

Solving the Motif Finding Problem on a

Heterogeneous Cluster using CPUs, GPUs, and

MIC Architectures

H. M. Faheem
ǂ*ψ

, B. Koenig-Riez
*
, Mahmoud Fayez

ǂ ψ
, Iyad Katib

¥
, and N. Al-Johani

¥

ǂ Ain Shams University, * Jena University, ψ Fujitsu, ¥ King Abdul Aziz University

Abstract - The Motif Finding Problem MFP is a

computationally intensive problem in the

bioinformatics domain. Solving such problems on

heterogeneous clusters consisting of CPUs, CUDA

GPUs, and Intel Many Core (MIC) architectures is

considered a challenging problem. This paper

solves the MFP on a heterogeneous cluster using a

scheduling strategy intended to schedule tasks on

heterogeneous architectures based on their speed.

The main idea is to solve the problem using suitable

parallel computing paradigms such as MPI,

OpenMP, and CUDA on individual architectures

then to estimate the number of tasks that should be

assigned to each one based on its speed in solving

such tasks. We can find that the total execution time

will be significantly improved when compared to

pure CPU-based implementation. Of course this

significant improvement will be obvious when we

have relatively compared numbers of nodes of

different architectures. The paper also shows that

the speedup is inversely proportional to the

increased number of CPUs since excessive number

of CPUs can eliminate the effect of using faster

architectures. However, using excessive number of

CPUs in only one job to achieve considerable

speedup factor has a great impact on the system

utilization and consequently on the concurrent

number of jobs that can be submitted to the system.

The paper then shows how to modify the code to

assign the tasks to the architectures.

Keywords- Heterogeneous Architectures, Motif Finding

Problem, Task Scheduling.

I. Introduction

 Modern high performance computing (HPC) clusters

have traditional multicore microprocessors (CPUs),

graphics processor units (GPUs), and Intel many

integrated core (MIC) architectures. This in turn leads

to more heterogeneity among the computational

resources within a single cluster. Writing an efficient

code that can optimally utilize these heterogeneous

resources depends mainly on the capabilities of the

developer and the parallel computing paradigm he uses.

Moreover, the scheduling strategy dealing with such

heterogeneity is considered one of the most important

factors affecting the performance of the heterogeneous

systems.

 In this paper, we will solve one of the

computationally intensive problems in the

bioinformatics field. The problem is called “Motif

Finding Problem”. We will use brute force algorithm to

solve this problem three times. The first will be on

multicore CPUs, while the second will be on GPU, and

the third will be on MIC. Consequently, the actual run

time for each will be calculated. Eventually, we will

use a specific scheduling strategy to assign proper

workload to the architectures to achieve near optimal

hardware resource utilization and more speedup. We

will also see how to modify the code to cope with the

deployed scheduling strategy.

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 226

 The rest of this paper is organized as follows: section

II describes the motif finding problem. Section III

shows the implementation on different architectures.

Section IV briefly explains the deployed scheduling

strategy. Section V presents the changes to the parallel

code to fulfill the scheduling strategy requirements.

Section VI contains some concluding remarks and

directions for future work.

II. Motif Finding Problem

 The Motif Finding Problem (MFP) can be simply

considered as a string matching problem. Solving the

MFP to find a motif of length L with permitted

mutation d can be implemented using a brute-force

algorithm. All the possible L-mers (4
L
) are compared

with each possible motif of length L. If we have a

sequence of size N then we can have (N-L+1) motifs.

Pevzner and Sze [1] presented the challenge problem

(15, 4) where the first number is a specific length L and

the second number a specific mutation d. In this paper,

we present a problem in which the motif has a length

L=15, allowed mutations d=4, and the number of

sequences we are searching in is T=20 each of size

N=600. Solving such computationally intensive

problems can be implemented using a set of

heterogeneous platforms [2, 3, 4, 5, 6, 7, 8, 9]. Possible

characters to construct a DNA sequences is represented

in the regular expression shown in (1). Possible Lmers of

length L is represented in the regular expression shown

in (2). Set of sequences is represented in (3). The

function match is used to compare two motifs A and B

each of size L is shown in (4) where Ai and Bi represent

the i
th

 position into the A and B motifs. The function

score is responsible for counting the existence of a

specific L-mer in all the T sequences as in (5). The

motif of maximum occurrence is denoted as motif and

is shown in (6).

𝑉 → 𝐀|𝐂|𝐆|𝐓 (1)

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑚𝑒𝑟𝑠 → 𝑉𝑙
 (2)

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑇 } (3)

III. Implementing MFP on different Architectures

 In this section we will show the results of

implementing the MFP on different architectures. All

the experiments on the system have been implemented

using Intel Compiler 2015 and Intel MPI V5. GPU

experiments implemented using CUDA V6 and GCC

compiler and OpenMPI. MIC experiments are

implemented using Intel Compiler 2015 and Intel MPI

V5 using native mode for MIC. Table 1, 2, and 3 show

the typical architectures of regular CPU node, MIC

(Xeon Phi) node, and NVIDIA GPGPU (CUDA) node

respectively. Infiniband network is used to connect

different compute nodes.

 Table 4 shows the scalability of the problem when

using different number of CPU cores and MPI and

OpenMP parallel computing paradigms. We can see

that as the number of cores increases the time needed to

find a solution considerably decreases.

𝑚𝑎𝑡𝑐ℎ(𝐴, 𝐵, 𝑙, 𝑑) = {
1, 𝑙 − 𝑑 ≥ ∑ {

1, 𝐴𝑖 = 𝐵𝑖

0, 𝑒𝑙𝑠𝑒
𝑖

0, 𝑒𝑙𝑠𝑒

(4)

𝑠𝑐𝑜𝑟𝑒(𝐿_𝑚𝑒𝑟, 𝑆, 𝑑) = ∑ ∑ 𝑚𝑎𝑡𝑐ℎ(𝐿_𝑚𝑒𝑟, 𝑠𝑖[𝑘, … , 𝑘 + 𝑙], 𝑙, 𝑑)

𝑁−𝑙+1

𝑘=0

𝑇

𝑖=1

(5)

𝑚𝑜𝑡𝑖𝑓 = {𝑚 | 𝑚 = 𝑀𝐴𝑋 (𝑠𝑐𝑜𝑟𝑒(𝐿_𝑚𝑒𝑟, 𝑆, 𝑚) ∀ 𝐿_𝑚𝑒𝑟 ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑚𝑒𝑟𝑠)}

(6)

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 227

Table 1: Regular CPU-based Compute Node

Attribute Value

Architecture x86_64

CPU op-mode(s) 32-bit, 64-bit

Byte Order Little Endian

CPU(s) 24

On-line CPU(s) list 0-23

Thread(s) per core 1

Core(s) per socket 12

Socket(s) 2

NUMA node(s) 2

CPU MHz 2399.852

Memory 96 GB

Table 2: Xeon Phi Compute Node

Attribute Value

Total No of Active Cores 60

Voltage 897000 uV

Frequency 1052631 kHz

Table 3: NVIDIA CUDA Compute Node

Attribute Value

CUDA Driver Version / Runtime
Version

6.0 / 6.0

CUDA Capability Major/Minor

version number

3.5

Total amount of global memory 5120 MBytes
(5368512512 bytes)

(13) Multiprocessors, (192)

CUDA Cores/MP

2496 CUDA Cores

GPU Clock rate 706 MHz (0.71 GHz)

Memory Clock rate 2600 Mhz

Memory Bus Width 320-bit

L2 Cache Size 1310720 bytes

Total amount of constant

memory

65536 bytes

Total amount of shared memory

per block

49152 bytes

Total number of registers

available per block

65536

Warp size 32

Maximum number of threads per

multiprocessor

2048

Maximum number of threads per
block

1024

Max dimension size of a thread

block (x,y,z)

(1024, 1024, 64)

Max dimension size of a grid
size (x,y,z)

(2147483647, 65535,
65535)

Maximum memory pitch 2147483647 bytes

IV. Scheduling Strategy

 In this section we will examine the impact of using

scheduling strategy described in [10] on assigning tasks

to different architectures. Consequently, we will show

how the code will be affected based on such scheduling

strategy. The objective of this scheduling strategy is to

minimize the time needed to solve the MFP. Since we

have 4
15

 tasks, each task will compare one L-mer with

all the possible windows extracted from all the given

sequences, hence the total number of comparison

operations in each task CMP is described in (7) while

the total number of comparison operations for all tasks

CMPt is shown in (8). Table 5 shows the speed

differences between architectures when running one

task. We simply run the task separately on the

architecture and calculate the execution time. This in

fact can give us a ratio on which we can decide how

many tasks could be assigned to a specific architecture.

Specific ratio of tasks that should be assigned to

different architectures from a total number of (4
L

tasks)

is listed in table 6. Modified run times are also shown in

this table.

 Having a look to the results in tables 4 and 6 can give

us an idea about the improvement in the total run time.

For example; implementing the brute force algorithm

using one regular node, one CUDA node, and one Xeon

Phi node will reduce the run time from 13373 seconds

on a single regular node to 2333 seconds with a

speedup factor of 5.7 while using four regular nodes,

one CUDA node, and one Xeon Phi node will reduce

the run time from 3353 seconds on pure 4 regular nodes

to 1533 seconds with a speedup factor of 2.18. Since

the number of CUDA nodes and Xeon Phi nodes are

fixed in our cluster then we can find that as the number

of regular nodes increases, the speedup factor

decreases.

𝐶𝑀𝑃 = (𝑁 − 𝐿 + 1) ∗ 𝑇

(7)

𝐶𝑀𝑃𝑇 = 4𝐿 ∗ 𝐶𝑀𝑃

 (8)

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 228

Table 4: Implementation Results of solving MFP on CPUs, Xeon Phi,

and NVIDIA CUDA

Trial
No.

Platform Result
(seconds)

1 1 Regular Node (OpenMP) 13373

2 1 Regular Node (MPI + OpenMP) 13263

3 2 Regular Nodes (MPI + OpenMP) 6590

4 4 Regular Nodes (MPI + OpenMP) 3353

5 8 Regular Nodes (MPI + OpenMP) 1688

6 16 Regular Nodes (MPI + OpenMP) 851

7 32 Regular Nodes (MPI + OpenMP) 430

8 64 Regular Nodes (MPI + OpenMP) 216

9 128 Regular Nodes (MPI + OpenMP) 109

10 256 Regular Nodes (MPI + OpenMP) 56

11 1 XEON Phi Node (Native Mode +
OpenMP)

22446

12 1 GPU Node (CUDA) 3234

Table 5: Speed differences of the architectures to complete one task

Architecture CPU Node GPU Node XEON-Phi
Node

Task Execution
Time (in Sec.)

1.24E-05

3.01E-06

2.09E-05

Table 6: Tasks assigned to architectures based on their speeds

Platform

CPU

Ratio %

CUDA

Ratio %

MIC

Ratio %

Result

(seconds)
1 Regular Node+

1 CUDA+1 MIC 17.44923 72.15477 10.39600 2333.49
1 Regular Node+

1 CUDA+1 MIC 17.56852 72.05050 10.38097 2330.11
2 Regular Nodes+

1 CUDA+1 MIC 30.01815 61.16871 8.81313 1978.20
4 Regular Nodes+

1 CUDA + 1 MIC 45.74194 47.42509 6.83297 1533.72
8 Regular Nodes +

1 CUDA+1 MIC 62.61125 32.68021 4.70854 1056.87
16 Regular Nodes+

1 CUDA+1 MIC 76.86071 20.22525 2.91404 654.08
32 Regular Nodes+

1 CUDA+ 1 MIC 86.79656 11.54067 1.66277 373.23
64 Regular Nodes+

1 CUDA+1 MIC 92.90111 6.20490 0.89400 200.66
128 Regular Nodes+

1 CUDA+1 MIC 96.28712 3.24530 0.46758 104.95
256 Regular Nodes+

1 CUDA+1 MIC 98.05740 1.69796 0.24464 54.91

V. Modifications to the Code

 The main program MotifTaskScheduler is

responsible for dividing the problem space into smaller

subspaces called chunks. Each chunk consists of a set

of tasks. The chunk will run on the corresponding

architecture. If certain architecture cannot process a

single task in a reasonable time which must be less than

the time for the fastest architecture to process all the

tasks; then this architecture must be ignored. Fig.1

shows the pseudo code used to schedule the MFP on the

different architectures. The code is designed to get the

available MFP implementations from the database. The

code then checks if the required architecture(s) is online

for each algorithm or not. The list of algorithms that

can be implemented on the on-line architectures will

have a pre-calculated ratio stored into the database.

This ratio is generated by the scheduling strategy.

These ratios should be normalized before dividing the

chunks. This step is necessary in case one of the

algorithms cannot run in the current state of the system

due to unavailability of the required architecture. The

code then determines the start and end indices for each

architecture to process. Eventually, the workload is

distributed among different architectures to process a

specific range using a specific algorithm.

 The pseudo code shown in Fig. 2 represents the

OpenMP implementation for finding the motif on

CPUs. Given the Start and End indices of the L-mers,

the MFP_OMP subroutine compares each L-mer in the

range with all the possible CMP windows (extracted

from T sequences, each of N characters) of the same

size L and then records the score of each L-mer. The

motif of the highest score (𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥) will be registered.

 The Pseudo code of MPI implementation for

finding the motif is listed in Fig. 3. Similar to

MFP_OMP subroutine the MFP_MPI subroutine

divides the search space and each MPI rank uses the

MFP_OMP routine to search its subspace. The root

rank (rank 0) will collect and apply maximum

reduction offered by MPI to find the global Motif.

 The pseudo code shown in Fig. 4 is similar to that of

OpenMP except the replacement of OpenMP directive

with the Offload directive to run this block of code on

the MIC co-processor.

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 229

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝒐𝒕𝒊𝒇𝑻𝒂𝒔𝒌𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒓

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, …, T]

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝐿

4. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑑

5. 𝑩𝑬𝑮𝑰𝑵

6. 𝑡[𝑡1, … , 𝑡𝑝] ← 𝑙𝑜𝑎𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠

7. 𝑡𝑚𝑖𝑛 ← 𝑀𝐼𝑁𝑖=1
𝑝 (𝑡𝑖) ∗ 4𝐿 ; find the smallest run time

8. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝

9. 𝑰𝑭 ti ≤ 𝑡𝑚𝑖𝑛 𝑻𝑯𝑬𝑵

10. 𝑅𝑖 ← 4𝐿/ 𝑡 𝑖 ; find the weight of each architecture

11. 𝑬𝑳𝑺𝑬

12.
𝑅𝑖 ← 0 ; this architecture is very slow and will be
ignored

13. 𝑬𝑵𝑫

14. 𝑬𝑵𝑫

15. 𝑅𝑡𝑜𝑡𝑎𝑙 ← 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑝 ; sum the weights

16.
𝑅𝑢 ← 4𝐿 / 𝑅𝑡𝑜𝑡𝑎𝑙 ; find the tasks assigned to each weight
unit

 𝑜𝑓𝑓𝑠𝑒𝑡 = 0

 𝑠𝑡𝑎𝑟𝑡𝑖 = 0

17. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝

18. 𝐶𝑖 = 𝑅𝑖 ∗ 𝑅𝑢 ;tasks assigned to architecture

𝑠𝑡𝑎𝑟𝑡𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡 ; determine the start index of
tasks

𝑒𝑛𝑑𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝐶𝑖 – 1 ; determine the end index of
tasks

 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶𝑖

19.
𝑆𝑐𝑜𝑟𝑒𝑖

← 𝑺𝑷𝑨𝑾𝑵 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖(𝑆, 𝐿, 𝑑, 𝐶𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖)

20. 𝑬𝑵𝑫

21.
𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝐴𝑋𝑖=1

𝑝
(𝑆𝑐𝑜𝑟𝑒𝑖) ; find the motif of highest

occurrence

22. 𝑬𝑵𝑫

Fig. 1: Scheduling routine pseudo code to assign workloads to

architectures.

 Fig. 5 shows the host side pseudo code for the

CUDA implementation. This module calculates the

number of CUDA Blocks and activates sufficient

number of threads per block. Fig. 6 shows the actual

kernel function that will perform the matching

process. The CUDA kernel is called 8 times as it

takes very long time to process a single job which

causes a timeout so we divided the search space into

8 chunks of size (512*Blocks) which is a 2D job. The

thread index is considered the Motif that must be

matched against all the CMP windows. As we have

multiple batches for the job, an offset is applied to the

thread index to differentiate the chunks. The host side

starts the CUDA jobs and collects the results in a

global array. Finally the host finds the highest score

in the global array.

VI. Conclusion

Solving computationally intensive problems on

heterogeneous architectures can significantly improve

and speedup the run time of the problem solution

when proper scheduling strategy and suitable parallel

computing paradigms are used. Having equivalent or

at least comparable number of different architectures

can result in a tangible speedup. Deploying more and

more CPUs can bridge the gap of speed difference

between architectures but will result in fewer number

of concurrent jobs that can be allocated to the system.

This is due to the increased percentage of utilized

resources. Future work may include the use of

different scheduling strategies and intelligent

selection criteria to choose the best scheduling

strategy to solve a given computationally intensive

problem. We also may investigate the power

consumption since we believe that deploying an

excessive number of CPU-based nodes can result in

excessive power consumption. We believe that this

paper is a step towards a complete system to solve

computationally intensive problems on heterogeneous

architectures.

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑶𝑴𝑷

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑)

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇]

4. 𝑩𝑬𝑮𝑰𝑵

5. 𝑚𝑜𝑡𝑖𝑓 ← 0

6. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 ← 0

7. $𝑶𝒑𝒆𝒏𝑴𝑷 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒗𝒆

8. 𝑭𝑶𝑹 𝑨𝑳𝑳 𝑚𝑜𝑡𝑖𝑓 𝑥 𝑖𝑛 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑]

9. 𝑩𝑬𝑮𝑰𝑵

10. 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑆)

11. 𝑰𝑭 𝑠𝑐𝑜𝑟𝑒 > score𝑚𝑎𝑥 𝐓𝐇𝐄𝐍

12. 𝑚𝑜𝑡𝑖𝑓 ← 𝑥

13. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 ← 𝑠𝑐𝑜𝑟𝑒

14. 𝑬𝑵𝑫𝑰𝑭

15. 𝑬𝑵𝑫

16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥

17. 𝑬𝑵𝑫

Fig. 2 Pseudo code for OpenMP implementation for MFP

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 230

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑴𝑷𝑰

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑)

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇]

4. 𝑩𝑬𝑮𝑰𝑵

5. 𝑚𝑜𝑡𝑖𝑓 ← 0
6. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 ← 0

7. 𝑟𝑎𝑛𝑘 ← 𝑀𝑃𝐼 𝑅𝑎𝑛𝑘

8. 𝑚𝑝𝑖𝑠𝑡𝑎𝑟𝑡 ← 𝑟𝑎𝑛𝑘 ∗ ((𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡)/ 𝑀𝑃𝐼_𝑆𝑖𝑧𝑒)

9. 𝑚𝑝𝑖𝑒𝑛𝑑 ← (𝑟𝑎𝑛𝑘 + 1) ∗ ((𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡)/ 𝑀𝑃𝐼_𝑆𝑖𝑧𝑒)

10. 𝑪𝒂𝒍𝒍 𝑴𝑭𝑷_𝑶𝑴𝑷(𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒[𝑚𝑝𝑖𝑠𝑡𝑎𝑟𝑡, … , 𝑚𝑝𝑖𝑒𝑛𝑑], S)

16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝑃𝐼_𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑀𝐴𝑋, 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥)

17. 𝑬𝑵𝑫

Fig. 3 Pseudo code MPI implementation for MFP

VII. Acknowledgement

 Computation for the work described in this paper

was supported by King Abdulaziz University’s High

Performance Computing Center (Aziz Supercomputer)

(http://hpc.kau.edu.sa).

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑴𝑰𝑪

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑)

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇]

4. 𝑩𝑬𝑮𝑰𝑵

5. 𝑚𝑜𝑡𝑖𝑓 ← 0

6. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 ← 0

7. $𝑶𝑭𝑭𝑳𝑶𝑨𝑫 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒗𝒆

8. 𝑭𝑶𝑹 𝑨𝑳𝑳 𝑚𝑜𝑡𝑖𝑓 𝑥 𝑖𝑛 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑]

9. 𝑩𝑬𝑮𝑰𝑵

10. 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑆)

11. 𝑰𝑭 𝑠𝑐𝑜𝑟𝑒 > score𝑚𝑎𝑥 𝐓𝐇𝐄𝐍

12. 𝑚𝑜𝑡𝑖𝑓 ← 𝑥

13. 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 ← 𝑠𝑐𝑜𝑟𝑒

14. 𝑬𝑵𝑫𝑰𝑭

15. 𝑬𝑵𝑫

16. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥

17. 𝑬𝑵𝑫

Fig. 4: Pseudo code for MIC implementation for MFP

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝑭𝑷_𝑮𝑷𝑼

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑)

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇]

4. 𝑩𝑬𝑮𝑰𝑵

5. 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← 512

6. 𝑏𝑙𝑜𝑐𝑘𝑠 ← 𝒄𝒆𝒊𝒍𝒊𝒏𝒈((𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡) / 8 / 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

7. 𝑠𝑐𝑜𝑟𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑] ← 0

8. 𝑭𝑶𝑹 𝒏 𝟎 𝒕𝒐 𝟕

9. 𝑩𝑬𝑮𝑰𝑵

10.
Call MotifKernel<blocks, threads>(S, n *

(end-start)/8 , score)

11. 𝑬𝑵𝑫

13. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝐴𝑋𝑖=𝑠𝑡𝑎𝑟𝑡
𝑒𝑛𝑑 (𝑠𝑐𝑜𝑟𝑒𝑖)

14. 𝑬𝑵𝑫

Fig. 5: Pseudo code for CUDA implementation for MFP

1 𝑴𝒐𝒅𝒖𝒍𝒆 𝑴𝒐𝒕𝒊𝒇𝑲𝒆𝒓𝒏𝒆𝒍

2 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, … , 𝑇]

3 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑜𝑓𝑓𝑠𝑒𝑡

4. 𝑂𝑢𝑡𝑝𝑢𝑡 ∶ 𝑠𝑐𝑜𝑟𝑒[𝑠𝑡𝑎𝑟𝑡, … , 𝑒𝑛𝑑]

5. 𝑩𝑬𝑮𝑰𝑵

6. 𝑡ℎ𝑟𝑒𝑎𝑑 ← (𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 ∗ 256 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥) + 𝑜𝑓𝑓𝑠𝑒𝑡

7. 𝑠𝑐𝑜𝑟𝑒[𝑡ℎ𝑟𝑒𝑎𝑑] ← 𝑠𝑐𝑜𝑟𝑒 (𝑡ℎ𝑟𝑒𝑎𝑑, 𝑆)

8. 𝑬𝑵𝑫

Fig. 6 Pseudo code for CUDA kernel function that runs on the

GPU

References

[1] P. Pevzner and S. Sze, “ Combinatorial approaches to finding

subtle signals in DNA sequences,” Proceedings of the 8th

International Conference on Intelligent Systems for Molecular

Biology, 269–78, 2000.

[2] H. M. Faheem, “Accelerating Motif Finding Problem using

Grid Computing with Enhanced Brute Force,” The 12th

International Conference on Advanced Communication

Technology (ICACT), Korea, 2010.

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 231

http://hpc.kau.edu.sa/
http://csys.cis.asu.edu.eg/hmfaheem/publications/%E2%80%9Caccelerating-motif-finding-problem-using-grid-computing-enhanced-brute-force%E2%80%9D
http://csys.cis.asu.edu.eg/hmfaheem/publications/%E2%80%9Caccelerating-motif-finding-problem-using-grid-computing-enhanced-brute-force%E2%80%9D

[3] M. Raddad, N. El-Fishawi, and H. M. Faheem, “Implementation

of Recursive Brute Force for Solving Motif Finding Problem on

Multi-Core,” International Journal of Systems Biology and

Biomedical Technologies, 2 (3):1-18, 2013.

[4] R. Inta and D. J. Bowman, “An FPGA/GPU/CPU hybrid

platform for solving hard computational problems,” in Proceedings

of the eResearch Australasia, Gold Coast, Australia, 2010.

[5] S. J. Park, D. R. Shires, and B. J. Henz, “Coprocessor computing

with FPGA and GPU,” in Proceedings of the Department of Defense

High Performance ComputingModernization Program:Users Group

Conference—Solving the Hard Problems, pp. 366–370,

Seattle,Wash, USA, 2008.

[6] M. Showerman, J. Enos, A. Pant et al., “QP: a heterogeneous

multi-accelerator cluster,” in Proceedings of the 10th LCI

International Conference on High-Performance Cluster Computing,

vol. 7800, pp. 1–8, Boulder, Colo, USA, 2009.

[7] D. B. Thomas, L. Howes, andW. Luk, “A comparison of CPUs,

GPUs, FPGAs, and massively processor arrays for random number

generation,” in Proceedings of the 7th ACM SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA ’09), pp.

63–72, Monterey, Calif, USA, 2009.

[8] K. Underwood, “FPGAs vs. CPUs: trends in peak floatingpoint

performance,” in Proceedings of the 12th International Symposium

on Field-Programmable Gate Arrays (FPGA ’04), pp. 171–180,

New York, NY, USA, February 2004.

[9] H. Khaled, H. M. Faheem, and R. El-Gohary, “Design and

implementation of a hybrid MPI-CUDA model for the Smith-

Waterman algorithm,“ International Journal of Data Mining and

Bioinformatics, 12(3): 313-327, Inderscience, 2015.

[10] H. M. Faheem and B. König-Ries, “A New Scheduling Strategy

for Solving the Motif Finding Problem on Heterogeneous

Architectures,” International Journal of Computer Applications,

101(5):27-31, 2014

Mathematics and Computers in Sciences and Industry

ISBN: 978-1-61804-327-6 232

http://csys.cis.asu.edu.eg/hmfaheem/publications/implementation-recursive-brute-force-solving-motif-finding-problem-multi-core
http://csys.cis.asu.edu.eg/hmfaheem/publications/implementation-recursive-brute-force-solving-motif-finding-problem-multi-core
http://csys.cis.asu.edu.eg/hmfaheem/publications/implementation-recursive-brute-force-solving-motif-finding-problem-multi-core
http://www.inderscience.com/info/inarticle.php?artid=69710
http://www.inderscience.com/info/inarticle.php?artid=69710
http://www.inderscience.com/info/inarticle.php?artid=69710

