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Abstract - The Motif Finding Problem MFP is a 

computationally intensive problem in the 

bioinformatics domain.  Solving such problems on 

heterogeneous clusters consisting of CPUs, CUDA 

GPUs, and Intel Many Core (MIC) architectures is 

considered a challenging problem.  This paper 

solves the MFP on a heterogeneous cluster using a 

scheduling strategy intended to schedule tasks on 

heterogeneous architectures based on their speed.  

The main idea is to solve the problem using suitable 

parallel computing paradigms such as MPI, 

OpenMP, and CUDA on individual architectures 

then to estimate the number of tasks that should be 

assigned to each one based on its speed in solving 

such tasks. We can find that the total execution time 

will be significantly improved when compared to 

pure CPU-based implementation.  Of course this 

significant improvement will be obvious when we 

have relatively compared numbers of nodes of 

different architectures.   The paper also shows that 

the speedup is inversely proportional to the 

increased number of CPUs since excessive number 

of CPUs can eliminate the effect of using faster 

architectures. However, using excessive number of 

CPUs in only one job to achieve considerable 

speedup factor has a great impact on the system 

utilization and consequently on the concurrent 

number of jobs that can be submitted to the system.  

The paper then shows how to modify the code to 

assign the tasks to the architectures. 

Keywords- Heterogeneous Architectures, Motif Finding 

Problem, Task Scheduling.  

I. Introduction 

   Modern high performance computing (HPC) clusters 

have traditional multicore microprocessors (CPUs), 

graphics processor units (GPUs), and Intel many 

integrated core (MIC) architectures.  This in turn leads 

to more heterogeneity among the computational 

resources within a single cluster.  Writing an efficient 

code that can optimally utilize these heterogeneous 

resources depends mainly on the capabilities of the 

developer and the parallel computing paradigm he uses.  

Moreover, the scheduling strategy dealing with such 

heterogeneity is considered one of the most important 

factors affecting the performance of the heterogeneous 

systems. 

   In this paper, we will solve one of the 

computationally intensive problems in the 

bioinformatics field.  The problem is called “Motif 

Finding Problem”.  We will use brute force algorithm to 

solve this problem three times.  The first will be on 

multicore CPUs, while the second will be on GPU, and 

the third will be on MIC.  Consequently, the actual run 

time for each will be calculated.  Eventually, we will 

use a specific scheduling strategy to assign proper 

workload to the architectures to achieve near optimal 

hardware resource utilization and more speedup.  We 

will also see how to modify the code to cope with the 

deployed scheduling strategy.   
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   The rest of this paper is organized as follows: section 

II describes the motif finding problem. Section III 

shows the implementation on different architectures. 

Section IV briefly explains the deployed scheduling 

strategy. Section V presents the changes to the parallel 

code to fulfill the scheduling strategy requirements.  

Section VI contains some concluding remarks and 

directions for future work. 

 

II. Motif Finding Problem 

   The Motif Finding Problem (MFP) can be simply 

considered as a string matching problem.  Solving the 

MFP to find a motif of length L with permitted 

mutation d can be implemented using a brute-force 

algorithm.  All the possible L-mers (4
L
) are compared 

with each possible motif of length L.  If we have a 

sequence of size N then we can have (N-L+1) motifs. 

Pevzner and Sze [1] presented the challenge problem 

(15, 4) where the first number is a specific length L and 

the second number a specific mutation d. In this paper, 

we present a problem in which the motif has a length 

L=15, allowed mutations d=4, and the number of 

sequences we are searching in is T=20 each of size 

N=600. Solving such computationally intensive 

problems can be implemented using a set of 

heterogeneous platforms [2, 3, 4, 5, 6, 7, 8, 9]. Possible 

characters to construct a DNA sequences is represented 

in the regular expression shown in (1).  Possible Lmers of 

length L is represented in the regular expression shown 

in (2). Set of sequences is represented in (3).  The 

function match is used to compare two motifs A and B 

each of size L is shown in (4) where Ai and Bi represent 

the i
th

 position into the A and B motifs.  The function 

score is responsible for counting the existence of a 

specific L-mer in all the T sequences as in (5). The 

motif of maximum occurrence is denoted as motif and 

is shown in (6).  

𝑉 → 𝐀|𝐂|𝐆|𝐓                                        (1) 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑚𝑒𝑟𝑠 → 𝑉𝑙
                     (2) 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑇 }                  (3) 

 

III. Implementing MFP on different Architectures 

   In this section we will show the results of 

implementing the MFP on different architectures.   All 

the experiments on the system have been implemented 

using Intel Compiler 2015 and Intel MPI V5. GPU 

experiments implemented using CUDA V6 and GCC 

compiler and OpenMPI.  MIC experiments are 

implemented using Intel Compiler 2015 and Intel MPI 

V5 using native mode for MIC.   Table 1, 2, and 3 show 

the typical architectures of regular CPU node, MIC 

(Xeon Phi) node, and NVIDIA GPGPU (CUDA) node 

respectively.  Infiniband network is used to connect 

different compute nodes. 

   Table 4 shows the scalability of the problem when 

using different number of CPU cores and MPI and 

OpenMP parallel computing paradigms.  We can see 

that as the number of cores increases the time needed to 

find a solution considerably decreases.   

 

 

𝑚𝑎𝑡𝑐ℎ(𝐴, 𝐵, 𝑙, 𝑑) =  {
1, 𝑙 − 𝑑 ≥ ∑ {

1, 𝐴𝑖 = 𝐵𝑖

0, 𝑒𝑙𝑠𝑒
𝑖

0, 𝑒𝑙𝑠𝑒

 

 

(4) 

 

𝑠𝑐𝑜𝑟𝑒(𝐿_𝑚𝑒𝑟, 𝑆, 𝑑) =  ∑ ∑ 𝑚𝑎𝑡𝑐ℎ(𝐿_𝑚𝑒𝑟, 𝑠𝑖[𝑘, … , 𝑘 + 𝑙], 𝑙, 𝑑)

𝑁−𝑙+1

𝑘=0

𝑇

𝑖=1

 

 

(5) 

 

𝑚𝑜𝑡𝑖𝑓 = {𝑚 | 𝑚 = 𝑀𝐴𝑋 (𝑠𝑐𝑜𝑟𝑒(𝐿_𝑚𝑒𝑟, 𝑆, 𝑚) ∀ 𝐿_𝑚𝑒𝑟 ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑚𝑒𝑟𝑠)} 

 

(6) 
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Table 1: Regular CPU-based Compute Node 

Attribute Value 

Architecture x86_64 

CPU op-mode(s) 32-bit, 64-bit 

Byte Order Little Endian 

CPU(s) 24 

On-line CPU(s) list 0-23 

Thread(s) per core 1 

Core(s) per socket 12 

Socket(s) 2 

NUMA node(s) 2 

CPU MHz 2399.852 

Memory 96 GB 

 

Table 2: Xeon Phi Compute Node 

Attribute Value 

Total No of Active Cores 60 

Voltage 897000 uV 

Frequency 1052631 kHz 

 

Table 3: NVIDIA CUDA Compute Node 

Attribute Value 

CUDA Driver Version / Runtime 
Version 

6.0 / 6.0 

CUDA Capability Major/Minor 

version number 

3.5 

Total amount of global memory 5120 MBytes 
(5368512512 bytes) 

(13) Multiprocessors, (192) 

CUDA Cores/MP 

2496 CUDA Cores 

GPU Clock rate 706 MHz (0.71 GHz) 

Memory Clock rate 2600 Mhz 

Memory Bus Width 320-bit 

L2 Cache Size 1310720 bytes 

Total amount of constant 

memory 

65536 bytes 

Total amount of shared memory 

per block 

49152 bytes 

Total number of registers 

available per block 

65536 

Warp size 32 

Maximum number of threads per 

multiprocessor 

2048 

Maximum number of threads per 
block 

1024 

Max dimension size of a thread 

block (x,y,z) 

(1024, 1024, 64) 

Max dimension size of a grid 
size    (x,y,z) 

(2147483647, 65535, 
65535) 

Maximum memory pitch 2147483647 bytes 

IV. Scheduling Strategy 

   In this section we will examine the impact of using 

scheduling strategy described in [10] on assigning tasks 

to different architectures.  Consequently, we will show 

how the code will be affected based on such scheduling 

strategy. The objective of this scheduling strategy is to 

minimize the time needed to solve the MFP. Since we 

have 4
15

 tasks, each task will compare one L-mer with 

all the possible windows extracted from all the given 

sequences, hence the total number of comparison 

operations in each task CMP is described in (7) while 

the total number of comparison operations for all tasks 

CMPt is shown in (8).  Table 5 shows the speed 

differences between architectures when running one 

task.  We simply run the task separately on the 

architecture and calculate the execution time. This in 

fact can give us a ratio on which we can decide how 

many tasks could be assigned to a specific architecture. 

Specific ratio of tasks that should be assigned to 

different architectures from a total number of (4
L 

tasks) 

is listed in table 6. Modified run times are also shown in 

this table. 

   Having a look to the results in tables 4 and 6 can give 

us an idea about the improvement in the total run time.  

For example; implementing the brute force algorithm 

using one regular node, one CUDA node, and one Xeon 

Phi node will reduce the run time from 13373 seconds 

on a single regular node to 2333 seconds with a 

speedup factor of 5.7 while using four regular nodes, 

one CUDA node, and one Xeon Phi node will reduce 

the run time from 3353 seconds on pure 4 regular nodes 

to 1533 seconds with a speedup factor of 2.18.  Since 

the number of CUDA nodes and Xeon Phi nodes are 

fixed in our cluster then we can find that as the number 

of regular nodes increases, the speedup factor 

decreases. 

 

𝐶𝑀𝑃 = (𝑁 − 𝐿 + 1) ∗ 𝑇 

 

 
(7) 

 

𝐶𝑀𝑃𝑇 = 4𝐿 ∗ 𝐶𝑀𝑃 

 

   
    (8) 
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Table 4: Implementation Results of solving MFP on CPUs, Xeon Phi,  

and NVIDIA CUDA 

Trial 
No. 

Platform Result 
(seconds) 

1 1 Regular Node (OpenMP) 13373 

2 1 Regular Node (MPI + OpenMP) 13263 

3 2 Regular Nodes (MPI + OpenMP) 6590 

4 4 Regular Nodes (MPI + OpenMP) 3353 

5 8 Regular Nodes (MPI + OpenMP) 1688 

6 16 Regular Nodes (MPI + OpenMP) 851 

7 32 Regular Nodes (MPI + OpenMP) 430 

8 64 Regular Nodes (MPI + OpenMP) 216 

9 128 Regular Nodes (MPI + OpenMP) 109 

10 256 Regular Nodes (MPI + OpenMP) 56 

11 1 XEON Phi Node (Native Mode + 
OpenMP) 

22446 

12 1 GPU Node (CUDA) 3234 
 

Table 5:  Speed differences of the architectures to complete one task 

Architecture CPU Node GPU Node XEON-Phi 
Node 

 
Task Execution 
Time (in Sec.) 
 

 
1.24E-05 

 
3.01E-06 

 
2.09E-05 

 

Table 6: Tasks assigned to architectures based on their speeds  

Platform 

CPU 

Ratio % 

CUDA 

Ratio % 

MIC 

Ratio % 

Result 

(seconds) 
1 Regular Node+ 

1 CUDA+1 MIC 17.44923 72.15477 10.39600 2333.49 
1  Regular Node+ 

1 CUDA+1 MIC 17.56852 72.05050 10.38097 2330.11 
2     Regular Nodes+ 

1 CUDA+1 MIC 30.01815 61.16871 8.81313 1978.20 
4     Regular Nodes+ 

1 CUDA + 1 MIC 45.74194 47.42509 6.83297 1533.72 
8     Regular Nodes + 

1 CUDA+1 MIC 62.61125 32.68021 4.70854 1056.87 
16   Regular Nodes+ 

1 CUDA+1 MIC 76.86071 20.22525 2.91404 654.08 
32   Regular Nodes+ 

1 CUDA+ 1 MIC 86.79656 11.54067 1.66277 373.23 
64   Regular Nodes+ 

1 CUDA+1 MIC 92.90111 6.20490 0.89400 200.66 
128 Regular Nodes+ 

1 CUDA+1 MIC 96.28712 3.24530 0.46758 104.95 
256 Regular Nodes+ 

1 CUDA+1 MIC 98.05740 1.69796 0.24464 54.91 

 

 

 

 

V. Modifications to the Code 

   The main program MotifTaskScheduler is 

responsible for dividing the problem space into smaller 

subspaces called chunks. Each chunk consists of a set 

of tasks.  The chunk will run on the corresponding 

architecture. If certain architecture cannot process a 

single task in a reasonable time which must be less than 

the time for the fastest architecture to process all the 

tasks; then this architecture must be ignored.   Fig.1 

shows the pseudo code used to schedule the MFP on the 

different architectures. The code is designed to get the 

available MFP implementations from the database. The 

code then checks if the required architecture(s) is online 

for each algorithm or not. The list of algorithms that 

can be implemented on the on-line architectures will 

have a pre-calculated ratio stored into the database.  

This ratio is generated by the scheduling strategy. 

These ratios should be normalized before dividing the 

chunks. This step is necessary in case one of the 

algorithms cannot run in the current state of the system 

due to unavailability of the required architecture. The 

code then determines the start and end indices for each 

architecture to process. Eventually, the workload is 

distributed among different architectures to process a 

specific range using a specific algorithm. 

   The pseudo code shown in Fig. 2 represents the 

OpenMP implementation for finding the motif on 

CPUs. Given the Start and End indices of the L-mers, 

the MFP_OMP subroutine compares each L-mer in the 

range with all the possible CMP windows (extracted 

from T sequences, each of N characters) of the same 

size L and then records the score of each L-mer. The 

motif of the highest score (𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥) will be registered.  

 

    The Pseudo code of MPI implementation for 

finding the motif is listed in Fig. 3. Similar to 

MFP_OMP subroutine the MFP_MPI subroutine 

divides the search space and each MPI rank uses the 

MFP_OMP routine to search its subspace. The root 

rank (rank 0) will collect and apply maximum 

reduction offered by MPI to find the global Motif.  

   The pseudo code shown in Fig. 4 is similar to that of 

OpenMP except the replacement of OpenMP directive 

with the Offload directive to run this block of code on 

the MIC co-processor.  
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1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝒐𝒕𝒊𝒇𝑻𝒂𝒔𝒌𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒓  

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, …, T] 

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝐿 

4. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑑 

5. 𝑩𝑬𝑮𝑰𝑵  

6. 𝑡[𝑡1, … , 𝑡𝑝] ← 𝑙𝑜𝑎𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟  𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠 

7. 𝑡𝑚𝑖𝑛 ← 𝑀𝐼𝑁𝑖=1
𝑝 (𝑡𝑖) ∗ 4𝐿 ; find the smallest run time 

8. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝 

9.  𝑰𝑭 ti ≤ 𝑡𝑚𝑖𝑛 𝑻𝑯𝑬𝑵 

10.  𝑅𝑖 ←  4𝐿/ 𝑡 𝑖    ; find the weight of each architecture    

11.  𝑬𝑳𝑺𝑬 

12.  
𝑅𝑖 ←  0 ; this architecture is very slow and will be 
ignored 

13.  𝑬𝑵𝑫 

14. 𝑬𝑵𝑫 

15. 𝑅𝑡𝑜𝑡𝑎𝑙  ← 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑝 ; sum the weights 

16. 
𝑅𝑢  ← 4𝐿 / 𝑅𝑡𝑜𝑡𝑎𝑙  ; find the tasks assigned to each weight 
unit 

 𝑜𝑓𝑓𝑠𝑒𝑡 =  0 

 𝑠𝑡𝑎𝑟𝑡𝑖 = 0  

17. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝 

18.  𝐶𝑖 =  𝑅𝑖 ∗ 𝑅𝑢 ;tasks assigned to architecture 

  
𝑠𝑡𝑎𝑟𝑡𝑖 =  𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡 ; determine the start index of 
tasks 

  
𝑒𝑛𝑑𝑖 =  𝑠𝑡𝑎𝑟𝑡𝑖 + 𝐶𝑖  – 1 ; determine the end index of 
tasks 

  𝑜𝑓𝑓𝑠𝑒𝑡 =  𝐶𝑖   

19.  
𝑆𝑐𝑜𝑟𝑒𝑖

← 𝑺𝑷𝑨𝑾𝑵 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖(𝑆, 𝐿, 𝑑, 𝐶𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖  ) 

20. 𝑬𝑵𝑫 

21. 
𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝐴𝑋𝑖=1

𝑝
(𝑆𝑐𝑜𝑟𝑒𝑖) ; find the motif of highest 

occurrence  

22. 𝑬𝑵𝑫 

Fig. 1: Scheduling routine pseudo code to assign workloads to 

architectures. 

   Fig. 5 shows the host side pseudo code for the 

CUDA implementation. This module calculates the 

number of CUDA Blocks and activates sufficient 

number of threads per block. Fig. 6 shows the actual 

kernel function that will perform the matching 

process.  The CUDA kernel is called 8 times as it 

takes very long time to process a single job which 

causes a timeout so we divided the search space into 

8 chunks of size (512*Blocks) which is a 2D job. The 

thread index is considered the Motif that must be 

matched against all the CMP windows. As we have 

multiple batches for the job, an offset is applied to the 

thread index to differentiate the chunks. The host side 

starts the CUDA jobs and collects the results in a 

global array. Finally the host finds the highest score 

in the global array. 

VI. Conclusion 

Solving computationally intensive problems on 

heterogeneous architectures can significantly improve 

and speedup the run time of the problem solution 

when proper scheduling strategy and suitable parallel 

computing paradigms are used.  Having equivalent or 

at least comparable number of different architectures 

can result in a tangible speedup.  Deploying more and 

more CPUs can bridge the gap of speed difference 

between architectures but will result in fewer number 

of concurrent jobs that can be allocated to the system. 

This is due to the increased percentage of utilized 

resources.   Future work may include the use of 

different scheduling strategies and intelligent 

selection criteria to choose the best scheduling 

strategy to solve a given computationally intensive 

problem.  We also may investigate the power 

consumption since we believe that deploying an 

excessive number of CPU-based nodes can result in 

excessive power consumption.  We believe that this 

paper is a step towards a complete system to solve 

computationally intensive problems on heterogeneous 

architectures. 

 

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑶𝑴𝑷  

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑) 

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇] 

4. 𝑩𝑬𝑮𝑰𝑵  

5. 𝑚𝑜𝑡𝑖𝑓 ←  0 

6. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  ←  0 

7. $𝑶𝒑𝒆𝒏𝑴𝑷 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒗𝒆 

8. 𝑭𝑶𝑹 𝑨𝑳𝑳 𝑚𝑜𝑡𝑖𝑓 𝑥 𝑖𝑛 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑] 

9.  𝑩𝑬𝑮𝑰𝑵 

10.  𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑆) 

11.  𝑰𝑭 𝑠𝑐𝑜𝑟𝑒 >  score𝑚𝑎𝑥 𝐓𝐇𝐄𝐍  

12.  𝑚𝑜𝑡𝑖𝑓 ←  𝑥 

13.  𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  ←  𝑠𝑐𝑜𝑟𝑒 

14.  𝑬𝑵𝑫𝑰𝑭 

15.  𝑬𝑵𝑫 

16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  

17. 𝑬𝑵𝑫 

Fig. 2 Pseudo code for OpenMP implementation for MFP  
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1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑴𝑷𝑰 

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑) 

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇] 

4. 𝑩𝑬𝑮𝑰𝑵  

5. 𝑚𝑜𝑡𝑖𝑓 ←  0 
6. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  ←  0 

7. 𝑟𝑎𝑛𝑘 ←  𝑀𝑃𝐼 𝑅𝑎𝑛𝑘 

8. 𝑚𝑝𝑖𝑠𝑡𝑎𝑟𝑡  ← 𝑟𝑎𝑛𝑘 ∗ ((𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡)/ 𝑀𝑃𝐼_𝑆𝑖𝑧𝑒) 

9. 𝑚𝑝𝑖𝑒𝑛𝑑 ← (𝑟𝑎𝑛𝑘 + 1) ∗ ((𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡)/ 𝑀𝑃𝐼_𝑆𝑖𝑧𝑒) 

10. 𝑪𝒂𝒍𝒍 𝑴𝑭𝑷_𝑶𝑴𝑷(𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒[𝑚𝑝𝑖𝑠𝑡𝑎𝑟𝑡, … , 𝑚𝑝𝑖𝑒𝑛𝑑], S) 

16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝑃𝐼_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑀𝐴𝑋, 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥)  

17. 𝑬𝑵𝑫 

Fig. 3 Pseudo code MPI implementation for MFP 
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1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑴𝑰𝑪 

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑) 

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇] 

4. 𝑩𝑬𝑮𝑰𝑵  

5. 𝑚𝑜𝑡𝑖𝑓 ←  0 

6. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  ←  0 

7. $𝑶𝑭𝑭𝑳𝑶𝑨𝑫 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒗𝒆 

8. 𝑭𝑶𝑹 𝑨𝑳𝑳 𝑚𝑜𝑡𝑖𝑓 𝑥 𝑖𝑛 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑] 

9.  𝑩𝑬𝑮𝑰𝑵 

10.  𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑆) 

11.  𝑰𝑭 𝑠𝑐𝑜𝑟𝑒 >  score𝑚𝑎𝑥 𝐓𝐇𝐄𝐍  

12.  𝑚𝑜𝑡𝑖𝑓 ←  𝑥 

13.  𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  ←  𝑠𝑐𝑜𝑟𝑒 

14.  𝑬𝑵𝑫𝑰𝑭 

15.  𝑬𝑵𝑫 

16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥  

17. 𝑬𝑵𝑫 

Fig. 4: Pseudo code for MIC implementation for MFP 

 

 

 

 

 

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑮𝑷𝑼 

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑) 

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇] 

4. 𝑩𝑬𝑮𝑰𝑵  

5. 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← 512 

6. 𝑏𝑙𝑜𝑐𝑘𝑠 ← 𝒄𝒆𝒊𝒍𝒊𝒏𝒈( (𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡) / 8  / 𝑡ℎ𝑟𝑒𝑎𝑑𝑠) 

7. 𝑠𝑐𝑜𝑟𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑]  ←  0 

8. 𝑭𝑶𝑹 𝒏 𝟎 𝒕𝒐 𝟕 

9.  𝑩𝑬𝑮𝑰𝑵 

10.  
Call MotifKernel<blocks, threads>(S, n * 

(end-start)/8 , score) 

11.  𝑬𝑵𝑫 

13. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝐴𝑋𝑖=𝑠𝑡𝑎𝑟𝑡
𝑒𝑛𝑑 (𝑠𝑐𝑜𝑟𝑒𝑖) 

14. 𝑬𝑵𝑫 

Fig. 5: Pseudo code for CUDA implementation for MFP 

1 𝑴𝒐𝒅𝒖𝒍𝒆 𝑴𝒐𝒕𝒊𝒇𝑲𝒆𝒓𝒏𝒆𝒍  

2 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇] 

3 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑜𝑓𝑓𝑠𝑒𝑡 

4. 𝑂𝑢𝑡𝑝𝑢𝑡 ∶  𝑠𝑐𝑜𝑟𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑] 

5. 𝑩𝑬𝑮𝑰𝑵  

6. 𝑡ℎ𝑟𝑒𝑎𝑑 ← (𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 ∗ 256 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥) + 𝑜𝑓𝑓𝑠𝑒𝑡 

7. 𝑠𝑐𝑜𝑟𝑒[𝑡ℎ𝑟𝑒𝑎𝑑]  ← 𝑠𝑐𝑜𝑟𝑒 (𝑡ℎ𝑟𝑒𝑎𝑑, 𝑆) 

8. 𝑬𝑵𝑫 

Fig. 6 Pseudo code for CUDA kernel function that runs on the 

GPU 
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