



Abstract—The introduction of the domain-driven design (DDD)

as an alternative approach to software development had the promise

of achieving several benefits in the process of creating complex

domain-specific business applications. Due to the focus of this

approach to the core of the application functionality, improved

collaboration with domain experts and conceptual modeling benefits,

it has attracted a reasonable amount of attention from the

programming community in the past decade. Aforementioned

benefits have also been able to create unique set of programing

environments and languages that also move the boundaries of

efficiency of code execution and application maintenance.

In this paper we will present and analyze one such tool, namely,

DSL platform. DSL platform is a service that allows for the design,

creation and maintenance of business applications. The goal of this

paper is to analyze the implications of using the DDD through the

DSL platform on several important aspects of software management.

Primarily we will focus on the estimation of complex software system

value and software refactoring and maintenance effort based on the

models proposed by Groot et al.

We will show that for complex software systems consisting of a

number of different components, programming paradigms and

database systems can highly benefit from this approach. Some of the

most important benefits pertain to lowering of the cost of software

maintenance and transcending the properties of reliable business

applications and databases developed using legacy systems to current

systems using the underlying domain model.

Keywords— Software development, Software value, Software

maintenance, Domain-driven design, Software engineering, Software

refactoring, Legacy systems.

I. INTRODUCTION

HERE is a reasonably limited number of papers is current

scientific literature pertaining to different particularities of

software development management and practices, such as

software pricing model practices or adoption of novel software

development approaches. Only in recent years overviews of

some of these aspects of software management have been

studied and new models have been proposed. At the same time

practitioners are developing and presenting new frameworks

and technologies as well as new approaches to software

development altogether. Only a limited number of these

N. Vlahovic is the associate professor at the Informatics Department of the

Faculty of Economics and Business, University of Zagreb in Croatia. Trg. J.F.

Kennedyja 6, 10000 Zagreb, Croatia (phone: +385-1-238 3220; fax: +385-1-

233 5633; e-mail: nvlahovic@ efzg.hr).

developments enter the mainstream adoption by software or

even non-software companies.

One such phenomenon is software development approach

called domain driven design. This approach tries to offer

solutions to bridging the gap between business experts and

software experts that is main drawback in traditional

approaches that decreases the success rate of many software

projects. Agile methodologies are more successful in coping

with this gap for reasonably limited and small-scale software

systems. When it comes to complex business systems only

approaches with traditional core principles are available,

mostly with increased inefficiency and additional development

and maintenance costs.

Domain driven design is therefore dedicated in improving

the development and maintenance efficiency in complex

business systems. While offering great benefits for this type of

software systems and additional improvements in various

aspects of software management, it still faces significant

obstacles to adoption.

In this paper we will explain and present the main concepts

of domain driven design as an adequate software development

approach for complex business systems. Implementing these

benefits will be given through description of one particular

implementation of the approach, a software development tool

called DSL Platform. Benefits can be critically assessed

through different software management issues, and in this

paper we will concentrate on estimation of software asset value

and maintenance of these assets.

Goal of this paper is to critically investigate possible

benefits of adopting domain driven design in software

management, with particular emphasis on maintenance during

production phase of software assets. Inevitably these

considerations will reflect on the value of software asset, so a

validated approach to estimation of software assets is called

for. Here we will build on a proposed model of software

valuation proposed by [2].

The structure of this paper is as follows: In Section II we

will describe the main features of domain driven design, its

advantages and disadvantages as well as the implementation of

its concepts in a tool called DSL Platform. In Section III we

will take a closer look at some of the most important software

management issues that can be affected by the domain driven

design approach, such as the software maintenance issues,

Implications of Domain-driven Design in

Complex Software Value Estimation and

Maintenance using DSL Platform

Nikola Vlahovic

T

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 219

software risk managements and software value assessments

approaches. In Section IV we will discuss the possible impacts

of applying domain driven design within the software

development process for complex coupled heterogeneous

systems throughout the software process life cycle and

extrapolate the benefits and issues that the management should

be aware when considering introduction of domain driven

design. Finally in Section V. conclusions will be given with a

few guidelines outlining the main advances DDD and DSL

Platform can provide for companies using complex

heterogeneous software systems.

II. DOMAIN DRIVEN DESIGN AND DSL PLATFORM

In this section we discuss the domain driven design as a type

of software development approach, position this approach in a

wider context and based on our analysis describe a tool that

implements these features in most consistent manner.

Domain driven design (DDD) is a software development

approach that rather than analytically organize the software

development effort and use conceptual, modeling,

programming and implementation tools, it tries to make a

complete model of the problem domain moving the focus of

the development effort away from tools, techniques and

methodologies used.

In the most general terms software development approaches

can be divided into two diametrically contrasted classes and

one intermediary class that draws on some of the concepts

from either of the two main classes [1]:

1) Class of structured approaches. This is a group of

software development methodologies that are based on a

process that recognizes distinct phases of the software

development process. These phases usually align with

particular stages of the software development life cycle

(SDLC). Depending on the particular methodology each

phase can be associated with a stage in SDLC either,

planning, creating, testing or deploying of the software

system. Some methodologies can have several phases

associated with one stage of the SDLC, and others can

have one phase spanning over or overlapping with two

stages of the SDLC. The main characteristic of

methodologies in this group is that each phase needs to be

completed with some final result, a software artifact,

before next phase of the process can begin. Some of the

most common methodologies that belong to this group are

waterfall software development model, prototyping,

incremental development, iterative incremental

development, Boehm’s spiral model, etc. but also object

oriented approaches.

2) Class of behavioral approaches. This group of

methodologies relies on the soft systems approach that

takes a more relaxed definition of development process.

Behavioral approaches take a holistic view of the

organizational systems and social nature of software

systems (both in development and deployment stages).

This is why these methodologies promote participation of

system users and customers during the creation phases of

the system. Also the development process may return to

earlier phases as required by the current perspective of the

software system and even different development activities

may overlap. Along with soft systems approach we can

find characteristics of the behavioral approach in agent

based software engineering [3], [4] as well as in the

behavior-driven design [5].

3) Intermediary and transitional approaches. This class of

approaches to software development shares some of the

characteristics with the structured approaches and some of

the characteristics with the behavioral approaches. These

methodologies represent the synthesis of traditional rigid

structure and softer humanist elements of the behavioral

approaches. Agile methodologies represent the most

typical example of a transitional approach due to their

strive to capture the human aspects of organization for all

stakeholders involved, especially during the analysis and

planning stages, while still retaining structure in design

and implementations stages [6], [1].

Domain driven design (DDD) as a somewhat recent novel

software development approach tries to change the traditional

focus from the project methodologies and tools towards the

core of the problem at hand. DDD goes even beyond a

particular technology or methodology, or even a framework. It

is a way of thinking and a set of priorities aimed at

accelerating software projects that have to deal with

complicated domains [7]. As such it is very close to behavioral

approaches, but as it strongly relies on hierarchies of priorities

and concepts typical for structured approaches, it can be

regarded as a transitional approach to software development.

Still, unlike agile methodologies that are focused on a limited,

small to medium sized software projects, DDD is primarily

concerned with complex and coupled software systems. As it

is platform-independent it is an encompassing approach to

highly coupled systems that use different, even inconsistent,

technologies and platforms as well as development

methodologies or practices.

In order to understand how DDD can connect all of the

varieties of concepts into a consistent and unified one we will

take a look at how previous methodologies and frameworks

represent software projects. Most of them treat a software

project as an entity that has to be described using a number of

different perspectives. Since there are a lot of different

stakeholders involved in the development of any software

project, a variety of perspectives is used to promote better

communication and understanding between stakeholders. In

practice Unified Modelling Language (UML) is mostly used

for static and dynamic representation of these perspectives.

UML covers all of the relevant views of the software system,

its surroundings and dependencies using three groups of

dedicated diagrams, structure diagrams, behavioral diagrams

and interaction diagrams [8]. Inevitably, different perspectives

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 220

may not be entirely compatible and this may present a

challenge for the development team in continuation with the

development of the project.

 Unlike UML that takes on a number of perspectives of the

model, DDD tries to describe the model by describing its

domain as a whole and complete model (Figure 1). In this way,

model itself represents the system being developed.

Consequentially, programming code is the representation of

the model. Inappropriate, platform-dependent technical

programming code would cause lock-out effect for diversity of

technologies, platforms, methodologies as well as a number of

stakeholders, especially business experts with no programming

skills.

In order not avoid these lock-out effects specific

requirements are expected from the team communication

facilities. Firstly a domain specific language (DSL) is required

to describe the model of the software project, and secondly a

ubiquitous language for team communication should be used

and evolved during the development of the project. Consistent

communication between business domain experts and

developers expressing their views of the system in terms of

model concepts will evolve in a ubiquitous language. The team

understanding of software artefacts will express itself in the

source code of the system as it represents the model of the

system (through DSL). Any change in the model will change

the model and these changes are clearly visible to all of the

project participants, both business experts and developers [9].

DDD is an ongoing process of expressing ubiquitous domain

language in code [10].

Implementing key features of the DDD using object oriented

design can be used to create a unified platform for

development and evolution of complex software systems. One

such tool is DSL Platform which we will describe in the rest of

this Section.

DSL Platform is a service that helps in designing, building

and maintaining business applications. It allows for the

automation of business application development process. The

platform uses the specific business model as input and outputs

finished components for corresponding business software

system. Since DSL platform draws on the strengths of the

DDD approach, business model is described in understandable

language for both business experts and development team

while this description is also a formal specification of the

system (Figure 2).

Once declarative specification is defined, any of the

supported compilers can use this specification to build code or

maintain databases. True value of DDD approach becomes

apparent during the maintenance and evolution of the system.

Any changes made to the business model are automatically

translated by the platform into Client code or Databases (as

shown in Figure 2). This functionality alleviates programmers’

efforts and moves focus of their work to specific

functionalities and user experience rather than code

optimization, refactoring or similar technical tasks. Similarly

the maintenance or even migration of data to the underlying

database system is also highly automated.

 Two main challenges that can be effectively solved using

DSL Platform and underlying DDD approach is the

elimination of miscommunication between clients and

contractors or even among developers within developer teams.

The other is the elimination of non-creative and repetitive

work done by developers by automating repetitive tasks of the

development process.

A. Tackling miscommunication

In each software project there is a number of different

stakeholders that need to communicate their views, ideas and

concepts between themselves. Due to different backgrounds

(business backgrounds or engineering backgrounds) as well as

different perspectives of the project sometimes this

communication can be misinterpreted. Due to high volume of

interactions between different groups of stakeholders

development process may misinterpret customer needs, and

finally end up with a product that does not fulfill contractors’

expectations. This is why DSL platform uses a specific

language dedicated to describing business problem domains.

Having a model discussed and represented using the unified

language with unified meanings and understanding of

concepts, team communication is significantly improved,

resulting in a software that meets user need better.

Documentation that is generated in this manner better specifies

the software project, promotes consensus among team

members and has overall higher quality. DSL Platform takes

the documentation even one step further, since the

Fig. 1 model and perspectives of the model

Fig. 2 DSL Platform concept

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 221

documentation itself represents a full formal system

specification that can be readily used for rapid prototype

system validation.

B. Improving efficiency of source code and automation

The formal specification of the business system can be used

as a solid basis for improvement of code generation and

manipulation. Dedicated compiler of DSL Platform can use

this formal description of functional specifications to create

any of the components for the finalized business software

system. These can be libraries targeted for a particular

programming language or framework or database artifacts for

any relational or object-oriented database system. During the

creation of the software artifacts, due to formal specifications,

additional improvements of code can be automatized creating

faster and more reliant execution of system tasks as well as

creating more maintainable source code for the project. Finally

a number of database maintenance and administration tasks

can be performed using DDD model and then implementing

them by simply migrating changes into a particular database

system.

III. ESTIMATION OF SOFTWARE VALUE

In this Section we discuss the requirement and motivation

for precise estimation of software value and describe one of

novel concepts to strategically determining the value of

software assets.

In strategic management one of the most important basis for

decision making is the assessment of economic value assets.

Even more importance for appropriate decision making is the

precision in assessing the economic value of intangible assets

as their value may be harder to realistically judge.

In software industry this is the case with software assets.

Majority of assets are internally developed software systems

that are used either to offer services on the customer markets

or to sell the software itself on the customer market.

Software as an asset has some of the properties that

differentiate it from any other asset, tangible or not [11]:

1) Indestructibility. Using software over time does not degrade

its quality notwithstanding the length of usage or number of

uses. Consequently this property reinforces the internal

quality of software asset and its durability, so that the

change in its value is solely determined by external factors.

In this respect software value may deteriorate over time

[13], especially with the technological advancements that

change the working environment of the software.

2) Transmutability. Personalization, customization,

modification and other altering practices of existing

software systems are easily achieved which results in cost-

effective production of software variants. This is

particularly important for customer segmentation and price

discrimination market targeting strategies [12].

3) Reproducibility. Since high-quality copies of the original

software can be produced at low cost may authors agree

that the marginal cost of production is almost zero [14].

Structure of production cost for software products contains

primarily fixed cost for the software provider. Production

of each additional unit does not significantly increase the

total cost. In this respect the potential reproducibility

deliver to software assets also significantly improves its

value.

Along with this features software assets may take advantage

of different economics phenomena that can also influence the

estimation of its value. We will mention just a few examples.

The network effect that the use of final product or services

may produce in the targeted market segment can create lock-in

effects promoting customer loyalty and stabile customer base.

The wider the customer base the more valuable software asset

becomes according to Metcalf’s law. Consequently the value

of customer product and services that are based on that

software asset increases proportionally. Distribution of

software using corresponsive Internet services reduces or even

eradicates the costs of logistic and inventory. Internet services

also may transform software products into services. Many

desktop applications now are available as online services

(SaaS) that allow for more effective pricing strategies through

pricing discrimination.

All of the above features of software assets should be taken

into account during the estimation of software value.

Currently, software value estimation in practice is based on

three possible approaches [15]: (1) cost-based; (2) demand-

driven or value-based and (3) competition-oriented.

The cost-based approach is widely used as it is covered by

the International Accounting Standard 38 – Intangible Assets

(IAS 38). Main purpose of IAS is to standardize financial

reports for all countries that accept the standard in order to

make their financial statements comparable, basic accounting

principles are adopted. For asset measurement this means that

there is a preference for underestimating the asset value rather

than overestimate it. This is why most of the value estimates

are based on historical value which is usually lower than

current value, or market value, especially for intangible assets.

Computer software is treated as an Intangible asset as it is a

non-monetary asset, without physical substance and

identifiable. Standard defines that its value is initially

measured with cost, subsequently measured at cost or using

revaluation model. Also, it takes into account future economic

benefits that the asset may yield. Even though these benefits

may significantly influence the value of software assets, they

are usually overlooked in practice, so that during the

estimation of software asset only production costs is taken into

account. Even production cost does not necessarily translate

into software value, since during the development of software

a number of software functionalities may be developed that

never make it into the final product [2], or increase in project

costs that do not directly increase the value of software being

developed (i.e. expensive overheads, accommodation and

travel costs for team members, etc.). Poor project management

practices are not taken into account during current estimation

approaches as well as the quality level of software asset. All

these elements may lead to overestimation of software assets

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 222

which in turn is contrary to basic accounting principles.

Accounting value used for financial reporting, therefore,

does not reflect the true potential of software assets, honoring

the specific properties that we described earlier, for the

purpose of strategic decision making. Using accounting value

will either underestimate or overestimate capitalization on the

balance sheet or inevitably misrepresent due diligence before

possible acquisitions. Strategic decision making requires better

estimation of the potential of software assets that takes into

account specific properties and potential software assets offer.

This is why new approaches are developed in order to make

the estimation of software value more reliable. In the

remainder of this Section we will present an estimation model

based on the notion of technical debt and interest as described

by Groot et al.

A. Software Valuation based on Technical Debt and

Technical Interest

Technical debt is a type of opportunity cost defined as a set

of quality issues or problems in software that will cost the

organization that owns the software greater expanses if they

are not resolved [16]. Furthermore, there are two major

components of technical debt [18]:

1) principle, as cost to repair a software system in order to

achieve ideal level of quality and

2) interest, as additional maintenance cost due to the lack of

quality.

Technical debt increases over time if the quality issues of

software are not resolved due to maintenance costs that

increase as additional effort to negotiate quality issues is called

for [17]. According to financial economics principle of

technical debt is a cost that increases over time by the rate of

interest (Figure 3).

Due to this increase of technical debt over time, it is feasible

to pay the initial cost to repair software system and bring it to

the ideal level of quality. At this level lower maintenance cost

are required for the operation of the system in the future. In

Figure 4 we can see that future benefits from software system

operating at the ideal level of quality yielding significant

savings.

In order to include technical debt in the estimation of

software value [2] have proposed a layered Software Valuation

Pyramid model. This model relies on SIG Maintainability

model (SIG) to determine the software development level and

conclude the ideal level of software quality. On top of

development level estimates they propose metrics that help

estimate the operational costs of developed software systems

with three key measures: rebuild effort, repair effort and

maintenance effort (Figure 5).

Rebuild effort (RbE) is defined as technology-neutral

measure of technical volume, based on the technology used

and volume of produced source lines of code (SLOC). Repair

effort (RpE) is equal to the technical debt of the software

system which is primarily determined by the quality of

software development process. This means that only a part of

the software system needs to be rebuilt and this part is referred

to as the rework fraction (RF). Maintenance effort (ME) is the

yearly effort estimated to be required for regular maintenance

of the system, including bug fixes and small enhancements.

Based on the above defined metrics [2] propose tree

different models of estimating software asset value.

B. Software Asset Estimation Models

For the purpose of this paper we will consider three models

of estimating production value of software assets, which will

be bases of analyzing impact of DDD approach to software

asset development. All of the models are based on the

assumptions that (1) there is a known level of software asset

quality based on SIC metrics described earlier and (2) there is

Fig. 3 Structure of Technical debt over time

Fig. 5 Software Valuation Pyramid (Groot et al, 2012)

Fig. 4 Benefits from maintaining software system at the ideal level of

quality

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 223

an ideal level of quality for software asset at hand that is

higher than the current level of quality as previous empirical

studies suggested. Even if the ideal level of quality is lower

than the current level of quality these models of value

estimations may apply.

First model is based on Repair effort (RbE). According to

this model estimated value V is equal to rebuild effort

discounted by the repair effort (RpE) required to bring the

quality of software asset to ideal level.

Second model is based on the Rework fraction (RF). If

bringing software system to ideal level requires the

replacement of complete component or set of components that

the estimated value of the system V is equal to the value of the

part of the system that does not require any improvements (i.e.

the value of the fraction that ought not to be reworked).

Third model is based on Technical interest. Here rebuild

value (RV) is discounted by the value of technical interest

during the working lifespan of the software system. Technical

interest is the increase of maintenance cost that occurs if the

system is running in its current level of quality. The amount of

additional maintenance cost is given in Figure 4 as dotted line,

representing the possible increase of present value of software

system if it were upgraded to its ideal level of quality before its

introduction into production phase.

For further details refer to the paper [2].

IV. ANALYSIS OF SOFTWARE MANAGEMENT PRACTICES AND

DOMAIN DRIVEN DESIGN

A. Relating Software Asset Value Estimation and Software

Development Approach

As we can see in the proposed models of estimating value of

software assets, all of them heavily rely on the costs that the

exploitation of software asset incurs. Therefore, we may infer

that software assets that are not used tend to lose their value,

since there are no maintenance costs except storage costs. The

value of these assets decreases until it reaches the value of

acquisition as defined in IAS 38.

For software assets that are activated and operational in the

production system, estimation of its value can be executed

using described models. The main determinant of the

estimation level will be related to the quality of software

development approach. This is inevitable as the Rebuild effort

(RbE) relies not only on the volume of the system (i.e. SLOC)

but also the characteristics of the technology used. The

technological measure includes the properties of software

development environments, programming languages and

practices, as well as project management principles and

software approaches which results in corresponding level of

software quality.

On the other hand Repair effort (RpE) takes into account the

maintenance costs that heavily rely on the choses software

approach to software development life cycle (SDLC).

All of the three models benefit from the efficient software

approach as the estimated value of software asset increases. If

software approach allows for higher technological coefficient

the final RbV will be higher resulting in higher value

estimates.

In the first model lowering the Repair effort estimate also

increases the value of the value estimate. Since RpE is equal to

technical debt we can see that more efficient software

approach such as DDD results in increased value estimates of

software asset.

In the second model lowering the Rework fraction RF

increased the value estimate. This means that if more

optimized source code is used smaller part of it will have to be

reworked in order to increase its quality.

Finally, in the third model it is even suggested that if more

efficient software development approach is adopted in later

stages of software development life cycle (SDLC) it may

partially improve software value of the system, as the technical

interest will be discounting the rebuild value RV at a lower

rate.

All of the described models can be applied to complex

software systems that are composed of various development

frameworks, programing paradigms and languages, database

frameworks and technologies. Interconnecting this type of

complex systems generates substantial additional development

and maintenance costs.

If these connections can be negotiated from a single

centralized programing concept represented by a unified

model of the complete system the effort required to maintain

the system would decrease. This is why the approach to

complex software system using domain driven design may

effectively influence the value of complex systems and

software assets. This influence can be observed during the

early development stages, but also during later stages i.e.

during the production stage and maintenance of the system.

As we described earlier, DDD is focused on describing the

domain. For complex systems (such as business software

systems) this means that only business processes have to be

described without the concern with technical details.

Business experts can communicate their understanding of

business processes to system development teams using a

unified ubiquitous language that also represents the formal

specifications of the system. In the end, model represents the

business domain at hand, with no regard to what part of the

complex system it refers to (particular functionalities, external

systems and data sources or databases).

Further tools that draw on DDD approach can use this formal

descriptions and using compilers dedicated to particular

properties of the model create system components in a flexible

and yet automated way, producing optimized and maintainable

source code resulting with increased software quality.

Particularly, tool DSL Platform contains a number of

compilers that translate the source code of the DDD model

into different segments of coupled complex heterogeneous

software systems, building on top of various frameworks,

languages, libraries and platforms. In this way it synchronizes

the complete systems and migrates data between database and

the model and vice versa. Workload for the development team

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 224

is alleviated so that team members can spend more time on

designing the domain model itself in cooperation with business

experts.

The disadvantage of introducing DDD in software

development is the additional effort required to adopt this

software development approach. As software system grows

alternative software development approaches usually tend to

increase maintenance cost and decrease quality of code and the

system gradually degrades. With software system growth DDD

establishes better management over the complexity of system

with little degradation of system quality making initial entry

cost feasible. Also, additional effort and time is needed to

create a substantial model of the business domain before

positive effects on the development process become apparent.

Benefits from moving the focus of the development team

form technical issues to business logic, as well as the

improvement of the communication between team members

improves the quality of software systems developed.

Additional saving obtained through lower maintenance cost

and increased quality of source code through better

performance of execution and improved manageability of code

can significantly improve the value of complex business

software systems. However, DDD does not seem to be widely

spread and accepted in practice.

B. Investigating DDD Adoption Limitations in Software

Management Practices

In order to verify the findings in this paper, several

interviews were conducted with various team members from

two software development companies and two financial

institutions that develop their own software solutions. Based

on the responses gathered during interviews SWOT analysis

was conducted. Results are given in Figure 6.

The advantages were concluded based on the evidence

described in this paper while the disadvantages needed further

assessment and data collection obtained through interviews.

Interviews were largely used to identify weaknesses and

threats of adoption DDD approach for development and

maintenance of complex business systems.

As we can see in Figure 6 strengths refer to core advantages

of DDD with high emphasis on software management issues

and especially business management aspects of software

management, such as focus on business logic, unifying

business domain for all team members regardless of their

background and benefits in software quality and, particularly

important for in-house development, increased software asset

value.

On the other hand weaknesses of adopting DDD pertain to

initial cost of adopting this approach as well as the risk of

overestimating final system complexity as DDD is highly cost

inefficient for simple software system.

The most important weakness is the current state top

management awareness which represent the main limitation to

wider adoption of this approach. The highest benefits can be

achieved in large-scale non-software companies that develop

in-house software solutions, such as financial institutions and

banks, where the focus of core business is not on software

development. These are also the companies where awareness

and understanding of potential benefits seems to be at a

comparatively low level as well as the priority in managing

software development approaches. The main obstacle

preventing the higher acceptance of the domain driven design

in practice is the lack of understanding the benefits of DDD

and potential tools it provides by top level management. As the

bottom-line in risk management is to prevent potential risks,

additional adjustments of value estimations of software

systems does not justify adoption of DDD in companies that

were interviewed. Additionally, successful adoption requires

business domain experts to adjust to the domain specific

language which is characterized by high level of isolation and

encapsulation which is more familiar to software experts.

External elements of the SWOT analysis describe the

potentials of adopting DDD where positive potentials

represent opportunities to be gained. As we can see in Figure 6

improved valuations of software assets can be achieved and in

turn promote better strategic decision making. Also, reduction

of maintenance cost during production phase improves internal

rate of return on investment while at the same time extending

the lifespan of software asset. Equally important is the

potential of preserving business logic in legacy systems which

would be otherwise either lost after the discontinuation of

legacy systems or retained through expensive process of

reengineering.

Prolonged lifespan may also lead to one of two most

important threats in adopting DDD. This is the incentive to

maintain legacy systems that rely on old technologies,

programing languages, paradigms or frameworks while

maintaining high software asset value which may expose the

company to additional risks such as self-exclusion from trends

in software developments and increase of inefficiency resulting

SWOT
matrix advantages disadvantages

Internal

STRENGHTS
 better team communication
 focus on business logic
 automation of particular

development & maintenance
tasks

 unified domain model
 increased level of quality
 increased software value

WEAKNESESS
 high entry costs
 cost inefficiency for simple

software systems
 top management resistance
 high level of isolation and

encapsulation in domain
model may present a
challenge for business
domain experts

External

OPPORUNITIES
 improved estimation of value

for developed software assets
 reduction of maintenance

costs during production phase
of software system

 prolonged lifespan of software
systems

 sustaining business logic of
legacy systems

THREATS
 incentive to maintain legacy

technologies and
programming languages while
maintaining high software
value

 as changes in domain model
are reflected in system
components risk of human
error increases

Fig. 6 SWOT analysis of DDD approach to complex business software

systems

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 225

in loss of competitive advantages. Additional threat that can

be detected is the possible increase of the importance of

human error factors since the software model is directly related

to the system itself, so that any change is readily implemented

in software components in the production phase.

V. CONCLUSION

In this paper we have presented one of more recent

approaches to software development called domain driven

design (DDD). We assessed its implications on software

management process through impact on software value

estimation and changes in maintenance efficiency. As this

approach is still to see its wider adoption in practice we first

took a look at its main characteristics and, building on current

research, position it according to recent classifications. By

comparison with other approaches we classified DDD to an

intermediary group between structured approaches and

behavioral approaches. In fact, DDD seems to have been the

missing link since the intermediary class only recognized a

class of methodologies based on agile software development

concerned with small and medium projects. DDD completes

the classification as it is intended for complex heterogeneous

software systems.

For the purpose of this paper we took two main benefits

from DDD describing their practical implementations through

an existing tool DSL Platform. We estimated the impact of

these features on two major issues in software management –

software value estimation and maintenance cost effectiveness.

We have shown that level of quality of software can be greatly

improved during development phase through better

communication and moving focus from technical to business

arena. During the production phase of software system higher

quality of code optimizes maintenance cost in comparison to

suboptimal software system quality. All of this is reflected

through software asset value. We have shown building on

software valuation models presented by Groot et al (2012)

how the changes DDD provides impact all of the three

proposed models of software valuation.

Finally we have conducted interviews with information

officers and managers in software companies and banks to

obtain data and create a SWOT analysis of adopting DDD in

companies that manage in-house complex heterogeneous

software assets. The analysis showed that main obstacle for

adoption of DDD is lack of understanding the economic

benefits by the top management.

This is an important confirmation of current limitation to

adoption of DDD in mainstream software industry and

software departments of large companies that should be taken

into account when communicating research information to

business users and management.

ACKNOWLEDGMENT

I would like to thank Rikard Pavelic and company Nova

Generacija Softvera d.o.o. for their cooperation during

research of this topic, donating free access to DSL Platform

(http://dsl-platform.com) for the purpose of evaluation and

invaluable information that improved the quality of the

research results presented in this paper.

REFERENCES

[1] N. Mavetra and J. Kroeze, “Guiding Principles for Developing Adaptive

Software Products” in Communications of IBIMA, vol. 2010, IBIMA

Publishing, 2010, pp. 1 – 15.

[2] J. de Groot, A. Nugroho, T. Back and J. Visser, “What is the value of

your software?” in Proceedings of the Third International Workshop on

Managing Technical Debt (MTD), 5th June 2012, Zurich: IEEE, 2012,

pp. 37–44.

[3] N. R. Jennings, “On Agent-based Software Engineering” in Artificial

Intelligence, vol. 117, Elsevier Science, B.V., 2000, pp. 277 – 296.

[4] D. Sharma, W. Ma, D. Tran and M. Anderson, “A Novel Approach to

Programming: Agent Based Software Engineering” in Knowslege-based

Intelligent Information and Engineering Systems, Lecture Notes in

Computer Science, vol. 4253, Berlin: Springer Verlag, 2006, pp. 1184

– 1191.

[5] D. North, “Behavior Modification: The evolution of behavior-driven

development”, in Better Software, vol.-issue 2006-03, Techwell Corp.

[6] R. Brown, S. Nerur and C. Slinkman, “The philosophical Shifts in

Software Development” in Proceedings in the 10th Americas

Conference on Information Systems, New York, August 2004, pp. 4136

– 4143.

[7] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of

Software, Addison-Wesley, 2004.

[8] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modelling

Language User Guide, 2nd Ed., Addison-Wesley, 2005.

[9] J. S. Cuadrado and J. G. Molina, “Building Domain-Specific Languages

for Model-Driven Development” in IEEE Software, vol. 24, Issue No. 5.

IEEE Computer Society, September/October 2007, pp. 48 – 55.

[10] R. J. Wirfs-Brock, “Driven to… Discovering Your Design Values” in

IEEE Software, vol. 24, Issue No. 1. IEEE Computer Society,

January/February 2007, pp. 9 – 11.

[11] S. Y. Choi, D. O. Stahl and A. B. Whinston, The economics of

electronic commerce: the essential of doing business in the electronic

marketplace. Indianapolis: Macmillan, 1997.

[12] S. Lehmann and P. Buxmann, “Pricing Strategies of Software Vendors”

in Business & Information Systems Engineering, vol. 6, Heidelsberg:

Springer Verlag, 2009, pp. 452 – 462.

[13] J. Zhang and A. Seidmann, “The optimal software licencing policy

under quality uncertainty”, in The Proceedings of the 5th international

conference on electronic commerce, New York: ACM Press, 2003, pp.

276–286.

[14] S. Royer, Strategic Management and Online Selling: Creating

competitive advantage with intangible web goods, New York: Routlege,

2005.

[15] C. Homburg and H. Krohmer, Marketing Managment: Strategy –

Instruments – Implementation – Governance, 2nd Ed. (in German),

Wiesbaden: Gebler, 2006.

[16] W. Cunningham, “The WyCash portfolio management system,” ACM

SIGPLAN OOPS Messenger, vol. 4, no. 2, 1993., pp. 29–30.

[17] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical

debt and interest,” in Proceeding of the 2nd International Workshop on

Managing Technical Debt., ACM, 2011, pp. 1–8.

[18] B. Curtis, J. Sappidi and A. Szynkarski, “Estimating the Size, Cost, and

Types of Technical Debt”, in The Proceedings of the International

Workshop on Managing Technical Debt, 2012, Zurich, Switzerland.

Recent Advances in Computer Science

ISBN: 978-1-61804-320-7 226

http://dsl-platform.com/

