in this paper does not take above 
steps in constructing multiwave solutions. We note that there is 
still not a general rule for us to take in the selection of a suitable 
transformation such as (64). Besides, the obtained multi-wave 
solutions constructed by the generalized exp-function method 
contain some free parameters so that the high-wave solution 
degenerate into all the low-wave solutions, which are more 
general than the ones through Hirota’s bilinear method. In this 
sense, we may conclude that the generalized exp-function 
method has the advantage of simplicity and effectiveness and 
may provide us with a straightforward and applicable 
mathematical tool for generating multiwave solutions or testing 
its existence and can be extended to some other complex 
nonlinear PDEs in mathematical physics. 

 

 
(7a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(7b) = 1x − , [ 8,8]t ∈ −  

 

 
(7c) = 0x , [ 8,8]t ∈ −  

 

 
(7d) = 2x , [ 8,8]t ∈ −  

Fig. 7. Imaginary part of double-wave solution. 
 

 
(8a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(8b) = 1x − , [ 8,8]t ∈ −  
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(8c) = 0x , [ 8,8]t ∈ −  

 

 
(8d) = 2x , [ 8,8]t ∈ −  

Fig. 8. Imaginary part of double-wave solution (24). 
 

 
(9a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(9b) = 1x − , [ 8,8]t ∈ −  

 

 
(9c) = 0x , [ 8,8]t ∈ −  

 

 
(9d) = 2x , [ 8,8]t ∈ −  

Fig. 9. Imaginary part of double-wave solution. 
 

 
(10a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(10b) = 0x , [ 8,8]t ∈ −  

Fig. 10. Imaginary part of three-wave solution. 
 

 
(11a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(11b) = 0x , [ 8,8]t ∈ −  

Fig. 11. Imaginary part of three-wave solution. 
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(12a) [ 8,8]x∈ − , [ 8,8]t ∈ −  

 

 
(12b) = 0x , [ 8,8]t ∈ −  

Fig. 12. Imaginary part of three-wave solution. 
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Abstract— This paper presents evolutionary-based least-weight 

optimization procedure for designing truss structures. A modified 
version of Genetic Algorithm with Domain Trimming (GADT) is 
developed and presented herein. The DADT is used for solving the 
nonlinear constrained optimization problems. In this optimum design 
formulation, the objective function is the material weight of the truss; 
the design variables are the cross-sections of the truss members; the 
constraints are the stresses in members and the displacements of the 
joints. The constraints were handled using non-stationary 
dynamically modified penalty functions. One classical truss 
optimization example is presented herein to demonstrate the 
efficiency of the GADT algorithm. The test problem includes a 10-
bar planar truss subjected to two load conditions. The result shows 
that the GADT method is very efficient in finding the best discovered 
optimal solutions, which are better of the results of other structural 
optimization methods.. 
 

Keywords—Truss Structural Optimization, Genetic Algorithm, 
Domain Trimming, Constraint Handling.  

I. INTRODUCTION 
btiaing optimal designs that satisfy multiple conflicting 
criteria, such as minimum cost and maximum 

performance, is one of the most influential factors in modern 
structural design.  Most structural designs are considered 
constrained optimization problems that can be solved to 
identify the design values of structural performance. The 
optimum solutions might be linearly and/or nonlinearly 
constrained in the design space. In the presence of multiple 
optima and non-smooth constraints in the design variable 
space, it is difficult to obtain a set of optimum values using 
local optimization techniques. On the other hand, this 
difficulty has geared the research towards relatively new and 
innovative evolutionary based optimization techniques [1] 
such as the Genetic Algorithm (GA) [2], Ant Colony 
Optimization (ACO) [3], Particle Swarm Optimizer (PSO) [4], 
Shuffled Complex Evolution (SCE) [5]-[7], Harmony Search 
[8], and Hybrid Methods [9]-[11]. These approaches are 
investigated and used in recent years for optimizing structural 
designs and are proven superior to local search techniques. 
Many structural optimization problems involve problem-
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specific constraints applicable to the solutions limiting the 
feasible search space Compared to other constraint handling 
techniques the use of penalty functions is relatively simple and 
easy to implement.  This study presents the development and 
implementation of the GADT to achieve superior 
optimization. The capabilities of the developed optimization 
tool are demonstrated on two classical truss optimization 
problems being challenging with unknown global and multiple 
local minima.  

II. GENETIC ALGORITHM WITH DOMAIN TRIMMING (GADT)  

A. Development of the GADT Optimization Technique 
  To begin GA optimization, a population of solution 

alternatives Np (population size) are randomly generated using 
a uniform probability distribution; each solution of the GA 
consists of a combination of variables (x1, x2, x3, …, xn) 
which has its own fitness value. In cases where the 
optimization is performed to find the minimum weight for a 
given problem, a function F*j(X) = total mass + penalty has to 
be minimized. Solution alternatives that yield low F*j(X) 
values for the objective function would have better fitness as 
long as they are not violating the problem constraints. 
Populations of solutions are represented by chromosomes. The 
design variables stored in the chromosome can be either 
discrete (selected from a pool of defined values) or continuous 
(selected from a continuous range of variables). In this 
research, the vector of variables contains continuous values. 
Once F*j(X) for every solution j in the initial population is 
computed, a fitness value is assigned to each solution j using 
Eq.(1), Solutions with F*j(X) less than F*ave of the 
population are considered unfit and are eliminated by 
assigning them a fitness value of zero:  

𝐹𝐹𝑗𝑗 (𝑿𝑿) = �
F∗ave − 𝐹𝐹∗𝑗𝑗 (𝑿𝑿)        for 𝐹𝐹∗𝑗𝑗 (𝑿𝑿) <  F∗ave

0                            for 𝐹𝐹∗𝑗𝑗 (𝑿𝑿) ≥  F∗ave
�                   

                                   j = 1,2, … , Np                                 (1) 
where (X) is the vector of the design variables. 

The three basic operations of a GA, reproduction, crossover, 
and mutation, are used to improve the fitness of each 
population from one generation (iteration) to the next. The 
reproduction operation selects the better fit designs, copies 
them, and places them into a mating pool allowing each to 
mate and reproduce. The roulette wheel selection method is 
used in this study for its simplicity and popularity (Fig. 3).  
This method assigns for each fitness function value a portion 
of unity that will be used as the reproduction probability, Pr. If 
for example, the best fit solution in a certain population has a 
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Pr value of 10% and the population size Np =100 then the 
mating pool will have approximately 10 copies of this 
solution.  

 

 
Fig. 3: Pie chart of probability of selection of fit parents 

 
After the reproduction operation is performed, the crossover 

operation mates the selected designs to create more fit 
offspring solutions.  The uniform crossover operation is used 
to combine genetic information between two parent solutions.  
Uniform crossover selects two parent solutions at a time from 
the mating pool and swaps variables corresponding to zeros in 
a binary vector known as a mask. The mask is the same length 
as all variable vectors and consists of a preselected percentage 
of randomly arranged zeros (%c). This percentage has an 
impact on the speed of convergence to an optimum solution. 
Each mask within a population is different, so the number of 
unique, randomly generated masks is equal to half of the 
number of solutions (parents) in the population multiplied by 
the total number of generations (populations). 

Since GA mimics the natural selection of the fittest treats 
through multiple generations, it is inherently vulnerable to 
Genetic Drift (continuous survival of “unfit” but “lucky” 
individuals, and their genes, from one generation to the next). 
The mutation operation is used to minimize the effect of 
genetic drift and add diversity to the search space by randomly 
changing a variable in a design solution. During mutation the 
value of any chromosome variable may be changed to a 
randomly selected variable. Another counter measure of 
genetic drift used for continuous variables is to use blending 
techniques [12], a general blending formula would be of the 
form: 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  𝛽𝛽𝑥𝑥𝑚𝑚𝑛𝑛 + (1 − 𝛽𝛽)𝑥𝑥𝑑𝑑𝑛𝑛                           (2) 

Where, xnew = the nth variable of the offspring chromosome of 
the crossover, β = random number on the interval [0,1], xmn = 
the nth in the mother chromosome, and xdn = the nth in the 
father chromosome.  

One of the main advantages for the GA optimization is its 
relative insensitivity to local minima (not very susceptible to 
being trapper in local minima). However, this may also be 
considered as one of its limitations: being a “low-resolution” 
technique especially if the population size is relatively limited. 
i.e. convergence may sometime occur to points in the 
neighborhood of, but not exactly at, global minima. The 
reason for this is that initially, the solution variables are 
randomly selected from a pre-specified range (domain); those 
variables do not change (except for mutation, which occurs at 

small probability) but rather change place from one solution to 
another. In addition, a poor choice of the solution domain 
(e.g.: [1, 1000] while the optimal value is at a value of 2) 
further aggravates the issue. Blending techniques, while acting 
to reduce this disadvantage, introduce a new random 
parameter (β), it may also have a negative effect as it may 
negate the strong traits of the parents. 

In this study, a new technique is developed to alleviate this 
inherent limitation of GA. The technique involves trimming 
the domain then re-initiating the GA so that the probability of 
selecting the optimal solution is improved. For example, 
trimming a domain from [1, 1000] to [1, 10] then re-initiating 
GA would increase the initial probability of selection of the 
optimal solution by 200 times, when everything being 
constant. Trimming is done as a percentage of original domain 
size, and continuous trimming then GA re-initiation goes on 
until the optimum solution is found. One can think of 
trimming in terms of evolution theory as when a catastrophe 
occurs in nature eliminating the majority of the population 
leaving only the elite survivals to restart the evolution process. 
Fig.4 simulates this technique on a single variable 
chromosome (taking trimming as 90% of domain size):  
1- After the GA converged to a certain objective function 
value, the elite 10 chromosomes (in this case, variables) are 
taken regardless of which generation they’re in, since the 
range between the minimum and maximum variable  is more 
than 90%, no trimming occurs. 
2- As the GA converged for the second time, the range of 
values are now less than 90% and trimming will happen, but 
rather than being centered, the trimming range is biased 
toward the mean by a ratio: (max-mean)/(max-min), the 
trimmed domain is now less than 90% of the original as some 
of the trimming range lies outside the original domain. 
3,4,5 - Because the domain has been trimmed, the chances of 
getting to the global optimum are higher, resulting in the elite 
values getting closer to each other, trimming will stop when 
range of values exceeds 90% of the domain or if the GA found 
the optimum solution to a satisfactory precision.  
 

 

Fig. 4: Illustration of the domain trimming method on a single variable 
(trimming is 90%) 
 
 A question arises that how can it be sure that the optimal 
solution is inside the trimmed domain; the answer is that it 
doesn’t guarantee that, however, the worst case scenario is that 
it will get results comparable to conventional GA since 
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trimming doesn’t happen until GA converges. Experimenting 
on sample problems showed that the technique gives better 
results than conventional GA. Fig. 5a-d illustrates the logical 
steps for the GADT technique via flowcharts. 
 

 
 
Fig. 5a: Flow chart of general GADT optimization 
 

 
 
Fig. 5b: Flow chart of Reproduction, Crossover and Mutation 

 

Fig. 5c: Flow chart of Roulette wheel selection 

 
Fig. 5d: Flowchart of Domain Trimming 

To demonstrate the GADT algorithm performance, one of 
the standard test functions in optimization problems is 
considered: the Six-Hump Camelback function problem (43): 
𝑓𝑓(𝑥𝑥,𝑦𝑦) = �4 − 2.1𝑥𝑥2 + 𝑥𝑥

4
3� 𝑥𝑥2 + 𝑥𝑥𝑦𝑦 + (−4 + 4𝑦𝑦2)𝑦𝑦2    (3) 

With boundaries: x ∈ [-1.5, 1.5] and y ∈ [-2, 2], the function 
takes the form shown in Fig. 6; it has six minima, two of them 
are global minima with a value of: -1.0316 located at the two 
points: (-0.0898, 0.7126) and (0.0898, -0.7126). 

 
 
Fig. 6: Six-hump Camelback function. a) 3D plot b) Contour plot 
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Initially, the GA starts off with the domain provided by the 
user and iterates until there is a convergence, i.e. the fitness 
values are close to each other and the improvement in best 
fitness in subsequent iterations is less than a specified value, 
say, 1%. At this stage, the GA has identified a number of local 
minima and further iterations will have little effect on finding 
the global minimum.     

Convergence to a series of “not necessarily most fit” 
solutions means that the GA is approaching the vicinity of the 
global optimum but cannot discover the fittest solution. This 
may be due to elimination of some of the fittest solutions as 
they are combined with lesser-fit solutions, or inclusion of 
residual unfit solutions within the available solution domain. 
At this point, refinement of the available solution domain 
improves the chances of discover the fittest solution. GADT 
technique removes the most unfit solutions from the domain 
and re-initiates GA within the trimmed domain. Occasionally, 
some fittest solutions are dismissed as unfit as result of being 
combined with lesser-fit solutions. To minimize the 
probability of this potential pitfall, two measures are 
incorporated in the GATD: (a) the initial domain considers a 
large enough population to allow higher probability for 
discovering the most combinatory possibilities, and (b) the 
domain trimming limited to a high percentage (e.g. 90%)  of 
the domain from the previous step. This means that while 
some values are clearly identified as unfit, they are still 
retained in the domain for the subsequent GA re-initiation. 
The motivation for this retention it exhaust all possibilities of 
producing fit solutions before completely eliminating part of 
the domain. The impact on speed of discovery of optimum 
solutions is obvious. However, it is justified by the 
significantly improved successful discovery rate. The method 
can also be helpful to identify what range of variables to look 
for in subsequent searches. 

Fig.7 shows the fittest 100 overall solutions throughout the 
GADT; the box drawn on the contour map represents the 
updated (trimmed) domain, eliminating 10% of the original 
domain at each step. The continuation of domain trimming 
results in identifying new local minima. As more local minima 
are identified, they begin to compete with each other. 
Eventually, the trimming technique will exclude the values of 
low fitted local minima and will deem them as unfit results. 
This helps the GA to focus more on only the top-fitted 
solutions ultimately enhance the discovery rate (precision) of 
global optima solutions. Fig.7d shows the final domain after 
20 domain trimming iterations; it is noted that the domain 
cannot get trimmed further as the two global minima reside on 
the trimmed boundaries of the last step. It is worth mentioning 
that the final domain is only 3.5% of the initial full domain in 
more precise (virtually exact) optimum solution: f(x, y) = -
1.0316284533464 (0.000000014% error). 

 

B. GADT Technique Robustness 
To ensure GADT robustness, domain trimming is subject to 

further criteria preventing any potential adverse consequences. 
Domain trimming will not resume in any of the following 
scenarios: (a) if the range of values that yield fit results in the 
current domain is more than 90% of the previous domain; in 
other words, domain trimming will not commence until the 

feasible values get condensed into less than 90% of the 
domain. And (b) if after trimming, the GA yields solutions 
worse than previous GA initiation. Although the latter was not 
encountered during any of the algorithm testing sessions for 
any of the presented problems here, the criterion is set in place 
for potential future problem-specific complications. The effect 
of initial domain size is discussed in a subsequent section.  

 

  
(a) Initial Domain – User provided 

 
(b) First domain trimming 

  
(c) after 10 domain trimming  (d) Final solution domain 

 
Fig.7: Illustration of the GADT algorithm applied to the Six-hump Camelback 
function at different iterations of domain trimming. 

 

C. Constraints Handling 
The use of penalty functions is very popular in handling 

constraints enabling the solution of constrained problems as 
unconstrained. The solutions that violate any constraints are 
penalized in order to characterize non-feasible solutions by 
high objective function values. Non-stationary (dynamic) 
penalty functions typically exhibit superior performance to 
stationary (static) penalty functions. In its generality, a non-
stationary penalty function is defined as: 

( ) ( ) ( , , )pn pnf X F X p X c e= +
                                  (4)                                                                         

Where F(x) is the original objective function of the 

constrained optimization problem; ( )p •  is a dynamically 
modified penalty value, defined as: 

𝑝𝑝�𝑋𝑋, 𝑐𝑐𝑝𝑝𝑛𝑛 , 𝑛𝑛𝑝𝑝𝑛𝑛 � = ��𝑐𝑐𝑝𝑝𝑛𝑛 𝑟𝑟𝑖𝑖�
𝑛𝑛𝑝𝑝𝑛𝑛 , 𝑟𝑟 ≥ 1

0, 𝑟𝑟 < 1
�                                (5)                                                                

Where, 𝒓𝒓𝒊𝒊 is the individual member’s performance criteria 
(in a structural design problem, this is often taken as the 
demand-to-capacity ratio, or utilization ratio to the satisfaction 
of the relevant design code); while cpn and epn are the penalty 
coefficient and exponent, respectively. As their name implies, 
they provide means to penalize the optimization objective if 
the 𝒓𝒓𝒊𝒊  exceeds unity. Both cpn and epn, with different severity, 
will penalize unfit solutions minimizing their probability of re-
appearing subsequent generation and feasible solution domain.  
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D. Truss Structural Optimization 
  The mathematical form of the optimization problem for 

truss structure can be expressed as follows:   
           

{ }1 2

1

Find                   , , ...........                         (6)

To Minimize     = ( )                                       (7)

Subject to        ( ) 2,...       
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=
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≤ ≤

∑
       

min max

                (8)

    and            2,...                         (9)i i iA A A  i = 1, n≤ ≤         
Where Ai = the design variable i (member i cross-sectional 
area), n = the number of the design variables, W(A) = the 
objective function (the structural weight), ρ = the material 
density, Li = the member length, m = the number of inequality 
constraints (g), min

iA  and max
iA are the lower and the upper 

bound of the ith variable respectively.  The lower and upper 
bounds posed by Eq.(8) on the constraints include truss 
member stresses and joint displacements.  

E. Example: Cantilever 10-Bar Planar Truss Structure  
The GADT is tested against a classical global optimization 

problem: the Cantilever 10-Bar Planar Truss Structure 
optimization problem. This 10-dimensional problem has been 
investigated by many researchers, and has been well-
established as an optimization benchmark problem known for 
being challenging with unknown global and multiple local 
minima. A schematic of the cantilever 10-bar planar truss 
structure can be found in Fig.8.  

 
Fig.8: 10-Bar planar cantilever truss model 

The assumed material density is 0.1 lb/in3 (2767.990 
kg/m3), the length L is 360 in (914.4 cm) and the modulus of 
elasticity is 10,000 ksi (68,950 MPa). The stress and 
deflection limitations on the members are ±25.0 ksi (172.375 
MPa) and ± 2.00 in (5.08 cm), respectively. Cross-sectional 
areas are allowed to vary between 0.1 in2 and 35 in2 (0.6452 
cm2 and 225.806 cm2). No member grouping is utilized, 
resulting in each member having a potentially unique cross-
sectional area (A1 to A10).  This truss optimization problem 
has 10 design variables and 32 (10 tension stresses, 10 
compression stresses, and 12 displacements) constraints. Two 
loading cases are studied: Case 1, when P1 = 100 kips (444.8 
kN) and P2 = 0 kips and Case 2, when P1 = 150 kips (667.2 
kN) and P2 = 50 kips (222.4 kN). 

 
Table 2: Optimization results for the 10-bar planar truss Load Case 1 
 

Tables 1 and 2 give the best discovered optimum solutions 
along with the corresponding minimum weight for the two 
cases 1 and 2, respectively, benchmarked against optimal 
designs by other published studies. It should be noted that the 
best discovered solution was found after 10000 iterations for 
case 1 and 4000 iterations for case 2; initial population size, 
prior to trimming, is taken as 500 solutions. 

The optimal solutions found by the GADT meet all of the 
problem constraints and the comparisons in Tables 1 and 2 
show that the GADT provides superior results. Fig.9 shows 
convergence histories for loading cases 1 and 2. Notice that 
convergence plateaus after around 800 iterations; at which 
point, the trimming has progressed such that it has little further 
effect on the GA signifying the elimination of most or all unfit 
values. 

 
Table 3: Optimization results for the 10-bar planar truss Load Case 2 
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Fig.9: Path to optimum solution for load cases 1 and 2 on the 10-bar  truss. 
 
Figs.9 and 10 compare the first 300 iterations of the 

optimization with and without domain trimming for the 
loading case 1. Note that for the shown number of iterations 
the difference between the different discovered solutions is 
relatively marginal. Figs.11 and 12 compare the convergence 
histories of GA with and without domain trimming for a 
population size of 500 going through 2000 iterations. Notice 
that in some subsequent iterations, the conventional GA 
identifies a higher minimum weight as the best discovered 
solution, as compared to a previous iteration. This primarily a 
result of the mutation process, which eventually is filtered out 
with enough iterations. This effect is not exhibited in presence 
of domain trimming since the mutation is unable to select the 
excluded/trimmed unfit values.  

 
Fig.9: First 300 iterations of a conventional GA optimization on 10-bar truss. 

 
Fig.10: First 300 iterations of GADT optimization on 10-bar truss. 

 
Fig.11: Path to optimum solution for both GA and GADT for load case 1. 
 

 
 
Fig.12: Path to optimum solution for both GA and GADT for load case 2 

 
Since GA optimization is an evolutionary method, it relies 

on generating populations of solutions in order to find the 
optimum amongst them. To promote better discovery of 
optimum results, an adequate population size should be 
selected. Unfortunately, this parameter is problem-specific. 
The number of variables in a solution, diversity of values and 
initial domain selection are some of the factors determining 
the appropriate population size. The inclination to start with a 
very large population size in order to give better discovery 
chances, is sometimes counterproductive when the “low-
resolution” limitations of the GA are signified. However, 
selecting too small of population size will result in 
convergence failure for the GA for lack of sufficient 
representative solutions for selection. The GADT technique 
provides mitigating to this population size effect since its re-
initiation gives a new chance for previously undiscovered 
variables to be selected in the new population. To demonstrate 
this feature, the 10-bar planar truss problem was repeated with 
different population sizes. Population sizes chosen for the test 
were 20, 50, 100, 200, 300, 400 and 500 while all 
optimizations ran for 2000 iterations. The histogram in Figure 
13 shows the effect of population size on finding the optimum 
solution. It can be seen that increasing the population size 
improves the precision of finding the optimum solution, 
although slightly. Population sizes as low as 50 solutions per 
population yielded acceptable results which are less than 0.5% 
away from their counterpart with a population size of 500. 
However, when selecting a population size of 20, the method 
fails and the discovered solution is far off from the optimum. 
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Fig.13: Sensitivity of GADT Algorithm to population size. 

III. SUMMARY AND CONCLUSIONS  

A modified version of Genetic Algorithm with Domain 
Trimming (GADT) is developed and presented in this study. 
The innovative technique is used to solve a least-weight 
optimization problem in the design of truss structures. Prior to 
implementation of the innovative GADT technique on the 
truss problem, a well-established Six-Hump Camelback 
function benchmark problem is used for demonstration 
purposes. Then, the GADT is tested against a well-established 
challenging benchmark problem; it is tested against a classical 
global optimization problem: the Cantilever 10-Bar Planar 
Truss Structure optimization problem. This benchmark 
problem is a 10-dimensional optimization problem with 
unknown local and global minima. The GADT performed 
superiorly in the demonstration as compared to recently 
published optimum solutions in the literature. In this optimum 
design formulation, the objective function is the material 
weight of the supporting truss; the design variables the cross-
sectional areas of the truss members; the constraints are the 
stresses in members and the displacements of the joints. The 
GADT handles the problem-specified constraints using ‘non-
stationary penalty functions’ method. The results show that the 
(GADT) method is efficient in finding the best discovered 
optimal solution. The optimal solutions found by the GADT 
meet all of the problem constraints and the comparisons with 
the published literature show that the GADT provides superior 
results. 
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Abstract— The model of the universe is defined according 

to the virial theorem. The previous works are searched. The Energy 
of the universe and the distance of it are related to each other by an 
equation derived from the virial theorem. The universe is considered 
to be under a periodic motion. 

Keywords—Virial theorem, Hubble’s constant, Accelerating 
universe, Model of the Universes. 

I. INTRODUCTION 
he article is designed as follows. The derivation of the 
virial theorem is given in section II both in classical case 
and in quantum mechanical case according to the previous 

works [1-7]. In section III, the model of the universe is 
expressed. The conclusion is given in section IV.  

II. THE VIRIAL THEOREM 
In the references [1-7] the virial theorem is derived as 

follows: 
          ∑=

i
ii rpG  .          (1) 

here G is considered to be a quantity, product of the 
momentum and the position of the particle in a stable system. 
Taking the derivative of Equation (1), we get: 
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The second term on the right hand of the equation (2) can be 
written as [4, 5]            

      
( )

∑ ∑

∑∑
=

===

i i
iiii

i
iii

i

i
i

rFrp

Trmrrm
dt
rd

p



















 and

2. 2

   (3) 

Here T is the kinetic energy. If the quantity G is bounded in a 
time interval, one can write:  

     ( )
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From Equation (2), it can be written as 
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for the periodical momentum. From Equations (4) and (5) we 
obtain; 
 .         ∑−=

i
ii rFT 



.2         (6) 

Equation (6) is the virial theorem in the classical case.  
Now, we are looking for the quantum  mechanical virial 

theorem. The time-dependent Schrödinger Equation is;  

                          
.ψψ H

dt
di =           (7) 

The derivative of expectation value of an operator A with 
respect to time is;  

[ ] ., ψψψψ AHA
dt
di =        (8) 

Let us choose A  to be prA .= [1-7]. Putting this in 
Equation (7) and taking A to be time-independent, we get; 

[ ] 0, =ψψ AH          (9) 
Then virial theorem is obtained as 
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where T is the kinetic energy and V is the potential energy. 
Then, the virial theorem can be written as  

VrT ∇=


.2         (11) 

The kinetic energy can be defined by 

m
pT
2

2

=            (12) 

where p is the momentum operator and m is the mass of the 
particle under consideration. The momentum operator is  

∇−= ip           (13) 

Using Equation (11) for a potential of the form nkrV = , the  
kinetic energy is obtained as 

)(
2

rVnT =         (14) 
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We note here that if 0=n , we do not have to write Equation 
(14) because of the singularity, for 0≠n  the equation is 
valid.   
Due to the Equation (12) and the Equation (14), the following 
relation can be written: 

.)(
2

nm
prV =         (15) 

The mechanical energy of a closed system is conserved and is 
given by; 

VTE +=         (16) 
From Equation (11), we can write 

VrT ∇=
2
1

       (17) 

Then, we can rearrange this last equation by taking 

r
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∂
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=∇         (18) 

as 
./ln2 0rrTV =       (19) 

Then the total mechanical energy of a closed system becomes 
TrrE )/ln21( 0+=       (20) 

or it can be written for the distance travelled as 
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=        (21) 

Here 0r  is the distance between the two spherical shell orbit of 
the universe, and r  is that distance of it at a later time. For 
whom  like to make a search and to learn more about on the 
virial theorem, I would like to recommend his/her to look the 
references [8- 26] and the references given therein. 

III. THE CONSTRUCTION OF THE MODEL OF THE UNIVERSE 
The Bing Bang Theory suggest that the universe began to 

be formed by explotion of a very tiny, high densed, very hot 
point and then began to be cooled quickly and expanded too 
fast to the outer dimensions and formed the space of the 
universe where everything,like galaxies-stars- clusters- planets 
etc., take place in.  

One of the Hubble's major discovery was based on 
comparing his measurements of the Cepheid-based galaxy 
distance determinations with measurements of the relative 
velocities of these galaxies. He showed that more distant 
galaxies were moving away from us more rapidly with speed v 
moving  away from us as: 

v = Hod          (21) 

where d is its distance. The constant of proportionality Ho is 
now named as  the Hubble constant. The common unit of 
measuring  velocity  is km/sec, while the most common unit of 
measuring the distance to the nearby galaxies is Megaparsec 
(Mpc) which is equal to 3.26 million light years . Thus the 
units of the Hubble constant is (km/sec)/Mpc[27, 28].  

This discovery is the beginning of the modern age of 
cosmology. Cepheid variables remain one of the best methods 

of measuring distances to galaxies and these variables are very 
important to determine the expansion rate and the age of the 
universe [28]. Also, one who would like to learn more about 
the Hubble’s constant can see the studies[27- 36]. 

Now, the kinetic energy can be written in terms of the 
Hubble’s constant as 

22
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2
1 rmHmvT ==        (22) 

where r is the distance from the inner spherical orbit of the 
universe to the outer spherical orbit of the universe, m is the 
mass included in this universe. Then, the total energy of the 
universe as a closed system is written as 
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Here, it is considered the universe as an closed system, and the 
energy of it is given by the Equation (23). In the model, the 
universe is expanding out through an undestroyable wall, and 
there are other universes between the undestroyable wall and 
the universe under consideration because our universe is 
expanding. A model of the universe is defined by Hawking as 
“the universe in a nutshell” [37]. Undestroyable wall is 
assumed to be a region with a too high energy which allow 
nothing to pass through or effect it in any situation. I would 
like to describe the motion of the universe we inside in as from 
the beginning of the Big Bang to outward direction till this 
undestroyable wall. Then it has to have an inward motion 
through to make ready the conditions of a new Big Bang 
explosion in outward direction again. Here the Big Bang can 
be considered in two stages. First, the Big Bang of the 
innermost Universe in the outward direction. Second, the Bing 
Bang of the outermost Universe in inward direction. And also, 
if our universe is expanding, then there are some of the 
universes outside our universe that are shrinking [37, 38], and 
since our universe is accelerating then there are other 
expanding universes inside it. The undestroyable wall covering 
these universes is the outer most region of them.  

To simplify my model, I would like to say that the motions 
of the universes are like the motion of valve plungers of a 
vehicle, when some of them are in upward motion, the others 
are in downward motion. Upward motion refers to the 
expansions of the universes, downward motion to the 
shrinkage of the others. Or, it can be described as a motion of 
a spring moving  forward and backward about its equilibrium 
point on a frictionless surface with a mass attached to  its end. 
And, the universes are like the spherical shells inside each 
other with the regions that themselves are in motion except the 
outermost region of the outermost universe. The regions of 
each universe is covered by the two spherical orbits like that of 
each orbit of the electron move in. These universes are thought 
to have  parallel spheres of shells. And, these parallel spherical 
shells are inside each other, one covered by the other. The 
parallel universes are also studied in [39-41]. 

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 90



 

 

IV. CONCLUSION 
If the universes are closed or stable systems, the energy of 

the universes and the distances of them are related to each 
other for each universe by the Equation (23) derived from the 
virial theorem. Therefore, if they are the closed or stable 
systems, this equation should describe the motions of the 
universes. As a result, since the virial theorem describes the 
periodic motion of the closed systems, we can take the 
beginning of the Big Bang as the initial time of this periodic 
motion. 
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A Numerical Investigation of a Vortex Ring in a
Rotating Fluid
Watchapon Rojanaratanangkule

Abstract—The evolution of an axisymmetric vortex ring in a
fluid rotating along the axis of the ring propagating direction is
investigated by means of direct numerical simulation (DNS). The
Reynolds number and the rotation number are defined from the
initial circulation and the initial ring radius and are set to 5500
and 0.1, respectively. The axial vortex is observed to shed from the
vortex core, leading to the development of the primary and secondary
instabilities of the vortex ring. The observed primary instability
simultaneously deforms the cross-section of the vortex ring and twists
the toroid of the ring about its centreline along the ring circumference.

Keywords—Vortex ring, Rotating fluid, Direct numerical simula-
tion.

I. INTRODUCTION

LARGE-SCALE vortical structures are of interest for en-
gineers and physicists since they are the basic features of

many turbulent flows. Both experimental and numerical studies
have observed that such coherent structures are organised and
appear in the form of hairpins, lines, loops or rings. In order
to obtain a deeper understanding of turbulence physics and
control turbulence phenomena, the dynamics of a vortex ring
has been investigated as a simple model of the various vortical
interactions through theoretical, experimental and numerical
perspectives due to the simplicity of its geometry [1]. Under-
standing their dynamics, fundamental properties and how they
are affected by and interact with various backgrounds in which
they can exist (e.g. stably stratified or rotating backgrounds)
will help us obtain deeper understanding of turbulence. In this
work, the formation and evolution of a single vortex ring in a
rotating fluid, whose axis of rotation is parallel to the direction
of translation of the ring, will be investigated to explore the
effect of the background rotation on the vortex ring evolution.

Verzicco et al. [2] investigated the dynamics of a vortex ring
in a rotating fluid via numerical simulations and laboratory
experiments at low Reynolds numbers (O(1000)). Their results
delineated the evolution of the ring into two regimes depending
on the angular speed of the rotating system. For low-rotation
regime, the dynamical structures of the ring does not differ
much from that in a non-rotating fluid. One distinct effect
of the background rotation is that it introduces an azimuthal
(swirl) velocity to the ring leading to the appearance of
an elongated axial vortex. Once the rotation rate exceeds
its critical value, the Coriolis force due to the background
rotation suppresses the formation of the ring. Additionally,

This work is financially supported by Chiang Mai University.
W. Rojanaratanangkule is with the Department of Mechanical Engi-

neering, Chiang Mai University, Chiang Mai 50200, Thailand (e-mail:
watchapon.roj@eng.cmu.ac.th).

there appears the radiation of the energy of the ring by
the inertial waves. Brend & Thomas [3] performed a set of
experiments to quantify the decay length of the vortex ring as
a function of the rotation number. Their experimental data can
be used to roughly approximate how long the vortex ring can
propagate through the fluid with background rotation before it
decays.

The vortex ring in a rotating fluid possesses some qualita-
tively similar characteristics with the ring in a non-rotating
fluid but with an assigned azimuthal velocity (referred to
as a vortex ring with swirl), especially the existence of the
axial vortex. Recent numerical experiments of Balakrishnan
[4] showed that the ring with swirl exhibits a maximum limit
of the amount of swirl. If the swirl strength, measured in
terms of angular impulse, is larger than the limit, the ring will
rapidly eject the fluid with an azimuthal velocity from the
vortex core. This rapid ejection is directed radially outward
and downstream of the ring similar to a jet flow. When the
Reynolds number is high enough, a helical instability develops
in the ring due to the presence of swirl. This helical instability
is different from an azimuthal instability (Widnall instability
[5]) of the non-swirling ring in such a way that the helical
instability simultaneously deforms and twists the vortex core.

The aim of the present work is to extend the study of
Verzicco et al. [2] to a higher Reynolds number (O(5000))
to investigate whether the ring in a rotating fluid at a low-
rotation regime can develop any new features.

II. NUMERICAL APPROACH

In the present work, a single vortex ring with radius R
and core radius δ is considered. While the ring propagates
along the positive z-direction, the computational domain is
rotated in the axial direction with a constant angular velocity
Ωi = (0, 0,Ωz). The evolution of the ring is governed by
the continuity and the incompressible Navier–Stokes equations
formulated in a translating and rotating frame of reference.
The governing equations in a Cartesian coordinate system,
xi = (x, y, z), can be written as

∂ui

∂xi
= 0 , (1)

∂ui

∂t
+uj

∂ui

∂xj
= −1

ρ

∂Peff

∂xi
+ν

∂2ui

∂xj∂xj
−2εijkΩjuk−

dUF

dt
δ3i ,

(2)
where ui = (u, v, w) is the velocity vector at time t, εijk is
the Levi–Civita symbol and δij is the Kronecker delta. The
effective pressure Peff includes the thermodynamics pressure
and the centrifugal force. The translating speed of the moving
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Fig. 1. History of rate of change of volume–integrated kinetic energy:
−dK/dt; εK + FK .

frame UF is equivalent to the propagating velocity of the ring
and is determined via a proportional-integral (PI) controller of
Archer et al. [6]. During the calculations, the fluid properties
(density ρ and kinematic viscosity ν) are kept constant.

The Navier–Stokes equations are numerically solved with-
out any turbulence model (referred to as direct numerical
simulation, DNS) on a staggered grid with second-order fi-
nite differencing in space and Adams–Bashforth stepping in
time [7]. The ring with initial radius R0, circulation Γ0 and
slenderness ratio, δ0/R0, of 0.2 is initiated at the centre of
the domain at xi = (0, 0, 0) with a Gaussian distribution
of azimuthal vorticity. Azimuthal perturbation in the form
of a sum of 32 Fourier modes with amplitude of 0.0004R0

and random phase is applied to the ring radius. The initial
velocity field can be obtained by means of a vorticity–vector
stream function method (see, e.g., [8]). The Reynolds number
Re = Γ0/ν and the rotation number Ro = 2ΩzR

2
0/Γ0 are

set to 5500 and 0.1, respectively. It should be noted that the
definition of our Re and Ro is different from that of Verzicco
et al. [2], who defined the Reynolds number and the rotation
number based on the centreline ejection velocity and the radius
of the orifice. They demonstrated that their Reynolds/rotation
number is about 1.5 times lower/higher than those defined
from the initial circulation and ring radius. The simulations are
performed in a cuboidal domain of size Lx = Ly = Lz = 8R0

with the grid resolution of 2563. The time-dependent uniform
inflow velocity UF together with a zero vorticity condition is
employed at z = +Lz/2, while a zero gradient condition for
the velocity field is applied at the outflow plane (z = −Lz/2).
A periodic boundary condition is specified at the x- and y-
directions.

III. RESULTS

This section presents the results from the DNS of a single
vortex ring in a rotating fluid. We verify the adequacy of the
grid resolution in Sec. III-A. The effect of the background
rotation on the development of the vortex ring is explored in
Sec. III-B.
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Fig. 2. Evolution of the angular impulse of a vortex ring in a rotating fluid
for Re = 5500 and Ro = 0.1.

A. Resolution Check

The adequacy of the grid resolution used is verified by
comparing the left- and the right-hand side of the volume-
integrated instantaneous kinetic-energy equation, written as

−dK

dt
= εK + FK , (3)

where K = 0.5
∫
V

(
uiui − U2

F

)
dx dy dz is the volume-

integrated kinetic energy in a co-moving frame of reference,
εK is the volume-integrated rate of kinetic energy dissipation
and FK is the net volume-integrated kinetic energy flux. It
should be noted that the work done due to the Coriolis force
is zero, u · (2Ω × u) = 0, since it is a fictitious force. The
difference between the rate of change of the volume-integrated
kinetic energy dK/dt and the RHS of (3) is illustrated in
Fig. 1. The difference between the two sides of (3) is less
than 1% up to t ≈ 10R2

0/Γ0, when the ring begins to develop
a three-dimensional instability leading to the breakdown to
turbulence. During that period, reasonable accuracy is obtained
with the maximum error being less than 3%, indicating that
the spatial resolution is fine enough to accurately capture all
scales of the flow.

B. Effect of the Coriolis force

The strength of the swirl can be measured via an integral
quantity namely angular impulse A = (Ax, Ay, Az), defined
as [9]

A =
ρ

3

∫
V

x× (x× ω) dx dy dz , (4)

where ω = ∇×u is the vorticity vector. The angular impulse
can be interpreted as the resultant moment of the impulsive
force that generates the motion from rest and it is invariant
in an unbounded domain [9]. For an axisymmetric ring, it
possesses only the angular impulse in the axial direction.
Figure 2 displays the history of the angular impulse of the
vortex ring in a rotating fluid at Ro = 0.1. It can be seen that
the angular impulse keeps increasing due to an endless supply
of the Coriolis force. This is the major different between the
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0 = 1, (b) tΓ0/R2
0 = 6, (c) tΓ0/R2

0 = 10, (d) tΓ0/R2
0 = 12, (e) tΓ0/R2

0 = 15 and
(f) tΓ0/R2

0 = 20. Surface level QR4
0Γ

2
0 = 0.005

vortex ring in a rotating fluid and the ring with swirl since
the angular impulse of the latter is conserved. It is of interest
to note that the growth rate of the angular impulse seems to
decrease after t ≈ 10R2

0/Γ0, indicating that the ring would
evolve with different dynamics after that time.

The evolution of the ring in a rotating fluid is visualised
by means of the second invariant of the velocity gradient
tensor Q = −0.5ui,juj,i (see, e.g., [10] for details), illustrated
in Fig. 3. The contours of the azimuthal vorticity ωθ on
the plane θ = 0 are also depicted in Fig. 4 to aid the
analysis of the results. Initially, the Coriolis force does not
have much influence on the development of the ring. Hence,
the vortex ring remains axisymmetric and laminar, as displayed
in Figs. 3(a) and 4(a). With time, the ring sheds the swirling
wake along the axial direction, as illustrated in Fig. 3(b). This
swirling wake is usually referred to as the axial vortex. It can
be seen from Fig. 4(b) that the axial vortex consists of the
negative and positive azimuthal vorticity at respectively the
front and rear part of the vortex core. The existence of this
additional vorticity structure can be explained by investigating
the transport equation of the azimuthal component of vorticity.
In the presence of the background rotation in the axial direc-
tion and the assumption of axisymmetric flow, the azimuthal
vorticity transport equation can be written as

∂ωθ

∂t
+ ur

∂ωθ

∂r
+ uz

∂ωθ

∂z
+

uθωr

r
=

ωr
∂uθ

∂r
+ ωz

∂uθ

∂z
+

ωθur

r
+ ν

(
∇2ωθ −

ωθ

r2

)
+ 2Ωz

∂uθ

∂z
,

(5)

where the term 2Ωz∂uθ/∂z represents the effect of the
Coriolis force and illustrates that the axial gradient of az-
imuthal velocity plays an important role in the evolution of
the azimuthal vorticity. Figure 5 displays the contour of the
azimuthal velocity uθ on the plane θ = 0 at tΓ0/R

2
0 = 6. As

the flow follows the conservation of angular momentum (ruθ),
the azimuthal velocity increases as 1/r when the fluid particles
move radially inward. However, uθ must be zero at r = 0
resulting in a decrease of uθ near the axis consistent with the
flow map in Fig. 5. It can also be seen that the azimuthal
velocity possesses a positive axial gradient (∂uθ/∂z > 0)
behind the vortex core. This results in a positive azimuthal
vorticity. On the other hand, the negative ωθ at the front half
of the ring is due to the negative ∂uθ/∂z at that region.

At tΓ0/R
2
0 = 10, the axial vortex begins to develop an insta-

bility, as depicted in Figs. 3(c) and 4(c). This instability grows
with time and leads to the appearance of the four secondary
(spiral) vortices in front of the vortex core (Figs. 3d and 4d).
The axial vortex is distorted by these secondary vortices while
the radial length of the spiral vortices increases with time, as
illustrated in Figs. 3(e) and 4(e). At tΓ0/R

2
0 = 20, the cross-

section of the vortex core begins to deform (Figs. 4f). In the
mean time, the toroid of the ring is twisted about its centreline
along the ring circumference (visualised by the isosurface of
Q, see Figs. 3f). The simultaneous deformation and twisting of
the vortex core observed in this work are qualitatively similar
to the helical instability occurring in a vortex ring with swirl
[4]. The further investigation of the flow instabilities induced
due to the system rotation is deferred to a future study.
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Fig. 5. Contour of azimuthal velocity uθ on the plane θ = 0 at tΓ0/R2
0 = 6.

The lowest contour levels of |uθ|max /12 and equal spacing of |uθ|max /10
were used. Red solid lines and black dotted lines respectively show positive
and negative velocity.

IV. SUMMARY

Direct numerical simulation (DNS) has been employed to
investigate the formation and evolution of a single vortex ring

in a fluid that rotates along the axial direction. It is found
that the swirling wake is shed downstream from the vortex
core. The azimuthal vorticity of the axial vortex is positive
at the rear part of the vortex core, and is negative at the
front half. The appearance of the axial vortex is a result of
the axial gradient of the azimuthal velocity as ∂uθ/∂z is
the source for the azimuthal vorticity. Once the axial vortex
has occurred, it develops a secondary instability appearing
in the form of four spiral vortices in front of the vortex
core. The primary instability is then developed, resulting in
the simultaneous deformation of the vortex core cross-section
and twisting of the vortex core about its centreline along the
ring circumference. Future work will analyse and develop a
mathematical description of the ring instability induced due to
the system rotation.

ACKNOWLEDGMENT

The author would like to express his gratitude to the com-
putational resources provided by the Faculty of Engineering,
Chiang Mai University and the HPC services from the Large-
scale Simulation Research Laboratory of National Electronics
and Computer Technology center.

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 96



REFERENCES

[1] S. Shariff and A. Leonard, “Vortex rings,” Annu. Rev. Fluid Mech.,
vol. 24, pp. 235–279, 1992.

[2] R. Verzicco, P. Orlandi, A. H. M. Eisenga, G. J. F. van Heijst, and G. F.
Carnevale, “Dynamics of a vortex ring in a rotating fluid,” J. Fluid
Mech., vol. 317, pp. 215–239, 1996.

[3] M. A. Brend and P. J. Thomas, “Decay of vortex rings in a rotating
fluid,” Phys. Fluids, vol. 21, no. 4, p. 044105, 2009.

[4] S. K. Balakrishnan, A numerical study of some vortex ring phenomena
using direct numerical simulation (DNS). PhD thesis, University of
Southampton, Southampton, UK, 2013.

[5] S. E. Widnall and C.-Y. Tsai, “The instability of the thin vortex ring
of constant vorticity,” Phil. Trans. R. Soc. Lond., vol. 287, no. 1344,
pp. 273–305, 1977.

[6] P. J. Archer, T. G. Thomas, and G. N. Coleman, “Direct numerical
simulation of vortex ring evolution from the laminar to the early
turbulent regime,” J. Fluid Mech., vol. 598, pp. 201–226, 2008.

[7] T. G. Thomas and J. J. R. Williams, “Development of a parallel code
to simulate skewed flow over a bluff body,” J. Wind Eng. Ind. Aerodyn.,
vol. 67–68, pp. 155–167, 1997.

[8] W. E and J.-G. Liu, “Finite difference methods for 3D viscous in-
compressible flows in the vorticity–vector potential formulation on
nonstaggered grids,” J. Comput. Phys., vol. 138, no. 1, pp. 57–82, 1997.

[9] G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge:
Cambridge University Press, 1967.

[10] J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid
Mech., vol. 285, pp. 69–94, 1995.

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 97



1

Unranking algorithms applied to MUPAD
X. Molinero and J. Vives

Abstract—We present an improvement of the implementation
of some unlabeled unranking algorithms of the open-source
algebraic combinatorics package MUPAD-COMBINAT for the
computer algebra system MUPAD. We compare our implemen-
tation with the current one. Moreover, we have also developed
unranking algorithms applied to some unlabeled admissible
operators that are not still implemented in the package MUPAD-
COMBINAT. These algorithms are also able to develop some
structures useful to generate molecules applied to chemistry and
influence graphs applied to game theory and social networks,
among other topics.

Index Terms—Unranking Algorithms, MuPAD, Generating
Molecules, Generating Influence Games.

I. INTRODUCTION

The problem of unranking asks for the generation of the ith
combinatorial object of size n in some combinatorial class A,
according to some well defined order among the objects of
size n of the class. Efficient unranking algorithms have been
devised for many different combinatorial classes, like binary
and Cayley trees, Dyck paths, permutations, strings or integer
partitions, but most of the work in this area concentrates in
efficient algorithms for particular classes, whereas we aim at
generic algorithms that apply to a broad family of combina-
torial classes. The problem of unranking is intimately related
with its converse, the ranking problem, as well as with the
problems of random generation and exhaustive generation of
all combinatorial objects of a given size. The interest of this
whole subject is witnessed by the vast number of research
papers and books that has appeared in over five decades (see,
for instance, [24], [12], [9], [8], [11], [25], [10], [20], [19],
[21], [3]).

[14], [13] designed generic unranking algorithms for a large
family of combinatorial classes, namely, those which can be
inductively built from the basic ε-class (a class which contains
only one object of size 0), atomic classes (classes that contain
only one object of size 1 or atom) and a collection of ad-
missible combinatorial operators: disjoint unions, labeled and
unlabeled products, sequence, set, etc. Now we use such tech-
niques to implement those algorithms in MUPAD [2], [18].
In the open-source algebraic combinatorics package MUPAD-
COMBINAT [1] for the computer algebra system MUPAD there
are implemented the unranking for some admissible combina-
torial operators, but now we improve such implementation for
unlabeled unions and products (and sequences). Moreover, we

X. Molinero is with the Department of Applied Mathematics III,
Universitat Politècnica de Catalunya, E-08240 Manresa, SPAIN. E-mail:
xavier.molinero@upc.edu. X. Molinero was partially funded by grant
MTM2012-34426/FEDER of the ”Spanish Economy and Competitiveness
Ministry”.

J. Vives is with the Department of Design and Programming of Electronic
Systems, Universitat Politècnica de Catalunya, E-08240 Manresa, SPAIN. E-
mail: jvives@epsem.upc.edu.

Unlabeled class Specification
Binary trees B = Z + B × B

Unary-binary trees or
Motzkin trees M = Z + Z ×M+ Z ×M×M

Integer partitions P = Set(Seq(Z, card ≥ 1))
Integer compositions C = Seq(Set(Z, card ≥ 1))

Non-ordered rooted trees or
Rooted unlabeled trees T = Z × Set(T )

Binary sequences A = Seq(Z + Z)
Non plane ternary trees D = Z + Set(D, card=3)

Integer partitions with
distinct parts E = PowerSet(Seq(Z, card≥1))

Fig. 1. Examples of unlabeled classes and their specifications

have also implemented other operators as unlabeled sets and
powersets (with and without restrictions).

The paper just considers unlabeled combinatorial classes
and it is organized as follows. In Section II we briefly review
basic definitions and concepts, the unranking algorithms and
the theoretical analysis of their performance. Afterwards, from
the computer algebra system MUPAD, we compare the re-
quired CPU time of our implementation with the required CPU
time of the current implementation in the package MUPAD-
COMBINAT. Moreover, we also explain our current and future
work in this subject.

II. PRELIMINARIES

As it will become apparent, all the unranking algorithms in
this paper require an efficient algorithm for counting, that is,
given a specification of a class and a size, they need to compute
the number of objects with the given size. Hence, we will only
deal with (some of) the so-called admissible combinatorial
classes [6], [7]. Those are constructed from admissible oper-
ators, operations over classes that yield new classes, and such
that the number of objects of a given size in the new class can
be computed from the number of objects of that size or smaller
sizes in the constituent classes. In this paper we just consider
unlabeled objects (those whose atoms are indistinguishable1)
built from these admissible combinatorial operators.

For unlabeled classes, the finite specifications are generated
from the ε-class, atomic classes, and combinatorial opera-
tors including disjoint union (’+’), Cartesian product (’×’),
sequence (’Seq’), powerset (’PowerSet’), set (’Set’)2, and
sequence, powerset and set (or multiset) with restricted cardi-
nality. Figure 1 gives a few examples of unlabeled admissible
classes.

1On the contrary, each of the n atoms of a labeled object of size n bears
a distinct label drawn from the numbers 1 to n.

2Also denoted by ’multisets’ (MultiSet) to emphasize that repetition is
allowed.
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(b) Boustrophedonic order

Fig. 2. Binary trees of size 4.

For the rest of this paper, we will use calligraphic uppercase
letters to denote classes: A, B, C, . . . . Given a class A and a
size n, An will denote the subset of objects of size n in A.

The order ≺Cn among the objects of size n for a class
C = A + B is naturally defined by γ ≺Cn γ′ if both γ and
γ′ belong to the same class (either An or Bn) and γ ≺ γ′

within their class, or if γ ∈ An and γ′ ∈ Bn. It is then
clear that although A + B and B + A are isomorphic (“the
same class”), these two specifications induce quite different
orders. The unranking algorithm for disjoint unions compares
the given rank with the cardinality of An to decide if the
sought object belongs to A or to B and then solves the problem
by recursively calling the unranking on whatever class (A or
B) is appropriate.

For Cartesian products the order in Cn = (A×B)n depends
on whether γ = (α, β) and γ′ = (α′, β′) have first components
of the same size. If |α| = |α′| = j then we have γ ≺Cn γ′ if
α ≺Aj

α′ or α = α′ and β ≺Bn−j
β′. But when |α| 6= |α′|, we

must provide a criterion to order γ and γ′. The lexicographic
order stems from the specification

Cn = A0 × Bn +A1 × Bn−1 + . . .+An × B0,

in other words, the smaller object is that with smaller first
component. On the other hand, the boustrophedonic order is
induced by the specification

Cn = A0 × Bn +An × B0 +A1 × Bn−1 +An−1 × B1+
A2 × Bn−2 +An−2 × B2 + . . . ,

in other words, we consider that the smaller pairs of total size
n are those whose A-component has size 0, then those with
A-component of size n, then those with A-component of size
1, and so on. Figure II shows the lists of unlabeled binary
trees of size 4 in lexicographic (a) and boustrophedonic order
(b).

Of course, other orders are also possible, but they either do
not help improving the performance of unranking or they are
too complex to be useful or of general applicability.

For powersets, among some natural orders (see [14], [16])
we can choose

PowerSet(A) = ε +⋃
n>0

⋃n
j=1

⋃1
k=n÷j

(
PowerSet(Aj , card= k)×

PowerSetn−kj(A>j)
)

where

PowerSet(Aj , card= k) =
⋃
α∈Aj

(
α×

PowerSet(A(�α)
j , card= k − 1)

)
,

being A(�α) = {α′ ∈ A : α′ � α}, and PowerSet(A>j)
is a powerset with A-components of size at least equal to
j + 1. Other orders described in [14], [16] do not change
the complexity and they could also be easily adapted to our
implementation.

For sets we have analogous isomorphisms but allowing
repetitions.

The theoretical performance of these unranking algorithms
is summarized in [16], [13].

Theorem 1: The worst-case time complexity of unranking
for objects of size n in any admissible labeled class A using
lexicographic ordering is of O(n2) arithmetic operations.

Theorem 2: The worst-case time complexity of unranking
for objects of size n in any admissible labeled class A
using boustrophedonic ordering is of O(n log n) arithmetic
operations.

III. OUR IMPLEMENTATION V.S. MUPAD-COMBINAT
IMPLEMENTATION

In this section we compare our implementation3 for unrank-
ing in MUPAD with the current implementation of the package
MUPAD-COMBINAT(using MUPAD Pro 4.0). All our experi-
ments run under Linux in a AMD64X2 4400 at 2.2 GHz with
4 Gb of RAM, and they use the basic facilities for counting
already provided by the package MUPAD-COMBINAT.

For instance, the interface for binary trees has the following
inputs:

spec := {B = Union(Z, BB), BB = Prod(B, B)};
p1 := combinat::

decomposableObjects(spec, Lexi/Bous);
p1::unrank(rank, size);

where spec is the specification4, Lexi or Bous forces
the lexicographic or boustrophedonic order, respectively, and
rank and size are the considered rank and size, respectively.
Thus, the following commands provide all binary trees of size
8 in lexicographic order:

spec := {B = Union(Z, BB), BB = Prod(B, B)};
p1 := combinat::

decomposableObjects(spec, Lexi);
for i from 0 to p1::count(8) - 1 do

p1::unrank(i, 8);
end_for

3It is available on request from the first author; send an E-mail to
xavier.molinero@upc.edu.

4The first class defined in the specification is the considered class (B in
this case).
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Lexicographic order Boustrophedonic order
Size τT τ ′T ρ

25 1.24 4.55 0.27
50 3.63 11.95 0.30
75 6.08 20.17 0.30

100 9.27 29.65 0.31
125 12.46 39.98 0.31
150 16.54 51.73 0.31
175 21.37 66.16 0.32
200 26.85 79.93 0.33

Size τT τ ′T ρ
25 0.90 2.95 0.30
50 2.50 6.52 0.38
75 4.27 10.24 0.41

100 6.20 13.97 0.44
125 6.99 17.91 0.39
150 8.39 20.80 0.40
175 9.67 24.90 0.38
200 11.63 28.87 0.40

TABLE I
AVERAGE CPU TIME (IN MILLISECONDS) FOR BINARY TREES,
B=Z+B×B. THE CPU TIME REQUIRED TO CALCULATE THE

PRE-COMPUTED TABLES IN OUR UNRANKING IS 380 MILLISECONDS.

Lexicographic order Boustrophedonic order
Size τT τ ′T ρ

25 1.12 3.24 0.34
50 2.60 9.33 0.27
75 4.81 16.61 0.28

100 7.18 25.72 0.27
125 9.65 34.27 0.28
150 12.28 42.57 0.28
175 15.42 54.44 0.28
200 18.83 67.08 0.28

Size τT τ ′T ρ
25 1.06 2.57 0.41
50 2.71 5.75 0.47
75 4.19 9.74 0.43

100 5.95 13.76 0.43
125 8.01 17.66 0.45
150 9.80 22.43 0.43
175 11.49 27.76 0.41
200 13.56 32.67 0.41

TABLE II
AVERAGE CPU TIME (IN MILLISECONDS) FOR MOTZKIN TREES,

M=Z+Z×M+Z×M×M. THE CPU TIME REQUIRED TO CALCULATE
THE PRE-COMPUTED TABLES IN OUR UNRANKING IS 690 MILLISECONDS.

Notice that, in general, p1::count(size) returns the
number of objects of p1 with size size.

The selected collection for our experiments are two classical
classes: binary trees (B = Z +B×B) and, unary-binary trees
or Motzkin trees (M = Z + Z ×M+ Z ×M×M).

Essentially, we have used two techniques in our imple-
mentation. First, we have appropriately used the command
option remember. Second, we have also used some pre–
computed tables to store the counting of each considered
class and size. The access to the indices of such tables is
notably faster than the access to the command count. Tables I
and II show the improvement of the average CPU time (in
milliseconds). We have pre–computed the counting tables and,
afterwards, we have generated 10000 random objects of the
considered class and size. τT is our average time required
to unrank a random rank of the considered class and size,
τ ′T is MUPAD-COMBINAT average time required to unrank
a random rank of the considered class and size, and ρ is the
ratio τT /τ ′T . For any case, it looks as the improvements tend
to be stable when the size n increase. For lexicographic binary
trees it approaches to ρ = 0.33, for Boustrophedonic binary
trees it approaches to ρ = 0.40, for lexicographic Motzkin
trees it approaches to ρ = 0.28, and for Boustrophedonic
Motzkin trees it approaches to ρ = 0.41. Thus, all results are
satisfactorily better. Note that even the pre–computed tables
require some CPU time, the average CPU time (when the
number of generated objects increase) of our implementation
substantially improves the previous one. We have meaningfully
improved the average CPU time required to generate a random
unranking: In lexicographic order, our implementation spends
about 30% of the CPU time of the previous version; and, in
boustrophedonic order, it spends about 40% of the CPU time
of the previous version.

Sequences are done from unions and products, thus the
timing improvements have similar advantages.

On the other hand, we have also done some experiments
with classes that involve sets or cycles, for instance, we
have considered the so-called functional graphs defined by
F= Set(Cycle(T )) with T =×(Z, Set(T )). In such cases, our
implementation spends between 60% and 80% of the CPU
time of the previous version.

A. Future implementation

The current implementation in MUPAD-COMBINAT does
not consider all admissible combinatorial operators as well as
restricted cardinalities in sets or powersets. We have added
some of these operators in our implementation. In particular,
we have considered admissible operators like

ϕ(B, card τ k)

where ϕ ∈ {Seq,Set,PowerSet}, τ ∈ {≤ / =≥} and k ∈
N.

By the way, the required average CPU time for the im-
plemented operators is clearly competitive. Now one of the
following open problems is to develop the corresponding pre–
computed tables of counting for powersets and sets (see the
described isomorphisms for powersets and sets in Section II).

IV. CONCLUSIONS AND FUTURE WORK

We have implemented in MUPAD the unranking applied
to some basic unlabeled admissible combinatorial operators:
disjoint unions, Cartesian products, and sequences. We are
now working on the implementation for (unlabeled) powersets
and sets (with and without restricted cardinalities).

Our implementation is making two main improvements for
the unranking of unlabeled admissible classes in front of the
implementation in the package MUPAD-COMBINAT. First, we
have significantly reduced the average CPU time required to
generate a random unranking. Second, we are programming
more unlabeled admissible combinatorial operators (powersets
and sets with and without restricted cardinalities).

Future work is to implement even more unlabeled admis-
sible combinatorial operators (substitution, the open problem
for unlabeled cycles, the union among non-disjoint classes, the
intersection among classes, etc.).

Another line of research is to study similar operators but
from the labeled point of view, that is, to consider that
the nodes of the combinatorial structures of size n can be
distinguished by labels from 1 to n.

The ranking, exhaustive and random generation should also
be implemented [24], [12], [16].

On the other hand, these algorithms are also able to develop
some structures useful to generate molecules [4], [5] applied
to chemistry and influence graphs [17] applied to game theory
and social networks, among other topics [22].

Finally, to what we know, it is still open to study the
unranking, ranking and exhaustive generation of combinatorial
structures from the viewpoint of genetic algorithms [15], [23].
Thus, it should be very interesting to establish some genetic
algorithms to solve these problems.
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Abstract—In the laser ultrasonic surface wave defect detection 

experiments, we got reflected ultrasonic and the transmitted wave 
signals in different width and depth cases. According to non-linear, 
non-stationary characteristics of ultrasonic detection signal, we can 
use the Mel Frequency Cepstral Coefficient method to extract 
characteristic coefficients of two waveform signals, and turn the 
high-dimensional data into low-dimensional signal data, to achieve 
effective detection of different defect categories. We compare the 
training and classification of BP neural network to the improved BP 
neural network with additional momentum. For the test set of 
reflected wave, the classification accuracy rate of BP network is 
84%, and the improved BP network arrives 96%; then for the test set 
of transmittance wave, correct classification rate of BP network is 
82.67%, and the improved BP network is 85.33%. The correct 
recognition rates of two types of network test are more than 80%, 
and the improved BP network is much more precise. Then we 
respectively select a simple in five signals, using the trained 
networks to identify them. The result is that all correct rates arrive 
100%. 

 
Keywords—additional momentum, BP neural network, defect 

detection, MFCC, SAW. 

I. INTRODUCTION 
ASER ultrasonic technique is an important 

non-destructive testing technology [1], which 
stimulate SAW due to the high sensitivity of surface and 
sub-surface tiny cracks, very suitable for the detection of tiny 
cracks. In industrial tests, the feature extraction of ultrasonic 
echo identify defect primarily extracts temporal 
characteristics, frequency domain characteristics and time - 
frequency domain features, by extracting the defect features 
information of relevantfield to achieve the purpose of 
identifying defects. There are many feature extraction 
methods, , in general, the method based on time-domain 
feature extraction is time-series model (AR model, ARMA 
model, etc.); the method based on frequency domain feature 
extraction is Fast Fourier Transform (FFT); the methods 
based on time – frequency domain feature extraction are 
short-time Fourier transform (STFT), time-frequency 
distribution (Wigner-Ville distribution, Choi-William 
distribution), wavelet transform, Hilbert-Huang Transform. 
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Because of ultrasonic signals of defectsrecognitionextraction, 
selection of evaluation methods and theeigenvalues of the law 
is still in the exploratory stage, with uncertainty. Mel 
frequency is based on the human auditory characteristic 
features put forward, and a nonlinear corresponding 
relationship with it in Hz frequency. Mel Frequency Cepstral 
Coefficient (MFCC) [2] uses the relationship between them to 
calculate spectral characteristics of Hz. We will use MFCC to 
extract feature information of the defect, to achieve the data 
dimension reduction and easily deal with. 

Artificial neural network [3], [4] is an intelligent 
information processing system built to mimic the human 
brain, and has a highly nonlinear global mapping. It has a 
very strong adaptive, self-learning ability and high fault 
tolerance and robustness on the environment. Then we extract 
laser ultrasonic wave signal features, with BP neural network, 
using the network of its powerful massively parallel, 
distributed processing, self-organizing, self-learning ability, 
and improve BP network, study ultrasound wave signals, 
looking for its inherent characteristics to detect different types 
of defects, and get a good defect category prediction. 

II. THEEXPERIMENTALPRINCIPLEANDTHEULTRASONIC 
FLAWSIGNALSTOBEIDENTIFIED 

Laser ultrasonic flaw detection technique is based on the 
theory of sound and light effects. It generates thermal elastic 
effect when pulsed laser irradiates at the sample surface, and 
generates an ultrasonic signal containing information of the 
measured surface. By detecting the defects of the ultrasonic 
signal after modulate to extract information about the defect 
for defect detection. If the specimen has discontinuous region 
such as defects, it will occur scattering, reflection and 
transmission phenomena when the ultrasonic wave 
propagates to the region, and then leading to the 
characteristics of ultrasonic signal will change significantly. 

In our experiment, the sample to be tested is a 
270*70*40mm aluminum plate, we use 2M ultrasound probe 
to detect ultrasonic reflected wave and transmitted wave, and 
the bandwidth of probe is 2M, i.e., the detection frequency 
range of 1-3M, and the defect specifications respectively are 
as follows: (1) width 0.1mm depth 0.3mm; (2) width 0.1mm 
depth 0.5mm; (3) width 0.1mm depth 0.7mm; (4) wide and 
0.1mm deep 0.9mm; (5) non-destructive. We repeat each 
experiment measurements for five times, and the sampling 
rate is 200MHz, the sampling points are 44,000, trigger 
position 10%. We put probe at 20mm from the laser spot to 
detect reflected waves, and transmitted wave at 40mm. We 
show the schematic diagrams for the experiment of reflected 
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wave and transmitted wave measurement respectively in 
Figure 1 and Figure 2. And the five groups of signal of two 
kinds of waves in our experiments are as Figure 3. 

III. MFCCPRINCIPLE 
Cochlea is substantially equivalent to a filter set, the 

filtering effect of the cochlea is used on a logarithmic 
frequency scale .Below 1,000HZ, there is a linear relationship 
between the human ear's perception and the frequency; In 
more than 1,000HZ, the human ear's perception does not 
constitute a linear relationship with frequency, but more 
inclined to logarithmic relationship, which makes the human 
ear to low frequency signal is more sensitive than the 
high-frequency signal. Mel frequency and frequency 
conversion formula is: 

2595*lg(1 / 700)mel HZF f= + (1) 

A. Pre-emphasis Processing 
Pre-emphasis is actually a high-pass filter, the transfer 

function of the high pass filter is: 
1( ) 1H Z Zα −= −                    (2) 

 
Fig. 1The schematic diagram for the experiment of reflected wave 

measurement 
 

 
Fig.2 The schematic diagram for the experiment of transmitted wave 

measurement 
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Fig. 3 Five groups of signal of two kinds of waves (a) Five types of 
signals of reflected wave. (b) Synthetic reflected wave signals of 
reflected wave. (c) Five types of signals of transmitted wave. (d) 

Synthetic reflected wave signals of transmitted wave. 
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Where the value of α  is 0.97, the role of high-pass filter 
is filtering low frequency, high frequency characteristics of 
the ultrasonic signal is more emergent. 

B. Frame and Window Treatments 
Due to the ultrasonic signal exhibits only present stability 

in a relatively short period of time (generally considered 
10-30ms), thus the ultrasonic signal is divided into a short 
period that a frame. To avoid loss of dynamic information of 
ultrasonic signals, there must be some overlapping area 
between adjacent frames, and the frame length of the 
overlapping area is a period of 1/2 or 1/3. And then multiply 
each frame by a window function, in order to increase the 
continuity of the left and right ends of each frame [5].  

C. Each Frame Signal FFT Transformation 
  We make the FFT transform of Sub-frame for each 

windowed frame signal to get the spectrum of each frame. 
And get the square norm of the frequency spectrum of 
ultrasonic signal to get the power of the ultrasonic signals. 

D. Calculate Triangular Filter Coefficients 
    Defines a plurality of band-pass filter

( ),0 ,k m M<= <= M  is the number of triangular filter 

whose center frequency is ( )f m , the frequency response for 
each band pass triangular filter is: 

( ) 0
( 1)

mH k
k f m

=
< −

                   (3) 

( 1)
( ) ( 1)
( 1) ( )

k f m
f m f m
f m k f m

− −
− −
− ≤ ≤

            (4)                      

( 1)
( 1) ( )
( ) ( 1)

f m k
f m f m
f m k f m

+ −
+ −
≤ ≤ +

         (5)                      

       
(

0
1)k f m> +

       (6)  

And satisfies 
( ( )) ( ( 1))

( ( 1)) ( ( ))
Mel f m Mel f m

Mel f m Mel f m
− −

= + −
 

Calculated filter coefficients is ( ), 1,.... ,m i i p= p is the 
filter order. 

E. Triangular Filtering and Discrete Cosine Transform 
DCT 

1

1log( )cos[ ( ) ]
2

p

i k
k

C m l k
p
π

=

= −∑                 (7) 

iC is the desired extracted feature parameters. 
MFCC has been widely used in speech recognition. Its 

extraction process is as Figure 4: 

IV. THEPRINCIPLEOFBPNETWORK 

A. BP Network Structure 
Back-propagation (BP) neural network idea was first 

proposed in 1969 by Bryson etc., it was not until 1986 that 
Rumelhart [5, 6] and his team published their findings in the 
journal Nature, the BP network to get the attention of people. 
BP network is actually a multi-layer perception and a 
supervised learning algorithm, The network consists of a 
large number of processing units constructed through an 
extensive interconnected network system, with massively 
parallel, distributed processing, self-organizing, self-learning, 
etc. advantage, is widely used in function approximation, 
pattern recognition, classification, data compression, and 
many other fields. 

BP neural network [7] is a multilayer feedforward neural 
network, its main features isto transmit before the signal, the 
error back-propagation. In the forward pass, an input signal 
from the input layer through the hidden layer processing layer 
by layer, until the output layer. The states of neurons of each 
layer only affect the next layer neuron state. If the output 
layer is not expected, then transferred back propagation, 
adjust the network weights and thresholds based on 
prediction error, allowing BP neural network to predict the 
output constantly approaching the desired. And BP neural 
network topology is shown in Figure 5. 

Where 1 2 n, , ,X X X⋅ ⋅ ⋅ are the input values of BP neural 

network, 1 2 m, , ,Y Y Y⋅ ⋅ ⋅ are the predicted values of BP neural 

network, ijw and jkw is the weights of BP neural network. As 

we can be seen from the figure, BP neural network can be 
viewed as a nonlinear function, network input is independent 
variable of the function, and predicted values is the dependent 
variable of the function. When the input nodes are n, the 

 
Fig.4The processing of MFCC extracts signal characteristics 

 
Fig.5 BP neural network topology 
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output nodes is m, BP neural network expresses a function 
mapping relationship of n independent variables with m 
dependent variables.BP algorithm's learning rule is based on 
the gradient descent method, due to the gradient descent 
method is an effective nonlinear data fitting method, and it’s 
the direct and effective method needs to calculate the 
derivative of unconstrained optimization algorithm, this is 
good maneuverability and overall convergence. Here, the 
gradient is a vector that we call it derivative. 

B. The Working Principle of BP Network 
Before BP neural network forecasting, first to train 

network, through training the network has associative 
memory and forecasting capabilities.The algorithm’s basic 
idea, that is turning the input and output problems of a set of 
sample into a nonlinear optimization problem, using gradient 
descent method that commonly used in optimization to 
realize mean square error (mse) minimum of the network 
between actual output and desired output, and finishing BP 
network training task.Training process of BP network is 
consist of forward transmission of work signals and back 
propagation of error signals: 
1) Forward transmission of work signals. In the process of 

the spreading, the input samples income from input layer, 
finally to output layer afterhidden layer processing step 
by step. We compare the actual output value to the 
desired output value of output layer, if there is a 
deviation, immediately go to the back propagation of 
error signals process; 

2) Back propagation of error signals. The deviation 
between network's actual output and desired output is 
the error signal.This process is that the output error 
propagates along the original connection path step by 
step, and according to the way of minimizing error to 
adjust the weight matrix of the network.We adjust the 
network weights constantly and make the real output 
value of the network gradually approaching the 
designer's expectations. 

Each layer weights adjustment process of forward 
transmission of work signals and back propagation of error 
signals is iterative, and the constantly adjust process of 
network weights is the training process of the network. 

BP neural network training process includes the following 
steps. 
1) Network initialization.According the system input and 

output sequence ( , )X Y  to determine the network input 
layer nodes n, hidden layer nodes l, output layer nodes m. 
Initialize the connection weights of neurons ijw ， jkw
between input layer and hidden layer and output layer, 
initialize the hidden layer threshold a , the output layer 
threshold b , given the learning rate and neuronal 
excitation functions. 

2) Calculate the hidden layer output. According to the input 
vector X , the connection weights ijw between the 

inputlayer and the hidden layer and the hidden layer 

threshold a , calculate the output of the hidden layer H. 

1
( ) 1, 2,...,

n

j ij i j
i

H f w x a j l
=

= − =∑          (8) 

Where l is the hidden layer node; f  representatives hidden 
layer excitation function, which has a variety of forms, 
our paper selected the function is: 

1( )
1 xf x

e
=

+
(9) 

3) Output layer output calculation.According to the output 
of the hidden layer H , the connection weights jkw  and 

thresholds b , calculate predicted outputT  of BP neural 
network. 

1
1, 2,...,

i

k j jk k
j

T H w b k m
=

= − =∑ (10) 

4) Error calculation. According to the network predicted 
outputT  and the desired outputY , computing network 
prediction error e . 

1,2,...,k k ke Y T k m= − =       (11) 
5) Update weights. According to the predicted error e  

update the network weights ijw ， jkw . 

1
(1 ) ( )

1,2,..., ; 1, 2,...,

m

ij ij j j jk k
k

w w H H x i w e

i n j l

η
=

= + −

= =

∑ (12) 

1,2,..., ; 1, 2,...,
jk jk j kw w H e

j l k m
η= +

= =
    (13) 

Where η is the learning rate. 
6) Threshold update. According to the network predicted 

error e update the network node threshold a , b . 

1
(1 )

1,2,...,

m

j j j j jk k
k

a a H H w e

j l

η
=

= + −

=

∑ (14) 

1,2,...,k k kb b e k m= + =                   (15) 
7) Judge iterative algorithm to determine whether the end, if 

not end, return (2). 

C. Improved BP network 
At present, in the field of the application of neural network, 

BP algorithm is the most widely used. Although BP network 
can approximate any nonlinear function in theory, because 
there are many parameters in network training learning 
choice without theoretical basis, in practice, the algorithm 
itself has some limitations and shortcomings, mainly includes 
the following aspects: 
1) The learning rate of BP network is fixed, its slow 

convergence speed and long-time training, it often 
requires thousands of times even more iterative training. 
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2) The gradient descent method of BP network makes the 
network easy to fall into local minimum and can’t get the 
global optimal, and when the training patterns learn one 
by one, the network connection weights will be 
readjusted, this makes training process time longer. 

3) The number of nodes in the hidden layer of network is 
usually determined by experiences, there is no exact 
theory instruction, which makes the design of the 
network model become more complex, the network 
training time can be longer. 

Aiming at the limitations and disadvantages of BP network, 
the researchers spent a lot of energy in improving the 
performance of its research work, and put forward many 
improvements. 

In the ultrasonic wave signal recognition and classification, 
using the steepest descent algorithm of BP network can make 
weights and threshold vector to get a stable solution, but the 
learning process is slow convergence, network easily trapped 
in a local minimum. At the same time due to the BP network 
is sensitive to learning rate, simply increase the learning rate 
to accelerate the convergence, the algorithm may be unstable 
and oscillating. Therefore, to solve these problems is very 
important. Thus we adopt additional momentum to solve [8, 
9]. 

On the basis of the back-propagation, each weight change 
pluses a value proportional to the previous weight change 
value, and in accordance with back propagation method to 
generate a new weight value conversion. With additional 
momentum factor weights value adjustment formula is: 

( 1)
( ) ( 1) [ ( ) ( 1)]

ij

ij ij ij ij

w k
w k w k w k w kδ

+ =

+ ∆ + + − −
   (16) 

( 1)
( ) ( 1) [ ( ) ( 1)]δ

+ =

+ ∆ + + − −
j

j j j j

b k
b k b k b k b k

(17) 

Where δ is the momentum factor, generally take around 
0.95. 

V. LASERULTRASONICSURFACEWAVEDEFECTDETECTIONE
XPERIMENTCONTRASTANDTHEANALYSISOFTHERESULTS 

A. Laser Ultrasonic Surface Wave Flaw Detection 
Experiments Contrast 

We sample five kinds of defect signals, and get data of 
10,000*5. Then we extract feature with Mel Cepstral method. 
Each defect signal extract 24 features, sample length is 75, 
then the five kinds of defect signals turn into the sample 
characteristics 375 * 24.We randomly selected 300 samples 
as the training set of the network, each type of defect signals 
selected 15 samples for testing set, that the number of 
samples tested set was 75. The number of neurons in the input 
layer is 24, one hidden layer and the number of the hidden 
layer neurons is 9, number of neurons in the output layer is 5. 
After the network is fully trained using a test set for testing, 
BP network and improved BP network results in the Figure 6 
and Figure 7.  
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In the Figure 6, (a) represents BP network classification 
results of reflected wave, and the red ‘*’ is the predicted 
damage depth category, the blue ‘Ο ’ is the actual damage 
depth category; (b) represents error in classification of BP 
network; (c) represents the improved BP network 
classification results of reflected wave, and the red ‘*’ is the 
predicted damage depth category,the blue ‘Ο ’ is the actual 
damage depth category; (d) represents error in classification 
of the improved BP network. 

By the TABLE 1, we can see that for the reflected wave, 
the number of test set samples is 75, the correct identification 
of BP network number is 63, the correct identification rate is 
84%, while the correct identification of the improved BP 
neural network number is 72, right recognition rate is 
96%.Both methods recognition rate are in excess of 80%. 

In the Figure 7, (a) represents BP network classification 
results of transmitted wave, and the red ‘*’ is the predicted 
damage depth category, the blue ‘Ο ’ is the actual damage 
depth category; (b) represents error in classification of BP 
network; (c) represents the improved BP network 
classification results of transmitted wave, and the red ‘*’ is 
the predicted damage depth category, the blue ‘Ο ’ is the 
actual damage depth category; (d) represents error in 

classification of the improved BP network. 

 
(d) 

Fig. 6 Reflected wave experiment contrast. (a) BP network classification 
results of reflected wave. (b) Error of BP network classification. (c) The 
improved BP network classification results of reflected wave. (d) Error 

of the improved BP network classification. 
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TABLE 1: THE RESULT OF TWO KINDS OF NETWORKS 
TEST REFLECTED WAVE SIGNAL. 

Identificati
on method 

Number 
of training 
samples 

Test 
samples 

Identify 
the correct 

number 

The 
correct 

rate 
BP 

network 300 75 63 0.8400 

Improved 
BP network 300 75 72 0.9600 
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As can be seen from the TABLE 2, for the transmitted 
wave, the number of test set samples is 75, the correct 
identification of BP network number is 62, the correct 
identification rate is 82.67%, while the correct identification 
of the improved BP neural network number is 64, right 
recognition rate is 85.33%. The correct recognition rate of 
two networks for the transmission wave is lower than 
reflected waves, but the recognition rate of both over 80%. 

From the above two kinds of networks for reflected wave 
and transmission wave flaw detection experimental results, it 
can be seen that the two methods both can be effectively used 
for defect detection, and the improved BP network 
performance is better. 

 
 

 

B. Analysis of Experimental Results 
Now, in order to cancel the order of magnitude difference 

between the various dimensions of data, we convert sample 
data into [0,1] by the maximum and minimum normalization 
method, to avoid big network prediction errors caused by the 
magnitude of the difference between the input and output data. 
Maximum and minimum normalized form follows function: 

min

max min

n
n

x xx
x x

−
=

−
                            (18) 

Where minx represents the minimum value of the input data 

sequence, maxx is the maximum value of the sequence. 
According to the desired type of the signal identifies, we 
encode each category as the goal desired output vector, and 
the defect types code as shown in TABLE 3. 

After the network is fully trained, using the test set for 
testing, the test results are shown in TABLE 4. As can be seen, 
the actual output of the network is very consistent with the 
expected output, and the diagnostic accuracy is 100%. This 
proofs that the neural network model is reliable and can 
accurately defect types of ultrasonic signal for effective 
identification and classification. 

VI. CONCLUSION 

We extract the characteristic coefficients of ultrasonic 
reflected and transmitted wave signals with Mel Cepstral 
method, and successfully reduce the sample data dimension 
from 10,000*5 to 24*375. Training and identifying the data 
with neural network, our experiments show, BP and improved 
BP network can achieve effective detection of different types 
of defects. However, in general, the improved BP network is 
much more precise. 
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(d) 

Fig. 7 Transmitted wave experiment contrast. (a) BP network 
classification results of transmitted wave. (b) Error of BP network 

classification. (c) The improved BP network classification results of 
transmitted wave. (d) Error of the improved BP network classification 
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TABLE 2: THE RESULT OF TWO KINDS OF NETWORKS TEST 
TRANSMITTED WAVE SIGNAL. 

Identificatio
n method 

Number 
of training 
samples 

Test 
samples 

Identify 
the correct 

number 

The 
correct 

rate 
BP network 300 75 62 0.8267 
Improved 

BP network 300 75 64 0.8533 

 

TABLE 3: DEFECT CATEGORY CODE DESIGN. 

Parameters 
Fault type（width(mm)*depth(mm)） 

0.1*0.3 0.1*0.5 0.1*0.7 0.1*0.9 Non-destructive 

Defect code 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 
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TABLE 4: SAMPLE TEST RESULTS. 

Experiment 
Type Defect types Target Prediction 

Correct 
classify-c
ation rate 

BP 
Reflected 

wave 

0.1*0.3 1 0 0 0 0 0.9801  0.00500.0129   0.0020  4.141e-07 

100% 

0.1*0.5 0 1 0 0 0 0.01010.8871 0.0573 3.336e-04  0.0451 

0.1*0.7 0 0 1 0 0 0.1444 0.2436 0.4685 0.0014 0.1421 

0.1*0.9 0 0 0 1 0 0.0283 0.0318 0.0554 0.8603 0.0242 

Non-destructive 0 0 0 0 1 0.0931 0.0767 0.0082 0.0191 0.8029 

Improved 
BP Reflected 

wave 

0.1*0.3 1 0 0 0 0 0.8025 0.0131 0.0699 0.0728 0.0417 

100% 

0.1*0.5 0 1 0 0 0 0.2539 0.7109 0.0026 0.0269 0.0057 

0.1*0.7 0 0 1 0 0 0.0244 0.0401 0.8348 0.0881 0.0126 

0.1*0.9 0 0 0 1 0 0.0571 0.1036 0.0162 0.7494 0.0737 

Non-destructive 0 0 0 0 1 0.0115 0.1114 0.1263 0.0709 0.6799 

BP 
Transmitted 

wave 

0.1*0.3 1 0 0 0 0 0.9801 0.0050 0.0129 0.0020 4.141e-07 

100% 
0.1*0.5 0 1 0 0 0 0.0023 0.9915 0.0016 0.0015 0.0031 

0.1*0.7 0 0 1 0 0 0.0074 0.0121 0.8427 0.1379 2.941e-10 

0.1*0.9 0 0 0 1 0 5.999e-14 0.0002 3.406e-09 0.9885 0.0114 
Non- destructive 0 0 0 0 1 2.419e-08 0.0003 4.073e-12 0.0001 0.9995 

Improved BP 
Transmitted 

wave 

0.1*0.3 1 0 0 0 0 0.4033 0.0478 0.2090  0.0598  0.2801 

100% 

0.1*0.5 0 1 0 0 0 0.17340.4095 0.1947  0.1759  0.0465 

0.1*0.7 0 0 1 0 0 0.0263 0.1533 0.44290.12090.2566 

0.1*0.9 0 0 0 1 0 9.490e-04 0.0306  0.0961  0.5959 0.2764 

Non- destructive 0 0 0 0 1 0.1714  0.00476.074e-04 0.0974  0.8973 
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Abstract— During years proper memory utilization has been the 

differential factor for algorithms that try to solve complex problems 

in optimal time. Computational complexity is currently measured in 

time and space.  The way that algorithms are built can make a huge 

difference when obtaining desired solutions to problems.  Memory 

engineering based algorithms reveal themselves as essential when fast 

results are needed and offer unlimited options to improve whatever 

bioinspired algorithm that based its performance in terms of time and 

space. This work focuses on creating a mathematical generic strategy 

by building structures through the use of an isomorphism that 

optimize the memory utilization and the resolution time of 

bioinspired models when dealing with high computational problems. 

Therefore offers a great help when solving complex and known 

issues.   

 

Keywords— Bioinspired models, General Optimization  , 

Complex problems resolution  

 

I. INTRODUCTION 

This section presents a software technique for improve the 

functionality of a bioinspired system [1] [2] by optimizing the 

memory resources.  During years new algorithms are trying to 

get better performance [3][4] when solving complex problems 

such as the knapsack problem [5] or the travel salesman 

problem [6]. Some techniques try to establish general 

procedures for optimizing the performance in bioinspired 

systems such as the ones in [7] and [8].  Others techniques 

focus in the rules election phase that takes place in membrane 

models [9]. This work introduces and compares several 

auxiliary structures [10] and establishes a way to ensure the 

best possible performance of a given bio-inspired system.   

By using linear structures and allocating them in the physical 

memory, response timing gets reduced considerably. In 

scenarios where traditional algorithms do not obtain good 

performance, the technique explained in this paper guarantees 

an excellent performance.  

This paper is structured as follows: 

New Definitions for building the structures in memory [10].   

These are: 

• Concept of patterns:  

• Two sets of functions: The composition of the 

functions of each set relates application of evolution rules to 

set of patterns. 

 
 

• Creation of a main n-dimensional structure in RAM 

and a virtual auxiliary n-dimensional structure. That main 

structure is an application that establishes a link between the 

initial multisets, and the number of times that each evolution 

rule should be applied in order to obtain an extinguished 

multiset [9].   

Once the structures are created, they will be proven to be 

consistent.  

A Comparative study between the methods that optimize the 

memory resources. Advantages and disadvantages of using this 

technique will be explained. A proposal describing the best 

scenario to be implemented in will be provided too. The 

comparison shows that a memory strategy is essential 

regardless is virtual [11] [12] or physical [8][13].  

 

II. DEFINITIONS  

  

    

Patterns ( )ΝΡ⊆→⊗ AANN   
},|{],[ NjijkiNkji ∈≤≤∈=  

Set of patterns 

( )ΝΡ⊆S  is a Set of patterns  is defined as the 

set:  

[ ]{ }Ν∈≤≤Ν∈∃ jimjnimn ,,b,a,,b,a jiji  
Set of set of patterns  

{ }ninpatternsofsetaisSiSSS ii ≤Ν∈∃Ν∈= | .    

Observation  

Given a region R and alphabet of objects U, and R (U, T) set 

of evolution rules over U and targets in T re`presented as 

follows: 
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There is always a  set of set of patterns T)R(U,SS
 associated to it. 

This set of set of patterns contains all the possible extinguished 

multisets and it is obtained by expanding the formula included 

in the definition of extinguished multiset: 

Optimizing complex problems solving with a 

memory based isomorphism 
  

Alberto Arteta,  Juan Castellanos  and Luis Fernando Mingo 
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Linear Multisets isomorphism 1Φ  

Building 1Φ , as a part of the physical evolution rule 

isomorphism is created as a function which has an m-

dimensional set of natural numbers as input and an n-

dimensional set of natural numbers as output, where m is the 

number of evolution rules and n is the number of symbols 

included in a given multiset of objects. 

 

Definition: Linear Multisets function 1ϕ  

 Let U= },..1|{ niai = be a set of objects. Let T beset of 

targets. Let  naaa ..21=ω  be a multiset of objects and let ix  

be the multiplicity of ia . Let R (U, T) be a multiset of 

evolution rules with objects in U and targets in T. Let m be the 

number of evolution rules within R (U, T).   Let ik  be the 

number of times that the rule ),( TURri ∈  is applied. Then 1ϕ  

is defined as: 
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Once the function 1ϕ  is created, the isomorphism 1Φ   is 

defined as follows: 

Definition:  Linear Multisets isomorphism 1Φ  

Let 1ϕ   be the multiset linear function related to a given 

evolution rules set 
nn Ν→ΝΦ :1  
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 Definition  

Physical evolution rules linear Isomorphism is then defined as 

follows:  
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      Based on the previous definitions, the following one is established 

and created to take full advantage of the virtual memory.  

       Definition: Virtual linear Multisets function  
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Definition: Virtual linear Pattern function 
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Given a set of set of patterns as the input it returns a set of 

numbers
n

nxxxx Ν∈= ),..,,( 21 . The elements of this 

resulting set are all the combinations of all the possible  

n

n

j xxxx Ν∈= ),..,,( 21  where 

)()( jSPipatternx
j

i ∈∈  of a 

set of patterns contained in the matrix of set of patterns.Now it is 

possible to build the physical and virtual linear structures from the 

multisets isomorphism. 

 

III. ISOMORPHISM BASED STRUCTURES 

 
The structure is created as follows. 
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When L (i, j) already has a value, then, a random election must be 

done. This election can be either overwriting the old value with the 
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new one, or to leave the old value (No action).This linear structure 

has to comply with having all possible numbers, up to a 

combination of benchmarks, reasonably high. Each symbol 

},..1|{ niX i =   will have a benchmark. The combination 

of all the benchmarks will define the number of entries that the 

linear structure has. Each entry stores the values 

},..{ 1 mkk . These values indicate the number of times that 

an evolution rule should be applied to an initial multiset in order to 

obtain an extinguished multiset.   

The linear structure ΦL
 must guarantee that it contains all 

the entries corresponding to the combination number of all 

benchmarks associated to the symbols },..1|{ niX i = , i.e. 

it can not have non functioning entries. That could damage 

response timing and it would increase the computational 

complexity in terms of time. It's necessary to prove that this 

structure has not null values. 

 Let ΦL  be a linear structure built from the evolution rules 

isomorphism and a certain V multiset of objects and R (U, T) 

multiset of evolution rules.⇒  
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A resulting set of n-sums is obtained. Let iA
 be = {min 

ijA
 of 

the sums (i)} .Moreover, let 
)( ijAP

be the Matrix of set of 

patterns resulting from R (U, T). 

],0[][/, ),(),( iTURTUR AiSpatternsofsetSniNi =∃≤∈∀
. Proof is trivial 

Thus,
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.  

 

Observation: 

This proves that when following this method, any natural number 

from 

m

m Nkk ∈},..,{ 1  can be generated. Thus, the 

structure does not have null values from any entry. As the process 

is an isomorphism, any natural number between 0 and a given 

benchmark will be uniquely related to a combination of 
m

m Nkk ∈},..,{ 1  where m is the number of evolution 

rules included in R (U, T). Moreover the calculation of extinguished 

multisets will be immediate.  When 

m

m Nkk ∈},..,{ 1  are 

found, applying the evolution rule ir  a number of ik  times to 

the initial multiset, will   calculate them. 

Given V= { },..1|{ niX i = be a multiset of symbols and given R 

(U, T), a multiset of evolution rules. Given the set { Nki∈ the 

number of times that the evolution rule  ir  is applied over the 

initial multiset} the following evolution rules function is 

defined:

)(()( ),(21 ijTURvirtvirtvirt APΦΦ=Φ �
  

 

IV. ALGORITHM 

 
Following is the code that returns the multisets as outputs 

( )

),(),()5(
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),()3(

)2(
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YXLYXL

END

YXLoutput

BEGIN

TURtyMultipliciYX

virtΦΦ

Φ

←

←

 

The algorithm search in the physical structure the position(X, Y) 

which are the input values corresponding to the multiplicities of 

the initial multiset. When the value is returned, the algorithm 

finishes and a new value coming from the virtual structure 

overwrite the value stored in the position (X, Y), keeping the non 

deterministic nature of the system. 

 

V. CONCLUSIONS AND FURTHER WORK 
 

Although it is clear that proper memory utilization is a great help 

to speed up the information processing, it is still necessary to build 

the right structures to optimize the performance; and that is not 

always easy. This paper contributes with a general technique that 

consists of building an isomorphism based structure that improves 

the performance of   traditional algorithms when dealing with 

complex problems.  The isomorphism matches the initial data sets 

multiplicities with the number of times that each rule should be 

applied in order to obtain solutions in optimal time; In that way, 

this method clearly reduces the execution times of the algorithms 

when finding maximal or extinguished multi data sets.  

The nature of the isomorphism ensures that the main bioinspired 

system features are preserved and the overall system’s 

functionality is not modified, the only difference between the first 

model and the second one is the performance. Although  the idea of 

using memory resources to increase performance   when solving 

complex problems is not new,  defining the right structure based on 

isomorphism can offer a promising way to generalize  and to create 

a standard methods for optimizing the memory resources of  

traditional algorithms.  Improving the design and the 

implementation of new isomorphisms reveal themselves as keys 

factors in the strategy to deal with complex problems by utilizing 

memory engineering.  
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On the partition of vertex’s neighborhood in a graph

Hayat Issaadi, Hacene Ait Haddadene, and Safia Zenia∗†‡

Abstract

A (k, l) partition graph (also called (k, l) graph) G is a
partition of its vertices into k stable sets and l cliques.
A vertex v in a graph G is called a (k, l) split vertex
if its neighborhood in G admits a (k, l) partition. We
say that G is (k, l) split neighborhood graph (denoted
SN(k, l) graph) if every induced subgraph of G contains
a (k, l) split vertex. In this paper, we investigate perfect
and non perfect (k, l) split neighborhood graph for some
values of k and l.

(k, l) Split Neighborhood Graph, Recognizing al-
gorithm, Maximum clique, Perfect graph, Optimal
coloring.

1 Introduction

The problem of partitioning the vertex set of a graph
has been studied by many researchers [9] [13] [19]
, in particular when the vertex set is partitionned
into stable sets and cliques. A (k, l) partition graphs
were first studied by Brandstädt [7]. He reported that
this class generalizes bipartite and split graphs and
remarked that deciding whether a graph is a (k, l)
graph is NP-complete whenever k ≥ 3 or l ≥ 3. He
also showed that finding a (1, 2) or (2, 1) partition (
respectively (2, 2) partition ) in a graph can be per-
formed in O

(
n2m

)
(respectively O

(
n10m

)
) [6] [7]

[17]. Later other researchers gave a new algorithm

∗Hayat Issaadi, and Hacene Ait Haddadeneis with
USTHB-University, Mathematics Faculty, Operations Re-
search Departement, LaROMaD-Laboratory, BP 32 El-Alia,
Bab-Ezzouar 16111, Algiers, Algeria. e-mail: (issaadi-
hayat@yahoo.fr and aithaddadenehacene@yahoo.fr).
†Safia Zenia are with Ecole Nationale des Veterinaires,El

Harrach, Alger,Algerie. e-mail:(e-mail:safiazenia@yahoo.fr)
‡Manuscript received April 19, 2005; revised January 11,

2007.

to find a (2, 2) partition graph [13] [17] .Special fam-
ilies of (k, l) partition graphs include: (k, l) chordal
graphs [16], (k, l) cographs [12] , (k, l) perfect graphs
[13] and (k, l) P4-sparse graphs [8].
In this paper we studied SN (k, l) graph which is a
generalisation of (k, l) partition graph for some values
of k and l. This class also contains the class of split
neighborhood graph [3],[2] [21] and the quasi adjoint
graph [1].
The purpose of this paper is to propose polynomi-
als algorithms for the recognition problem and the
size of the maximum clique problem of SN (k, l) for
1 6 l, k 6 2 graphs. We also present a polynomial al-
gorithm for the optimal coloring of perfect SN (1, 2)
graphs. The latter algorithm is interresting because
it is a direct consequence of the validity of the SPGC.
Note that a strong perfect graph conjecture (SPGC)
due to Berge [5] �states a graph G is perfect (G per-
fect if the chromatic number is equal to maximum
clique size for every induced subgraph H of G) if and
only G is Berge graph ( G Berge graph if it is contains
neither odd hole, nor odd anti hole)�. This conjec-
ture is resolved by Chudnovsky and al [11][10], who
called it the strong perfect graph theorem (denoted
SPGT). However this proof does not provide any al-
gorithm for coloring perfect graphs.
On the other hand, the problem to determine an op-
timal coloring (ie the chromatic number) of a graph is
NP-complete in the general case but polynomial for
perfect graphs due to Grötschell and al who devel-
oped a polynomial algorithm to solve combinatorial
optimization problems the class of perfect graphs us-
ing an alternative of the ellipsoids method for the
resolution of linear programs. Their algorithms are
not practically efficient, undoubtedly because they do
not take the combinatorial structure of perfect graphs
into account [14] .Given a real situation may be mod-
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eled as a graph coloring problem of a particular class
of graph such as a class of perfect SN (1, 2) graphs
where we have a coloring algorithm this can be a very
interesting tool for solving such practical problems.

2 Preliminary and Background

All graphs considered here are finite, undirected with-
out loops or multiple edges. Let G = (V, E) be a
graph, |V | = n and |E| = m, V ′ ⊂ V is stable (de-
noted S) set iff for all u, v ∈ V ′ u is not adjacent to
v. V ′ ⊂ V is a clique(denoted K) iff for all u, v ∈ V ′,
u is adjacent to v. A k-coloring is a mapping C :
V → {1, 2, ..., k} such that C(u) 6= C(v) for every
edge uv. Note that each color class is a stable set ,
hence a k-coloring can be thought of as a partition of
the vertices of a graph into stable sets S1, ..., Sk. The
chromatic number χ(G) is the smallest k such that G
admits a k-coloring. ω(G) is the size of largest clique
in G. In a graph G = (V,E),a subgraph induced by
X ⊆ V is denoted G[X]. For v ∈ V , we denote by
NG(v) the neighborhood of a vertex v in a graph G
and by NG[v] = NG(v)∪{v}. In section 3 we will pro-
pose an algorithm which determines an ordering of
the vertices v1, ..., vn of G such that NG(vi) is a (k, l)
partition graph for 1 ≤ k, l ≤ 2 using Brandstädt’s
results [7]:

Theorem 1. It can be recognized in O(n2m) steps
whether a graph G is (2,1) partition graph.

Corollary 1. It can be recognized in O(n2m) steps
whether a graph G is (1,2) partition graph.

Theorem 2. It can be recognized in O(n10m) steps
whether a graph G is (2,2) partition graph.

In section 4 we shall show that largest clique
of a SN(k, 2) graph for 1 ≤ k ≤ 2 can be found
in polynomial time. As there is a combinatorial
polynomial algorithm for finding largest stable set
and a minimum clique cover of a bipartite graph,
Hoàng and Lê [17] used the following function
(noted: Find-Omega-Bip) to compute largest clique
of a (2, 2) partition graph (called also 2-split graphs)
see also [17].
Function Find-Omega-Bip(G)

Input: a graph G that is the complement of a
bipartite graph.
Output: a number Find-Omega-Bip(G) = ω(G).

It is clear that if G is a (1,2)graph, the step 3 in
the algorithm is not necessary.
In Section 5 we propose a method for coloring any
perfect SN(1, 2) graph G, using the following two
methods of coloring: The trichromatic exchange
method which was proposed by Ait Haddadene and
Maffray in [4]. Let v be a vertex of a graph G with
ω(G) ≥ 4 and assume G − v has been ω(G)-colored.
Suppose that the following property holds: there
exist a triple of distinct colors i, j, k ∈ {1, 2, ..., ω(G)}
such that G[Si

⋃
Sj
⋃
Sk
⋃
{v}] is a K4− free Berge

subgraph. We can apply Tucker’s algorithm [23] to
3-color the component of this subgraph containing v,
and get in this way an ω(G)-coloring of G in O(n3)
time. We say that v is a Tucker vertex if the pre-
vious property holds for every ω(G)-coloring of G−v.

Theorem 3. [23] There exists a polynomial algo-
rithm to color any K4-free graph in O(n3).

The second method was proposed by Hayward [15].
Two non adjacent vertices u and v in a graph G form
a 2-pair if every chordless path between them has
length two. For a given pair u, v in a graph G, we
denote by Guv the graph obtained by deleting u and
v and adding a new vertex uv adjacent to precisely
those vertices of G− u− v which were adjacent to at
least one of u or v in G. We say that Guv is obtained
by contracting on u, v. The importance of this con-
traction operation is that u, v is a 2-pair in G then
the chromatic number of G is equal to the chromatic
number of Guv , this fact yields a simple procedure
which given a k-coloring of Guv yields a k-coloring of
G. As we shall see, these procedures can be used to
develop fast algorithms for finding an optimal color-
ing [2][20][22].
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3 Recognizing SN (k, l)) graphs for
some values of k and l

Let G SN (k, l)) be a graph. We call an ordering a
SN (k, l) elimination ordering in G if we can order the
vertex set of G as follow: v1, v2, ..., vn , where N(vi)
is a (k, l) partition graph in the induced subgraph
Gi = G[vi, vi+1, ...vn].

Theorem 4. A graph G is a SN (k, l) graph if and
only if G admits a SN (k, l) elimination ordering of
its vertices.

Proof. If G is a SN (k, l) graph, then for each H ⊆ G
in particular, G has a vertex v1 whose neighbor-
hood can be partitioned into k cliques and l stable
sets. As a result, we can always find a vertex vi in
Gi = G[vi; vi+1; ...; vn] such that G[N(vi)] can be par-
titioned into k cliques and l stable sets. So, we can
find a SN (k, l) elimination ordering v1, v2, ..., vn of
the vertices of G. Let v1, v2, ..., vn be an elimination
ordering of G’s vertices and suppose that G is not a
SN (k, l). Let H ⊂ G, H is induced by the vertices
v1, v2, ..., v|V (H)| we can find a vertex vi among the
vertices v1, v2, ..., v|V (H)| such that G[N(vi)] can be
partitioned into k cliques and l stable sets in G. As
a result, N(vi) can be partitioned into k cliques and
l stable sets in H because H ⊂ G: This implies that
G is a SN (k, l) graph which is a contradiction.

Algorithm 3.1

• Input: G = (V, E) a graph, |V (G)| = n,
|E(G)| = m.

• Output:

– G is not SN (1, 2) (respectively SN (2, 1))
graph.

– SN (1, 2) (respectively SN (2, 1))is split
vertex elimination numbering v1, v2, ..., vn
.

Begin G1 := G;
For i := 1 for n Do

• Find a vertex vi of Gi such as G[N(vi)] is a (1, 2)
or (2, 1) (respectively (2, 2) partition graph;

• If vi does not exist G is neither SN (1, 2)
or SN (2, 1) graph (respectively (2, 2) ; if not
Gi+1 := Gi − vi ;

End
We can determine this SN (1, 2) elimination ordering
in polynomial time. Effectively, find a vertex vi of
Gi such as G[NGi

(vi)] is a (1, 2) (respectively (2, 1))
partition, this is done in O(n2m) by Brandsätdt’s
algorithm. So the determination of SN (1, 2) (re-
spectively SN (2, 1)) elimination ordering can be per-
formed in O(n3m) and the recognition of SN(2, 2)
graphs will be of complexity O(n11m).

4 Maximum clique of SN (k, l) graphs
for some values of k and l

Using Algorithm 1 [17](section 2), we shall show
that largest clique of SN (1, 2) graph (respectively
SN (2, 2)) can be found in O(n4.5) (respectively in
O(n4.5m)). Let v1, v2, ..., vn a SN (k, l) elimina-
tion ordering. To compute the size of the maxi-
mum clique of G denoted by ω(G), we can used:
ω(G) = Max {ω(G[N [vi]]), ω(G− vi)}.
Algorithm 4.1

• Input: G = (V, E) is a graph with SN (1, 2)
elimination ordering v1, v2, ..., vn and a partition
of NG(vi) K1,K2, S where Ki’s are cliques and
S stable set .

• Result: Find ω(G)

Begin G1 = G

1. for i = 1, ..., n do
Find T = Omega−Bip(K1

⋃
K2

⋃
{vi})

2. For each vertex s ∈ S Do
k = ω(K1

⋃
K2

⋃
{vi}

⋂
N(s))

If k + 1 > T Then T = k + 1
Else return (1)

3. Find ω(G) = Max {ω(G[N [vi]]), ω(G− vi)}
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End
Algorithm 4.2

• Input: G = (V, E)is a graph with SN (2, 2)
elimination ordering v1, v2, ..., vn and a partition
of NG(vi) K1,K2, S1, S2 where Ki’s are cliques
and Si’s are stable sets .

• Result: Find ω(G)

Begin G1 = G

1. For i = 1, ..., n Do
Find T = Omega−Bip(K1

⋃
K2

⋃
{vi})

2. For each vertex s ∈ S Do
k = ω(K1

⋃
K2

⋃
{vi}

⋂
N(s))

If k + 1 > T Then T = k + 1

3. ElseFor each edge ab with s1, s2 ∈ S1 ∪ S2, Do
k := Find-Omega-Bip (N(s1) ∩N(s2) ∩ ({vi} ∪
K1 ∪K2));
If k + 2 > max Then T := k + 2, return (1)

4) Find ω(G) = Max {ω (G [N [vi]]) , ω (G− vi)}
End
The largest clique in SN (1, 2) or in SN (2, 2) graphs
can be found in polynomial time because the value
of ω(K1

⋃
K2

⋃
{vi}) can be calculated efficiently in

O(n2.5) time using the algorithm of Hopcroft and
Karp (1973) [18] since this operation is equivalent
to determining a maximum stable set in the comple-
ment graph of K1

⋃
K2

⋃
{vi} which is a bipartite

graph. Then for each s ∈ S; there is at most n; (re-
spectively s1, s2 ∈ S1 ∪ S2; there is at most m ) find
largest clique in K1

⋃
K2

⋃
{vi}

⋂
N(s) (respectively

N(s1)∩N(s2)∩ ({vi} ∪K1 ∪K2). As the number of
the vertices of G is n then the overall complexity of
the algorithm 4.1 is O(n4.5) and of algorithm 4.2 is
O(n4.5m).

5 Optimal coloring of perfect SN (1, 2)
graph

Let G be a SN (1, 2), v a (1, 2) split vertex then ∀H ⊆
G, NH(v) is induced by a stable set S and two cliques

K1 and K2. We denote K1

⋃
K2 = A. Note that

Either ω(K1) = ω(K2) = ω(G) or ω(Ki) < ω(G)− 1
for i = 1, 2. Without lost of generality ω(K1) <
ω− 1 and ω(K2) = ω− 1. Our principal result is the
following:

Theorem 5. Let G=(V, E) be a perfect SN (1, 2)
graph and v a (1, 2) split vertex. Then from any
ω(G)-coloring of G-v one can obtain an ω(G)-
coloring of G in polynomial time.

For the proof of theorem 5.1, we will need a result
of Tucker [23] and proposition 5.2.

Proposition 1. Let G be a SN(k, 2) graphs (k ≥ 1)
without hole of length ≥ 5 and v a (k, 2) split vertex

1. ∀H ⊆ G there is always a 2-pair in {v}∪NH(v);
otherwise A is a clique and A∩NH(s) = ∅, ∀s ∈
S.

2. The contraction of all 2-pair in {v} ∪NH(v) in-
duces a SN(k, 2) graphs for k ≥ 1 .

Proof. Let G be a SN (k, 2) graphs, v a (k, 2) split
vertex and H a subgraph of G .

1. Let us suppose that there is not a 2-pair in
{v} ∪ NH(v) i.e. ∀(a, b) ∈ {v} ∪ NH(v), a is
connected to b by a chain P of length > 3 ;
P = {a, v1, ..., vk, b} for k > 2; but P ∪ {v}
is a hole of lenght > 5 ,contradiction. So if
∀(a, b) ∈ {v} ∪ NH(v) a is not connected to b

in NH(v) then A is a clique,
⋃k
i=1 Si is a stable

set and ∀s ∈
⋃k
i=1 Si, NNH(v)(s) ∩A = φ

2. Let (a, b) be a 2-pair in NH(v) the contracted
vertex denoted ab is adjacent to every neighbord
of a and b:
a) Either (a, b) ∈

⋃k
i=1 Si so the contraction

yields
⋃k
i=1 S

∗
i with size |

⋃k
i=1 Si| − 1 .

b)Or (a, b) are in the cliques K1,K2 so the
contraction yields cliques K∗1 ,K

∗
2 . If there exist

a clique which all vertices are contracted then
N∗H(v) will partition in (k, 1) .

c) Or (a, b) are in
⋃k
i=1 Si and in the clique

Kj , j = 1, 2 respectivly, so the contraction yields⋃k
i=1 S

∗
i with size |

⋃k
i=1 Si| − 1 .
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Method of coloring: Lets G=(V, E) be a perfect
SN (1, 2) graph, v a (1, 2) split vertex, {v1, v2, ..., vn}
a SN (k, l) elimination ordering of G and M its adja-
cency matrix. As G[N(v)] can be partitioned into two
cliques A and a stable set S, assume that |Kk| = ω−p
for p ≥ 1 for k = 1, 2. There are at least one
color which is misse in A. Let the coloring of A with
colors:1, 2, ..., ω − p, p ≥ 1 such as we will index the
vertices of Kk: v1, v2, ..., vω−p so that C(vi) = i for
i = 1, ..., ω−p, p ≥ 1. Let us denote by Si a stable of
color i, and let us index the vertex of the stable set S
by s1, s2, ...., s|S| so that any vertex of the stable set
is denoted sk for k = 1, ..., |S|.
∀i = 1, ..., n, we contract all 2-pair existing in
NGi

(vi). We will show (proof theorem 5.1) that the
contracted graph denoted G∗ can have an optimal
coloring in polynomial time. Then to relax the graph
G∗, it is sufficient to relax G∗i ,∀i = 1, ..n and give
the same color at the relaxed vertex. In an iterative
way we manage to have an optimal coloring of G with
ω(G)-colors. Let G be a graph such as ω(G) ≥ 5 (if
not G[v

⋃
NG(v)] is K4- free whose coloring is done

in polynomial time by the algorithm of Tucker [23]).

Proof. (Theorem 5.1)
Let G be a perfect SN (1, 2) graph and let v be
a (1,2) split vertex , there is a vertex vi ∈ A =
K1

⋃
K2, i = 1, 2(ω − p), sk ∈ S, k = 1, ..., |S|

such as the couple (sk, vi) form a 2- pair in NG(v)
(proposition 5.2). Let G∗ be the graph obtained
from G after a sequence of contraction of the exist-
ing 2- pairs in NG(v). Lets S2−pair = {sk ∈ S for

k = 1, ..., |S|/vi ∈ A(i = 1, 2(ω − p), p ≥ 1) the cou-
ple of vertices (sk, vi) form a 2-pair in NG(v)}, N∗(v)
the neighborhood of v in G∗. We will distinguish two
cases:

1. Either |S| = |S2−pair|. In this case after the
sequence of contraction, N∗(v) is a partition of
two cliques of size (ω − p), p ≥ 1. Therefore,
the coloring of N∗(v) G with ω(G)-colors is the
coloring of the clique K with at most ω−p colors
and the remaining color will be assigned to v.

2. Or ∃ at least a vertex s ∈ S/S2−pair (it is clear
that s is not adjacent to A in NG(v)). In this
case after the sequence of contraction, N∗(v) is
(1, 2) split vertex (proposition 5.2). Moreover s
is not adjacent to A in N∗(v), so let us show
that v is a Tucker’s vertex. Let us suppose
the opposite. Then for each triple of distinct
colors i, α, j ∈ 1, ..., ω − p p ≥ 1 the subgraph
G[Si

⋃
Sα
⋃
Sj
⋃
v] contains a K4. Obviously,

this implies that for each i, α, j ∈ 1, ..., ω − p,
p ≥ 1 there is a triangle whose vertices are col-
ored i,α, j but the stable set S is not adjacent
to A then we can use ω − p, p ≥ 1 colors for the
coloring of A and the remaining color will to as-
sign to v, which is contradiction. Finally relaxed
the graph G by assigning the same color to the
relaxed vertices.

Let G be a perfect SN (1, 2) graph and v a (1, 2)
split vertex. For a given a SN (k, l) elimination order-
ing of G and each subgraph Gi induced by {vi, ..., vn}
(complexity O(n3m)) ; i ∈ {1, ..., n}; compute ω(Gi)
for i = 1, ..., n − 1, (complexity O(n4.5)). We deter-
mine all 2- pair in NGi+1

(vi+1) (complexity O(n2m)
[15]) then start from the trivial coloring of G∗n , and
iteratively find an optimal coloring of G∗i from an
optimal coloring of G∗i+1 using proof of theorem 5.1,
complexity at most O(n3). Finally we relax the graph
G∗i for i = 1..., , n and start from the trivial coloring
of Gn, and iteratively find an optimal coloring of Gi
from an optimal coloring of Gi+1 (complexity at most
O(n)). This yields an O(n5) algorithm for finding an
ω(G)-coloring of G.
Algorithm 5.1

• Input: A perfect SN (1, 2) graph G and its
adjacency matrix M.

• Result: Optimal coloring of G

1. Determine a SN (k, l) elimination ordering
v1, ..., vn;

2. For i decreasing from n-1 to 1 Do
Determine ω(G);
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3. Determine the adjacency matrix of G;

4. For i decreasing from n-1 to 1 Do
Determine all 2-pairs in NGi

(vi);

5. For i decreasing from n-1 to 1,Do
From an optimally coloring of G∗i+1,find an op-
timally coloring of G∗i by applying Theorem 5.1;

6. For i decreasing from n-1 to 1 Do
Relax the graph by giving the same color at the
vertices relaxed.

Conclusion: In this paper, we focus in a gener-
alization of (k, l) partition graph , where we pro-
posed polynomial algorithms for recognition, maxi-
mum clique of this generalization and optimal color-
ing for any perfect graphs of this class for some val-
ues of k and l.This work can lead to other interesting
views of research.
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Abstract 

Due to the centrifugal force, pressure distribution is non-hydrostatic in flip bucket 
spillways,. In this work, two dimensional modeling of supercritical flow parameters 
which is computed by NASIRsoftware and local curvature are used forpost-processing 
and calculation of dynamic pressure on every grid points of the bucket bed. The module 
of the utilized software solves Shallow Water Flow-solver adopted for steep slopes on the 
unstructured triangular meshes using finite volume method and computes flow depth and 
depth average velocities. The curvature is modeled using geometrical features of the 
unstructured triangular mesh which is utilized for modeling the three-dimensional bed 
surface. The geometrical modeling of the bed surface curvatures is utilized for estimating 
the vertical curvatures on the nodal points of the computational mesh. An analytical 
relation which utilizes bed curvature value is applied for calculating the vertical 
distribution of local dynamic pressure at the mesh nodes. This simulation strategy is 
verified by evaluating non-hydrostatic pressure for ending curves of the spillway buckets 
at the end of supercritical flow water were modeled. The non-hydrostatic pressure results 
of present modeling strategy are compared with the reported experimental measurements.  

Keywords:Flip Bucket, Non-Hydrostatic Pressure, NASIR Solver, Shallow Water 
Equations 
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1. Introduction 
For design of the flip bucket spillways, pressure 
distributions at bucket bed as one of the 
vulnerable parts of a spillway have to be 
evaluated. The bucket of the spillways is one of 
the points that sever pressure changes may 
accrue due to the vertical curvature of the super 
critical flow bed and the presence of high 
velocity flow in the locations with a vertical 
curve. This condition cause significant 
centrifugal forces, and consequently, excess 
positive or negative non-hydrostatic pressure 
would be developed in these places.  

Developments in powerful computer hard-wares 
and capable software’s have made the numerical 
simulation as a suitable means for modeling the 
real world engineering cases. For the flow 
problems in which variation parameters in 
current depth is negligible, the horizontal two-
dimensional (depth averaged) numerical flow 
solvers are attractive alternatives [1]. Such a 
model is practically applicable for supercritical 
flow in which the depth average value covers 
most of the profile normal to the bed surface [2].  

However, the shallow water equations which are 
commonly used as the most appropriate 
mathematical model for horizontal two-
dimensional simulation, suffers from two major 
restriction due to considering mild slope and 
hydrostatic assumptions.   

The mild slope application restriction of 
horizontal two-dimensional flow solvers is 
recently relaxed by modification of the shallow 
water equations for steep slope (in the main flow 
direction) [3].  Such a model is successfully 
applied for modeling supercritical flow on some 
types of chute spillways with variable slope [4]. 
This modeling strategy, paved the way for post-
processing of the air concentrations (entered 
from the free surface and bottom aerators) [5]. 

In present work, a post-processing on computed 
depth averaged flow parameter are proposed for 
treatment of the non-hydrostatic values of the 
pressure field in the vicinity of the vertically 
curved supercritical flow bed. This treatment is 
performed by utilizing the analytical relations [6] 
which calculates local centrifugal pressure using 
the computed depth averaged flow parameters 
(by a version of NASIR1 software which solves 
modified Shallow Water Equations for variable 
steep slope surface [4]) and nodal values of the 
curvature (on the mesh of the three-dimensional 
bed surface).  

2. Depth Average Mathematical Model 
for Varying Steep Slopes 
Mathematical model used in the depth averaged 
flow solver module of NASIR software includes 
shallow water equations corrected for varying 
steep slope as [4]: 
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coordinates. u′ and v  are velocity components in 

                                                           
1Numerical Analyzer for Scientific and Industrial 
Requirements (NASIR) 
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direction of x′ and y , h′  is flow depth, and g  
is acceleration due to gravity. α is bed slope 
angle fallowing x′ , and xfS ′ and fyS  are friction 

slopes in direction of x′ and y . n is Manning 

roughness coefficient. mρ is water and air mixed 

density, wρ  is the pure water density, and meanC  
is air averaged density. For the cases that water 
and air mixed density is not considered, term 

x
hg m

w ∂
∂′ ρ

αρ cos2

2

 and 
y

hg m

w ∂
∂′ ρ

αρ cos2

2

 will be 

omitted from the above equations. 

3. Finite Volume Formulation of the 
Depth Average Flow Equations 
Unstructured triangular grid and finite volume 
numerical solution method have been used in 
this modeling.In order to do this flow equations 
given in previous part could be written in 
fallowing vector form: 
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If the above set of the equations be placed in 
general integrated over the control volume area 
Ω , it can be written as: 

∫ ∫Ω Ω
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The discrete finite volume formulation form of 
the above equation is written as: 

( ) tSyFxEtQQ
N

k
k

nn ∆+∆−∆
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−= ∑
=

+

1

1 . 

In which, E  and F are average flux 
components at the boundary edge of k of the 
control volume with x∆  and y∆ Cartesian 
coordinate components, and N is up to the 
method of solution (cell vertices, cell center and 
Galerkin methods). It has to be mentioned that 

nQ and 1+nQ refered to the vectors of the 
unknown variables at the centre of the control 
volume in two sequential iterations or time steps 
of explicit solution procedure. 

The above mentioned finite volume formulation 
can be used for numerical computation of depth-
averaged parameter (ieu’, v and h) at every nodal 
point of the utilized mesh. Therefore, the 
hydrostatic pressure can be calculated at any 
position of the flow depth of each nodal point.  

Considering that the pressure has two 
components of hydrostatic and non-hydrostatic 
components, the non-hydrostatic component of 
the pressure should be calculated using 
computed local velocity at the mesh nodes with 
curvature in vertical plane. 

4. Dynamic Pressure on Curved Beds 
Over the flip bucket spillways, hydrostatic 
pressure assumption is not valid. In such parts, 
non-hydrostatic pressure (less or more than 
hydrostatic pressure) may form due to the 
curvatures in the flow bed. Hence, considering 
flow’s curvature affect corrections have to be 
imposed on the hydrostatic pressure. In order to 
do that in the present research, analytic and 
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experimental formulas have been used for 
calculation of local non-hydrostatic pressure. 

An analytical relation which is suitable for 
evaluating the pressure distribution in flows over 
beds with vertical curves was derived by Chow, 
as [6]: 

gR
hV

hh s
st

2

+= , 

Where, th  is total local pressure head, sh  is 

local hydrostatic pressure head, V  is local 
velocity (in mail flow direction), R  is bed 
curvature in vertical plane and g  is the gravity 
acceleration. The above analytical relation is 
derived considering basic assumption of uniform 
distribution of velocity and constant curve radii 
R  along the segment associated with the 
location [6]. 

5. Curvature at nodal points of mesh 
The relation reviewed in the former section 
calculates local non-hydrostatic pressure over 
the vertically carved beds using flow parameters 
and the bed curvature value. 

Local velocity and hydrostatic pressure head 
which are required in this analytical relation can 
be obtained from the numerically computed 
results of depth-averaged flow equations, While 
bed curvature as a key parameter must be known 
by a reliable method. 

Therefore, the total pressure including 
hydrostatic pressure and non-hydrostatic 
pressure head components, can be calculated by 
post-processing on the computed flow 
parameters and the curvature on the nodal points 
of the 3D surface mesh (representing the 
channel’s bed geometric characteristics). 

Local curvature in vertical plane ( R1=κ ) at 
every point has to be specified prior to the start 
of the computations. In order to calculate 

curvature should be computed at all points of a 
triangular unstructured mesh (which is converted 
as a 3D surface by assigning the z coordinate for 
every nodal point to model flow bed geometry). 

Although in spillway design, there are common 
mathematical functions such as specific 
polynomials or conic curves which are used to 
define spillway bed geometry at every part, a 
general geometry modeling of nodal points with 
arbitrary generation, will be more 
comprehensive. 

In order to consider the local curvature, the 3D 
surface mesh which is used to solve the depth-
average flow equations can be utilized. The grid 
points of the mesh provide required geometric 
data in terms of Cartesian coordinate

nkzyxX kkkk ,.....,3,2,1 , ),,( = . The curvature 
value at any nodal point of the mesh can be 
estimated by evaluating curvature of the curve 
fitted through the points.  

Since the acceleration component normal to the 
direction of curvilinear flow is the major cause 
of non-hydrostatic pressure [6], that is to be 
calculated is the curvature values of the fitted 
curve along the main flow direction. 

Therefore, application of an appropriate curve 
fitting method [7] in geometric modeling, to 
model the longitudinal profiles of the bed 
surface would be an admissible solution. The 
curvature obtained by curve fitting on the 
boundaries of the spillway parallel to the stream 
can be used for finding the curvature values at 
the grid points between two boundary lines by 
interpolation.  

It should be noted that, in order to accurate 
geometry modeling (curve fitting) of the cases 
with multiple bed slopes and complex geometric 
features, there may require considering several 
independent segments. However, the mesh 
partition facilities of the flow solver for dividing 

Recent Advances on Applied Mathematics and Computational Methods in Engineering

ISBN: 978-1-61804-292-7 124



the mesh zones according to various flow 
regimes can help resolving this requirement.   

6. Evaluation of Modeling Results 
In this study, hydro-static pressure at the bucket 
are modified by developing a post processing for 
systematic calculations of non-hydrostatic 
pressure as and adding to the hydrostatic  
pressure obtained from the results of depth-
average flow solver. This post processing 
considers the supercritical flow parameters and 
vertical curvature of bed surface, and then, 
calculates consequent excessive non-hydrostatic 
pressure using analytical relations. Finally, the 
static pressure values resulted by flow solver are 
sum up algebraically, and the outcome would be 
total pressure. 

6.1  Flip bucket at the end of steep slope 
chute 

Inthis part, reported measurements of an 
experimental model whichwas introduced 
byAAKhan&PM.Steffler (1996)[8], are used for 
accuracy evaluation of the dynamic pressure 
computed by the present numerical simulation 
and post-processing.  

The model boundary conditions for these cases 
are specified upstream depth (h0) and vanishing 
derivatives of extra pressure and velocity 
variables. Flow conditions on inlet boundary 
have been entered within discharge per unit 
width. As downstream flow is supercritical, no 
conditions are applied at downstream end. 

1.1 Comparison of Modeling Results 
with Experimental Results 

The geometrical dimensions of the spillway are 
digitally modeled according to the laboratory 
model. The bottom surface of the spillway is 
modeled by an unstructured triangular mesh 
(Figure 1-a).  

The solve domain is divided to five sections in 
this case based on the flow regime type as well 
as the bed slope and curvature. In table (1) 
domain partitions for systematic calculations of 
pressure over flip bucket model are presented. 

In supercritical region without curvature the flow 
solver pressure results are acceptable as well as 
subcritical section. The section which has been 
chosen to distinguish the error is supercritical 
part that has curved bed. In figure 14 water 
surface profiles obtained from the flow solver 
has been compared with the experimental 
results. As it is noticeable, numerical results 
compared to the experimental data have a 
negligible error. 

It is evident that the effect of the bucket 
curvature on pressure is increasing as it is a 
concave curve. As can be seen from Figure (2) 
and Table (2) results obtained from post-
processing using experimental equations given 
by Heller et.al has much less error than using 
chow formula. As it is shown in Figure (3), 
using these experiential equations leads to 
achieve a smooth distribution for pressure.  

According to Table (2) Averaged relative error 
of bed pressure values obtained by the present 
modeling (relations of Heller et.al.) for 
discharges of smq /0187.0 2=  and 

smq /0292.0 2=  respectively have been 
decreased 50% and 58% comparing with the 
hydrostatic pressure values. 

7. Conclusion 
In this paper, the hydrostatic pressure computed 
from a depth average flow solver (which is 
adopted for steep slopes) is modified by 
applying an analytic relation for calculation of 
dynamic pressure at spillway buckets. The 
analytical relations for calculation of centrifugal 
pressure force at bucket bed uses local curvature 
of the flow bed and flow velocity magnitude. 
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Here, the required local curvature is calculated 
from the geometric features of the three 
dimensional unstructured triangular surface 
mesh which is used for numerical computation 
of depth averaged flow parameters (ie flow 
depth and depth averaged velocity components). 
The required local velocity magnitudes are 
calculated from the depth averaged velocity 

components.  Finally, the total pressure at every 
point is calculated by sum of hydrostatic and 
non-hydrostatic pressures at the nodal points of 
the computational mesh. The comparison of the 
computed results with the reported experimental 
measurements shows promising agreements. 

 

 

 

Table (1) - Domain partitions for systematic calculations of pressure over flip bucket 

Fitted 
curve curvature Flow 

Considerations 
End Coordinates 

(m) 
Start Coordinates 

(m) Se
ct

io
n 

N
o.

 

- No Curvature Subcritical 1.15 0.0 1 
Conic  Convex Curvature Supercritical 1.3 1.15 2 

- No Curvature Supercritical 3.00 1.3 3 
 Circle Concave Curvature Supercritical 3.25 3.00 4 

Figure 1 - Bucket profile at the end of slopping chute a) 3D view of unstructured triangular grid b) 3D view of flow 
depth map obtained from flow solver c) velocity vectors obtained from flow solver. 
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Table (2) – Comparison of relative error values between numerical models for the bucket at the end of slopping chute 

Averaged Relative Error for Pressure (%) 
Depth-averaged numerical model 

smq /0292.0 2=  smq /0187.0 2=  
78.21 64.08 Hydrostatic pressure 

80.11 69.35 Corrected hydrostatic pressure (Chow formula) 

20.25 14.27 Corrected hydrostatic pressure (Heller et al formula) 

 

 

Figure 3 - Comparison of pressure obtained from the numerical model with the experimental results for the flip 
bucket at the end of slopping chute a) smq /0187.0 2=  b) smq /0292.0 2=  

 

Figure 2-Comparisonofwater surfaceprofile obtained from the numerical model with the experimentalmeasurements for the 
flipbucketat the end ofaslopping chute a) smq /0187.0 2= b) smq /0292.0 2=  
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